Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To figure out the reason causing ladle nozzle clogging during CC (continuous casting) of a non-oriented electrical steel with high silicon (or HNO for short) and get a method to address it, this paper studied the theoretical calculation of flow rates during CC, the inclusions around the slide gate where ladle nozzle clogging happened, and Ca-treatment at the end of RH for decreasing ladle clogging of the electrical steel both theoretically and practically. The results showed that: The bigger diameter of a nozzle or less nozzle clogging can guarantee an enough flow rate for reaching the target casting speed. Ladle nozzle clogging can be predicted by comparing the percentage of slide gate opening. Al2O3 and its composite inclusions were the main reason that caused the ladle nozzle clogging of the electrical steel. Higher [Al] or TO will increase the amount of Pure Ca wires for Ca-treatment. The results of the verification tests fit the thermodynamic calculation, and Ca-treatment using pure Ca wires could prevent ladle nozzles from clogging without affecting the magnetic properties of the electrical steel.

Go to article

Authors and Affiliations

Wei Kong
Da-Qiang Cang
Download PDF Download RIS Download Bibtex

Abstract

The Goss texture is a characteristic feature of grain-oriented transformer steel sheets. Generator sheets, which are produced as non-oriented steel sheets, should have isotropic features. However, measurement results of generator sheets, confirmed by crystallographic studies, indicate that these sheets are characterized by certain, quite significant anisotropy. The first purpose of this paper is to present the influence of textures of generator and transformer steel sheets on their magnetization characteristics. The second aim is to propose a method which takes into account the sheet textures in the calculations of magnetization curves. In calculations of magnetization processes in electrical steel sheets, models in which the plane of a sheet sample is divided into an assumed number of specified directions are used. To each direction a certain hysteresis loop, the so-called direction hysteresis, is assigned. The parameters of these direction hystereses depend, among other things, on the texture type in these steel sheets. This paper discusses the method which calculates the parameters of these direction hystereses taking into account the given sheet texture. The proposed method gives a possibility of determining the magnetization characteristics for any direction of the field intensity changes.

Go to article

Authors and Affiliations

Witold Mazgaj
Adam Warzecha
Download PDF Download RIS Download Bibtex

Abstract

Due to speed-dependent centrifugal forces, the support of the torque, static mechanical stress introduced by manufacturing processes the laminated core of rotating electrical machines is exposed to considerable mechanical stress. The resulting stress distribution changes the magnetic properties of the electrical steel. To take this into account, a magnetization model is constituted on the basis of vector magneto-mechanical measurements that include the magnetic permeability as a function of the mechanical stress and the angle between magnetization - and the maximum principal stress direction. Subsequently, the model is integrated into the finite element simulation of a permanent magnet excited synchronous machine at different rotational speeds.
Go to article

Authors and Affiliations

Benedikt Schauerte
1
ORCID: ORCID
Xiao Xiao
1
Kevin Jansen
1
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Schinkelstr. 4, D-52062 Aachen, Germany
Download PDF Download RIS Download Bibtex

Abstract

Improvement of magnetic properties of electrical steel can be achieved by reduction the size of magnetic domains. The application of local stresses through laser scribing leads to reduced core losses. In order to determine the effect of laser refinement conditions of magnetic domains on the properties of the soft magnetic material, four samples with a thickness 0.23 mm were refined. The refinement of each sample was carried out using different line energies of the laser beam. Estimation of the magnetic domain size was performed using the Jeffries method, the magnetic viewer was used to reveal the domain structure. The measurement of the magnetic properties was performed at a frequency of 50 Hz and an induction of 1.5 T. The analyzed results presented in this work indicate impact of laser refining on magnetic properties of grain oriented electrical steel depending on used laser beam energy.
Go to article

Authors and Affiliations

K. Ścibisz
1
ORCID: ORCID
J. Krawczyk
2
ORCID: ORCID

  1. ArcelorMittal Poland S.A. Unit in Krakow, Tadeusza Sendzimira 1 Str., 31-752 Krakow, Poland; AGH University of Krakow, Faculty of Metals Engineering and Computer Science, AGH Do ctoral School, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. AGH University of Krakow, Faculty of Metals Engineering and Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland

This page uses 'cookies'. Learn more