Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents detailed two-phase adiabatic pressure drops data for refrigerant R134a. Study cases have been set for a mass flux varying from 200 to 400 kg/m2s, at the saturation temperature of 19.4°C. Obtained experimental data was compared with the available correlations from the literature for the frictional pressure drop during adiabatic flow. Influence of mixture preparation on pressure drop was investigated, for varying inlet subcooling temperature in the heated section. The flow patterns have also been obtained by means of a high-speed camera placed in the visualization section and compared with literature observations.

Go to article

Authors and Affiliations

Tomasz Muszyński
Rafał Andrzejczyk
Carlos A. Dorao
Download PDF Download RIS Download Bibtex

Abstract

The paper present the determination of the state parameters of natural gas at the pipeline inlet based on knowledge of the pressure and temperature at the receiving point. Natural gas transport will be carried out through an offshore section of a transmission pipeline. The equations of the Fanno flow model will be used to describe the thermodynamic parameters of the gas in the flow lines. The mathematical equations of the flow mentioned above models have been derived from an analysis of the mass, energy and momentum balance equations. They also take into account the viscous friction forces in the transported gas. Based on the carried out calculations, changes in the Mach number, pressure and velocity of methane transported along the analysed pipeline were determined. In addition, the total entropy gain in the analysed methane flow was determined. The novelty of the calculations presented is the use of the Fanno flow model, which considers a realistic adiabatic gas flow. This is in contrast to the isothermal flow model, which assumes an unchanging temperature of the transported gas. In the case under consideration, the adopting model was possible because of the similar temperature values of the gas flowing in the pipeline and the corresponding temperature values of the surrounding seawater. The fundamental advantage of the Fanno flow model is that it satisfies the mass balance of the flowing gas in each cross-section. Thus, the product of the velocity and density of the gas in a pipeline of constant diameter assumes a constant value.
Go to article

Authors and Affiliations

Kazimierz Rup
1
Tomasz Sobota
2

  1. Rup, Kazimierz: Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland
  2. Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland

This page uses 'cookies'. Learn more