Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

There are few reports in literature about the selectivity of postemergence application of herbicides for the control of eudicotyledon weeds (broadleaf) in chickpea. For this reason, the aim of this study was to investigate the selectivity of diphenyl-ether herbicides in chickpea influenced by the herbicides and application rates. A field experiment was conducted from February to June 2017 in Urutaí, state of Goiás, Brazil. Cultivar BRS Aleppo was used in the experiment. The experiment was set up in a randomized block design with 2 × 3 + 1 factorial arrangement and three replications. The first factor was herbicides (fomesafen and lactofen) with the second factor being herbicide rate (50, 75, and 100% of referenced rate) plus an untreated check as a comparison. The applied rates of herbicides were 250 and 180 g ⋅ ha–1 of fomesafen and lactofen, respectively. The selectivity of herbicides was evaluated according to agronomic characteristics (plant population, height, dry matter, number of pods per plant and 100-grain weight) and yields. Both herbicides, regardless of dosage, were selective in chickpea cultivation, even exhibiting leaf necrosis symptoms with visible injuries below 20% with no effect on yield.

Go to article

Authors and Affiliations

Luís Gustavo Barroso Silva
Lucas da Silva Araújo
Daniel José Gonçalves
Mateus Souza Valente
Anderson Rodrigo da Silva
Warley Marcos Nascimento
Paulo César Ribeiro da Cunha
Download PDF Download RIS Download Bibtex

Abstract

Weed control is the most important constraint of autumn-sown chickpea production. Field experiments were conducted at three sites to evaluate the yield response of autumn-sown rainfed chickpea and weed control with PRE pendimethalin, POST pyridate, PRE isoxaflutole, preemergence (PRE) and postemergence (POST) of imazethapyr through hand-weeded, untreated and weed free checks. The results showed that pyridate was the safest option for weed control in chickpea. The highest grain yield of chickpea was obtained with application of pyridate followed by isoxaflutolein three sites. Imazethapyr and metribuzin caused higher visual injuries than the other treatments. Furthermore, the applications of pyridate, isoxaflutole, metribuzin, and pendimethalin, as well as PRE and POST imazethapyr were found to reduce the total weed densities (averaged for three locations) by as much as 76, 75, 75.4, 43, 64, and 64.5% within 30 days after treatments, respectively.

Go to article

Authors and Affiliations

Mozhgan Veisi
Mohammad Saleh Mansouri
Mohsen Ghiasvand
Download PDF Download RIS Download Bibtex

Abstract

In order to evaluate morphological and physiological traits related to drought tolerance and to determine the best criteria for screening and identification of drought-tolerant genotypes, we grew two tolerant genotypes (MCC392, MCC877) and two sensitive genotypes (MCC68, MCC448) of chickpea under drought stress (25% field capacity) and control (100% field capacity) conditions and assessed the effect of drought stress on growth, water relations, photosynthesis, chlorophyll fluorescence and chlorophyll content in the seedling, early flowering and podding stages. Drought stress significantly decreased shoot dry weight, CO2 assimilation rate (A), transpiration rate (E), and Psii photochemical efficiency (Fv/Fm) in all genotypes. In the seedling and podding stages, Psii photochemical efficiency was higher in tolerant genotypes than in sensitive genotypes under drought stress. Water use efficiency (WUE) and CO2 assimilation rate were also higher in tolerant than in sensitive genotypes in all investigated stages under drought stress. Our results indicated that water use efficiency, A and Fv/Fm can be useful markers in studies of tolerance to drought stress and in screening adapted cultivars of chickpea under drought stress.

Go to article

Authors and Affiliations

Raheleh Rahbarian
Ramazanali Khavari-Nejad
Ali Ganjeali
Abdolreza Bagheri
Farzaneh Najafi
Download PDF Download RIS Download Bibtex

Abstract

Fusarium wilt is one of the most severe diseases of chickpea in the major growing areas of chickpea production in western Iran. To identify Fusarium spp. associated with chickpea plants showing symptoms of yellowing and wilting, 58 chickpea fields were sampled and 106 Fusarium spp. isolates were obtained from six different regions of Kermanshah Province in western Iran during 2018 and 2019 crop seasons. Thirty-six isolates obtained from stem or lower stem tissues were selected for pathogenicity, morphological and molecular identification using polymease chain reaction species-specific primers. Eleven isolates of Fusarium spp. were selected for sequence analyzing the translation elongation factor 1-α (EF-1α), and β-tubulin gene regions. Phylogenetic analysis of concatenated DNA sequences of both gene regions of these isolates plus other taxa revealed that 11 Fusarium spp. isolates were clustered into five distinct groups. Based on the results of morphological and molecular identification five Fusarium species were identified. Pathogenicity tests showed that F. oxysporum f. sp. ciceris and F. redolens isolates had the highest disease incidence on JG–62 and Bivenij cvs. and F. hostae, F. equiseti and F. acuminatum isolates had the lowest disease incidence. No sign of vascular discoloration was observed in longitudinal or transverse sections of chickpea plants affected by F. redolens isolates. Instead, brown to black necrosis was observed on the surface of tap-roots and crowns. No correlation was found between geographical distribution and pathogenicity of isolates. This is the first report of morphological, molecular and pathogenicity characteristics of F. redolens and F. hostae isolated from chickpea stems or lower stems in Iran.
Go to article

