Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the issue of potential for improvement of resistance of wood chip fine grinders to abrasive wear by providing them with WCCoCr coating applied with the use of atmospheric plasma spraying (APS). The study focused on establishing parameters of the technological process of spraying a 250–270 μm thick coating onto surface of ductile cast iron castings used to date as grinder linings. The presented data include results of microstructure examination, chemical composition analysis, HV hardness measurements, and scratch tests for both previous and new variant of linings. The obtained scratch test results indicate that the material of the coating is characterized with definitely lower susceptibility to scratching. The scratch made on coating was 75–84 μm wide and 7.2–8.2 μm deep, while the scratch on cast iron was distinctly wider (200–220 μm) and deeper (8.5–12.8 μm). In case of cast iron, the range of variability in scratch width and depth was definitely larger. This can be explained with large difference in hardness of individual components of microstructure of cast iron and significantly larger plastic deformation of cast iron compared to the coating revealed in the course of indenter motion over surfaces of the two materials. It has been found that application of WCCoCr coating offered better resistance of lining surfaces to scratching which can be considered a rationale for undertaking in-service tests.

Go to article

Authors and Affiliations

A.W. Orłowicz
M. Mróz
M. Tupaj
B. Kupiec
M. Jacek
M. Radoń
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the possibility of improving the scratch resistance of the AZ91 magnesium alloy by applying a WCCoCr coating using the Air Plasma Spraying (APS) method. The coating thickness ranged from 140 to 160 m. Microstructural studies of the AZ91 magnesium alloy were performed. The chemical composition of the WCCoCr powder was investigated. The quality of the bond at the substrate–coating interface was assessed and a microanalysis of the chemical composition of the coating was conducted. The scratch resistance of the AZ91 alloy and the WCCoCr coating was determined. The scratch resistance of the WCCoCr powder-based coating is much higher than the AZ91 alloy, as confirmed by scratch geometry measurements. The scratch width in the coating was almost three times smaller compared to the scratch in the substrate. Observations of the substrate–coating interface in the scratch area indicate no discontinuities. The absence of microcracks and delamination at the transition of the scratch from the substrate to the coating indicates good adhesion. On the basis of the study, it was found that there was great potential to use the WCCoCr powder coating to improve the abrasion resistance of castings made from the AZ91 alloy.
Go to article

