Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 120
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the following work was to determine the possibility of using barley malt as a binder in moulding sands technology. The moulding sands prepared on the basis of three kinds of sands, i.e. quartz, olivine and chromite sands were analyzed. In order to determine the properties of moulding sands, typical determinations were made, i.e. moisture content, flowability, permeability, strength properties and abrasion wear. The obtained results indicate that it is possible to use barley malt as an independent binder for masses made of quartz, olivine and chromite sands.
Go to article

Bibliography

[1] Major-Gabryś, K. (2019). Environmentally friendly foundry molding and core sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911. DOI: 10.1007/s11665-019-03947-x.
[2] Serghini, A. & Bieda, S. (2003). Reduction of gas emissions through the use of a new generation of organic binders in foundries. In VI Casting Conference TECHNICAL 2003. Nowa Sól, Poland. (in Polish).
[3] Holtzer, M. & Grabowska, B. (2010). Basics of environmental protection with elements of environmental management. Kraków: Wydawnictwa AGH. (in Polish).
[4] Popoola, A.P.I., Abdulwahab, M. & Fayomi, O.S.I. (2012). Synergetic performance of palm oil (Elaeis guineensis) and pine oil (Pinus sylvestris) as binders on foundry core strength. International Journal of the Phusical Sciences. 7(24), 3062-3066. DOI: 10.5897/IJPS12.347.
[5] Ochulorl, E.F., Ugboaja, J.O. & Olowomeye, O.A. (2019). Performance of kaolin and cassava starch as replacements for bentonite in moulding sand used in thin wall ductile iron castings. Nigerian Journal of Technology. 38(4), 947-956. DOI: 10.4314/njt.v38i4.18.
[6] Atanda, P.O., Akinlosotu, O. & Oluwole, L. (2014). Effect of some polysaccharide starch extracts on binding characteristics of foundry moulding sand. International Journal of Scientific and Engineering Research. 5(3), 362-367.
[7] Holtzer, M. (2003). Directions of development of molding and core sands with organic binders. Archives of Foundry. 3(9), 189-196. (in Polish).
[8] Lewandowski, J.L. (1997). Materials for casting molds. Kraków: Wydawnictwo Naukowe AKAPIT. (in Polish).
[9] Czerwiński, F., Mir, M. & Kasprzak, W. (2015). Application of cores and binders in metalcasting. International Journal of Cast Metals Research. 28(3), 129-139, DOI: 10.1179/1743133614Y.0000000140. [10] da Silva, H.G., Ferreira, J.C.E., Kumar, V. & Garza-Reyes, J.A. (2020). Benchmarking of cleaner production in sand mould casting companies. Management of Environmental Quality. 31(5), 1407-1435, DOI: 10.1108/MEQ-12-2019-0272.
[11] Dobosz, S.M. Jelinek, P. & Major-Gabryś, K. (2011). Development tendencies of moulding and core sands. China Foundry. 8(4), 438-446.
[12] Bożym, M. (2018). Alternative directions for the use of foundry waste, with particular emphasis on energy management. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk (105, pp. 197–211). DOI: 10.24425/124358. (in Polish).
[13] Grabowska, B., Kaczmarska, K., Cukrowicz, S., Drożyński, D., Żymankowska-Kumon, S., Bobrowski, A. & Gawluk, B. (2018). Influence of carbon fibers addition on selected properties of microwave-cured moulding sand bonded with BioCo2 binder. Archives of Foundry Engineering. 18(3), 152-160. DOI: 10.24425/123618.
[14] Zymankowska-Kumon, S., Kaczmarska, K., Grabowska, B., Bobrowski, A. & Cukrowicz, S. (2020). Influence of the atmosphere on the type of evolved gases from phenolic binders. Archives of Foundry Engineering. 20(1), 31-36. DOI: 10.24425/afe.2020.131279.
[15] Raji, A. (2000). Strategies for Reducing Harmful Emissions in Nigerian Foundry Industry. Nigeria Jurnal of Education and Technology. 1(1), 138-144.
[16] Fox, J., Adamovits, M. & Henry, C. (2002). Strategies for reducing foundry emissions. Transactions of the American Foundry Society. 110(1-2), 1299-1309.
[17] Fayomi, O.S.I. (2016). Hybrid effect of selected local binders on the moulding properties of river niger silica sand for industrial application. Journal of Nanoscience with Advanced Technology. 1(4), 19-23. DOI: 10.24218/jnat.2016.19.
[18] Yaro, S.A. & Suleiman, M.U. (2006). Cassava / Guinea corn starches and Soybean oil as core binders in sand casting of aluminium silicon (Al-Si). Journal of Engineering and Technology (JET). 1(1), 47-55.
[19] Patwari, U., Chowdhury, S.I., Rashid, H. & Mumtaz, G.R. (2016). Comparison and CFD verification of binder effects in sand mould casting of aluminum. Annals of Faculty Engineering. Hunedoara-International- Internacional Journal of Engineering. 14(1), 143-147.
[20] Dobosz St. M. (2006). Water in molding and core sands. Kraków: Wydawnictwo. Naukowe AKAPIT. (in Polish).
[21] Jelínek P. (2004). Pojivové soustavy slévárenských formovacích směsí. Ostrava.
[22] Kowalski, S.J. (2010) General description of mass and heat transport in drying processes. Inżynieria i Aparatura Chemiczna. 49(4), 38-39. (in Polish).
[23] Shokri, N., Lehmann, P.& Or, D. (2010). Evaporation from layered porous media. Journal of Geophysical Research: Solid Earth. 115(B6), 1-12. DOI: 10.1029/2009JB006743.
[24] Kucharczyk, A. (2013.) Drying of porous materials in layered systems – Research. Roczniki Inżynierii Budowlanej. 13, 85-88. (in Polish).
[25] Zych, J. & Kaźnica, N. (2015). Moisture sorption and desorption processes on the example of moulding sands’ surface layers. Archives of Foundry Engineering. 15(4), 63-66. (in Polish).
[26] Zych, J., Kaźnica, N.& Kolczyk, J. (2017). Analysis of the drying process of moistened surface layers of sand moulds and cores on the example of moulding sand with water glass. Prace Instytutu Odlewnictwa. 57(1), 29-38. DOI: 10.7356/iod.2017.04.
[27] Khandelwal, H.& Ravi, B. (2016). Effect of molding parameters on chemically bonded sand mold properties. Journal of Manufacturing Processes. 22, 127-133. DOI: 10.1016/j.jmapro.2016.03.007.
Go to article