Bibliography

polymorphic DNA (RAPD). European Journal of Plant Pathology 107: 237–248. DOI: https://doi.org/10.1023/A:1011294204630
Jendoubi W., Bouhadida M., Boukteb A., Beji M., Kharrat M. 2017. Fusarium wilt affecting chickpea crop. Agriculture 7 (23): 1–16. DOI: https://doi.org/10.3390/agriculture7030023
Leslie J.F., Zeller K.A., Summerell B.A. 2001. Icebergs and species in populations of Fusarium. Physiological and Molecular Plant Pathology 59: 107–117. DOI: 10.1006/pmpp.2001.035
Leslie J.F., Summerell B.A. 2006. The Fusarium laboratory manual. Ames, Iowa: Blackwell Publishing, USA, 388 pp.
Manuchehri A., Mesri A. 1966. Fusarium wilt of chickpea. Iranian Journal of Plant Pathology 3 (3): 1–11.
Mishra P.K., Fox R.T.V., Culham A. 2003. Development of a PCR based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218 (2): 329–332. DOI: https://doi.org/10.1111/j.1574-6968.2003.tb11537.x
Mohammadi H., Banihashemi Z. 2005. Distribution, pathogenicity and survival of Fusarium spp. the causal agents of chickpea wilt and root rot in the Fars province of Iran. Iranian Journal of Plant Pathology 41 (4): 687–708.
Navas-Cortes J.A., Alcala-Jimenez A.R., Hau B., Jimenez- -Diaz R.M. 2000. Influence of inoculum density of race 0 and 5 of Fusarium oxysporum f. sp. ciceris on development of Fusarium wilt in chickpea cultivars. European Journal of Plant Pathology 106: 135–146. DOI: https://doi.org/10.1023/A:1008727815927
Nene Y.L., Haware M.P. 1980. Screening chickpea for resistance to wilt. Plant Disease 64: 379–380.
Nelson P.E., Toussoun T.A., Marasas W.F.O. 1983. Fusarium Species: An Illustrated Manual for Identification. Pennyslvania State University Press, University Park, USA, 193 pp.
Nourollahi K.H., Aliaran A., Younesi H. 2017. Genetic diversity of Fusarium oxysporum f. sp. ciceris isolates causal agent of chickpea wilt in Kermanshah province using microsatellite markers. Novel Genetic 11 (4): 605–615.
O’Donnell K., Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic. Molecular Phylogenetics and Evolution 7 (1): 103–116. DOI: https://doi.org/10.1006/mpev.1996.0376
O’Donnell K., Cigelnik E., Nirenberg H.I. 1998. Molecular systematic and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90 (3): 465–493. DOI: https://doi.org/10.1080/00275514.1998.12026933
Saeedi Sh., Jamali S. 2021. Molecular characterization and distribution of Fusarium isolates from uncultivated soils and chickpea plants in Iran with special reference to Fusarium redolens. Journal of Plant Pathology 103 (4): 167–183. DOI: https://doi.org/10.1007/s42161-020-00698-w
Sharma K.D., Muehlbauer F.J. 2007. Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157 (1–2): 1–14. DOI: https://doi.org/10.1007/s10681-007-9401-y
Shokri J., Javan-Nikkhah M., Rezaei S., Zamanizadeh H.R., Nourollahi Kh. 2020. Molecular identification of the races of Fusarium oxysporum f. sp. ciceris, causal agent of chickpea wilt in western and north western provinces of Iran. Applied Entomology and Phytopathology 88 (1): 11–12. DOI: https://doi.org/10.22092/jaep.2020.126209.1281
Taylor J.W., Jacobson D.J., Kroken S., Kasuga T., Geiser D.M., Hibbett D.S., Fisher M.C. 2001. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31 (1): 21–32. DOI: https://doi.org/10.1006/fgbi.2000.1228
Trapero-Casas A., Jimenez-Diaz R.M. 1985. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75 (10): 1146–1151. DOI: https://doi.org/10.1094/ Phyto-75-1146
Wang J., Zheng C. 2012. Characterization of a newly discovered Beauveria bassiana isolate to Franklimiella occidentalis Perganda, a non-native invasive species in China. Microbiology Research 167 (2): 116–120. DOI: https://doi.org/10.1016/j.micres.2011.05.002
Younesi H. 2004. Identification of the physiologic races of Fusarium oxysporum f. sp. ciceris in some west provinces of Iran. In: Proceedings of the 16th Iranian Plant Protection Congress, Tabriz, Iran (in Persian with English summary)
Younesi H., Chehri Kh., Sheikholeslami M., Safaee D., Naseri B. 2019. Effects of sowing date and depth on Fusarium wilt development in chickpea cultivars. Journal of Plant Pathology 102 (2): 343–350. DOI: https//doi/10.1007/s42161-019-00423-2
Zokaee S., Falahati Rastegar M., Jafar Poor B., Bagheri A., Jahanbakhsh Mashhadi V. 2012. Genetic diversity determination of Fusarium oxysporum f. sp. ciceris the causal agent of wilting and chlorosis in chickpea by using RAPD and PCR- -RFLP techniques in Razavi and northern Khorasan provinces. Iranian Journal of Pulses Research 3 (2): 7–16. DOI: https://doi.org/10.22067/ijpr.v1391i2.24531
Go to article

Authors and Affiliations

Hassan Younesi
1
ORCID: ORCID
Mostafa Darvishnia
1
ORCID: ORCID
Eidi Bazgir
1
ORCID: ORCID
Khosrow Chehri
2
ORCID: ORCID

  1. Department of Plant Protection, College of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
  2. Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran

This page uses 'cookies'. Learn more