Bibliography

[1] Wanhill, R.J.H. (2017). Carbon fibre polymer matrix structural composites. Aerospace Materials and Material Technologies. 1, 309-341. https://doi.org/10.1007/978-981-10-2134-3_14.
[2] Dziadoń, A. & Mola, R. (2013). Magnesium – directions of shaping mechanical properties. Obróbka plastyczna Metali. XXIV(4). (in Polish).
[3] Mordike, B.L. & Ebert, T. (2001). Magnesium: Properties – application – potential. Materials Science and Engineering. 302(1), 37-45. DOI: 10.1016/S0921-5093(00)01351-4.
[4] Wang, G.G. & Weiler, J.P. (2023). Recent developments in high pressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys. 11(1), 78 87. DOI: doi.org/10.1016/j.jma.2022.10.001.
[5] Liu, B., Yang, J., Zhang, X., Yang, Q., Zhang, J., Li, X. (2022). Development and application of magnesium alloy parts for automotive OEMs: A review. Journal of Magnesium and Alloys. 11(1), 15-47. DOI: 10.1016/j.jma.2022.12.015.
[6] Janik, B. (2011). Application of magnesium alloys in aviation. Prace Instytutu Lotnictwa. 57(221), 102-108. (in Polish).
[7] Prasad, S.V.S., Prasad, S.B., Verma, K., Mishra, R.K., Kumar, V. & Singh, S. (2021). The role and significance of Magnesium in modern day research – A review. Journal of Magnesium and alloys. 10(1), 1-61. DOI: 10.1016/j.jma.2021.05.012.
[8] Blawert, C., Hort, N. & Kainer, K.U. (2004). Automotive applications of magnesium and its alloys. Transaction of the Indian Institute of Metals. 57(4), 397-408.
[9] Chen, H. & Alpas A.T. (2000). Sliding wear map for the magnesium alloy Mg-9Al-0.9Zn (AZ91). Wear. 246(1-2), 106-116. DOI: 10.1016/S0043-1648(00)00495-6.
[10] Walczak, M., Caban, J. & Pliżga, P. (2015). Tribological characteristic of magnesium alloys used in means of transport. TTS Technika Transportu Szynowego. 22(12), 1614-1617.
[11] Parco, M., Zhao, L., Zwick, J., Bobzin, K. & Lugscheider, E. (2007). Investigation of particle flattening behaviour and bonding mechanisms of APS sprayed coatings on magnesium alloys. Surface and Coating Technology. 201(14), 6290-6296. DOI: 10.1016/j.surfcoat.2006.11.034.
[12] Morelli, S., Rombol`a, G., Bolelli, G., Lopresti, M., Puddu, P, Boccaleri, E., Seralessandri, L., Palin, L., Testa, V., Milanesio, M. & Lusvarghi, L. (2022). Hard ultralight systems by thermal spray deposition of WC-CoCr onto AZ31 magnesium alloy. Surface and Coating Technology. 451, 129056 1-26. DOI.org/10.1016/j.surfcoat.2022.129056.
[13] Gray, J.E. & Luan, B. (2002). Protective coatings on magnesium and its alloys – a critical review. Journal of Allys and Compounds. 336(1-2), 88-113. DOI: 10.1016/S0925 8388(01)01899-0.
Go to article

Authors and Affiliations

Marek Mróz
1
ORCID: ORCID
Sylwia Olszewska
1
ORCID: ORCID
Patryk Rąb
1
ORCID: ORCID

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents structural investigations and mechanical properties of hard coatings deposited by spraying WCCoCr powder in an argon-hydrogen plasma jet onto the surfaces of AlSi10Mg alloy casting plates. Two variants (A and B) of processing parameters of the powder spraying process onto the surface of silumin plates were applied, resulting in different coating thickness. The coating applied according to variant A was done with 12 passes, and its thickness was approximately 150 μm. The coating applied according to variant B was done with 20 passes, and its thickness was about 320 μm. The microstructures of these coatings are similar, consisting of wavy, alternately deposited phases of solid solutions with varying concentrations of elements, and fine spherical phases, irregularly dispersed carbides. A qualitative analysis of the distribution of microstructure components was performed based on surface mapping. Precipitates differing in their degree of grayness and shape were identified based on microanalysis of their chemical composition. The porosity assessment of coatings performed in five randomly selected areas amounts to an average of 9%. The applied coatings exhibit good adhesion to the substrate, as evidenced by the absence of delamination during scratching tests using a diamond Rockwell indenter loaded with a force of 10 N. The coating hardness averaged 1180HV0.2. The test results indicate the high quality of the WCCoCr coatings, regardless of their thickness.
Go to article

Bibliography


[1] Sokołowski, P., Łatka, L., Kozerski, S. & Ambroziak, A. (2015). Plasma spraying from slurries as an alternative to conventional powder plasma spraying. Spajanie materiałów konstrukcyjnych. 3(29), 28-31. (in Polish).

[2] Dudek, S., Gancarczyk, T. & Sosnowy, P. (2012). Application of thermal spraying on the example of a turbine engine. Welding Technology Review. 84(9), 9-13. DOI: https://doi.org/10.26628/wtr.v84i9.351. (in Polish).

[3] Bakan, E. & Vaßen, R. (2017). Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. Journal of Thermal Spray Technology. 26, 992-1010. DOI: https://doi.org/10.1007/s11666-017-0597-7.

[4] Heimann, R. (2008). Plasma Spray coating: principles and applications (2nd ed.). German-Weinhem: Willey-VCH.

[5] Mróz, M. & Rąb, P. (2023). Evaluation of the possibility of applying thermal barrier coatings to AlSi7Mg alloy castings. Archives of Foundry Engineering. 23(3), 104-109. DOI: 10.24425/afe.2023.146668.

[6] Pierce, D., Haynes, A., Hughes, J., Graves, R., Maziasz, P., Muraligharan, G., Shyam, A., Wang, B., England, R. & Daniel, C. (2018) High temperature materials for heavy duty diesel engines: historical and future trends. Progress in Materials Science. 103, 109-179. DOI: 10.1016/j.pmatsci.2018.10.004.

[7] Tan, L.G., Li, G.L., Tao, C. & Feng, P.F. (2022). Study on fatigue life prediction of thermal barrier coatings for high-power engine pistons. Engineering Failure Analysis. 138, 106335. DOI: https://doi.org/10.1016/j.engfailanal.2022.106335.

[8] Padture, N.P., Gell, M. & Jordan, E.H. (2002). Thermal barrier coatings for gas-turbine engine applications. Science. 296(5566), 280-284. DOI: 10.1126/science.1068609.

[9] de Goes, W.U., Markocsan, N., Gupta, M., Vassen, R., Matsushita, T. & Illkova, K. (2020). Thermal barrier coatings with novel architectures for diesel engine applications. Surface and Coatings Technology. 396, 125950. DOI: 10.1016/j.surfcoat.2020.125950.

[10] Uczak de Goes, W., Somhorst, J., Markocsan, N., Gupta, M. & Illkova, K. (2019). Suspension plasma-sprayed thermal barrier coatings for light-duty diesel engines. Journal of Thermal Spray Technology. 28, 1674-1687. https://doi.org/10.1007/s11666-019-00923-8.

[11] Opiekun, Z. (2014). Mechanical properties of the thermal barrier coatings made of cobalt alloy MAR-M509. In M. Aliofkhazraei (Eds.). Superalloys (331-335). Iran, Techeran. IntechOpen. DOI: 10.5772/61100.

[12] Reghu, V.R., Shankar, V. & Ramaswamy, P. (2018). Challenges in plasma spraying of 8% Y2O3-ZrO2 thermal barrier coatings on al alloy automotive piston and influence of vibration and thermal fatigue on coating characteristics. Materials Today: Proceedings. 5(11), 23927-23936. DOI: 10.1016/j.matpr.2018.10.185.

[13] Reghu, V.R., Lobo, K., Basha, A., Tilleti, P., Shankar, V. & Ramaswamy, P. (2019). Protection offered by thermal barrier coatings to Al-Si alloys at high temperatures–A microstructural investigation. Materials Today: Proceedings. 19(2), 676-681. DOI: 10.1016/j.matpr.2019.07.752.

[14] Pulsford, J., Venturi, F., Pala, Z., Kamnis, S. & Hussain, T. (2019). Application of HVOF WC-Co-Cr coatings on the internal surface of small cylinders: Effect of internal diameter on the wear resistance. Wear. 432-433, 202965. DOI: 10.1016/j.wear.2019.202965.

[15] Jonda, E., Łatka L., Lont A., Gołombek K., Szala M. (2024). The effect of HVOF spray distance on solid particle erosion resistance of WC-based cermets bonded by Co, Co-Cr and Ni deposited on mg-alloy substrate. Advances in Science and Technology Research Journal. 18(2), 115-128. DOI: https://doi.org/10.12913/22998624/184025.

[16] Akkaş M. (2020). The mechanical and corrosion properties of WCCo–Al coatings formed on AA2024 using the HVOF method. Material Research Express. 7(7), 076515, 1-18. DOI 10.1088/2053-1591/ab9fba.

Go to article

Authors and Affiliations

M. Radoń
1
ORCID: ORCID
Z. Opiekun
1
B. Kupiec
1

  1. Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more