Authors and Affiliations

B. Samociuk
1
ORCID: ORCID
D. Nowak
1
ORCID: ORCID
D. Medyński
2
ORCID: ORCID

  1. Wroclaw University of Technology, Poland
  2. Collegium Witelona Uczelnia Państwowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The weld lines that occur in injection mouldings are critical areas on which depends on the strength of the mouldings. The flow of the material in the injection mould takes place through the gate and then gradually in the mould cavity. Depending on the shape of the formed object, the weld line may or may not occur. In the case of spreading of plastic streams or bypassing obstacles in the form of cores in the mould, the joining lines run down. Most often, the strength of the moulded part is the lowest in these areas and the resulting lines can cause cracking. The aim of the research presented in the publication was to evaluate the properties of particular parts of mouldings obtained from an experimental injection mould equipped with 4 weld line areas. The tests were performed using the method of thermal analysis by Dynamic Mechanical Analysis DMA. Tensile tests were performed on the parts with weld areas and the maximum crack force was determined. The morphology of the obtained fractures was observed using an optical microscope.
Go to article

Authors and Affiliations

R. Humienny
1
ORCID: ORCID
P. Postawa
1
ORCID: ORCID
A. Kalwik
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42- 201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Finite Element Method FEM via commercially available software has been used for numerical simulation of the compaction process of bentonite-bonded sand mould. The mathematical model of soil plasticity which involved Drucker-Prager model match with Mohr-Coulomb model was selected. The individual parameters which required for the simulation process were determined through direct shear test based on the variation of sand compactability. The novelty of this research work is that the individual micro-mechanical parameters were adopted depend on its directly proportional to the change of sand density during the compaction process. Boundary conditions of the applied load, roller and fixed constraint were specified. An extremely coarse mesh was used and the solution by time-dependent study was done for investigation of material-dependent behaviour of green sand during the compaction process. The research implemented also simulation of the desired points in sand mould to predict behaviour of moulding process, and prevent failure of the sand mould. Distance-dependent displacement and distance-dependent pressure have been determined to investigate the effective moulding parameters without spent further energy and cost for obtaining green sand mould. The obtained numerical results of the sand displacement show good agreement with the practical results.
Go to article

Bibliography

[1] Naeimi, K., Baradaran, H., Ahmadi, R. & Shekari, M. (2015). Study and simulation of the effective factors on soil compaction by tractors wheels using the finite element method. Journal of Computational Applied Mechanics. 46(2), 107-115. DOI: 10.22059/jcamech.2015.55093.
[2] Soane, B. (1990). The role of organic matter in soil compatibility: A review of some practical aspects. Soil & Tillage Research. 16(1-2), 179-201. DOI: https://doi.org/ 10.1016/0167-1987(90)90029-D.
[3] Minaei, S. (1984). Multi pass effects of wheel and track- type vehicles on soil compaction. MS Thesis, Virginia Polytechnic Institute and State University.
[4] Chen, Y. Tessier, Y. & Rauffignat, S. (1998). Soil bulk density estimation for tillage systems and soil texture. Transactions of the American Society of Agricultural and Biological Engineers. 41(4), 1601-1610.
[5] Wenzhen, L. & Junjiao, W. (2007). Numerical Simulation of Compacting Process of Green Sand Molding Based on Sand Filling. Materials Science Forum. 561-565, 879-1882. DOI: https://doi.org/10.4028/www.scientific.net/MSF.561-565.1879.
[6] Hovad, E., Larsen, P., Walther, J., Thorborg, J. & Hattel,. J.H. (2015). Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM). IOP Conference Series Materials Science and Engineering. 84(1) 1-8. DOI: 10.1088/1757-899X/84/1/012023.
[7] Hua, L., Junjiao, W., Tianyou, H. & Hiroyasu, M. (2011). A new numerical simulation model for high pressure squeezing moulding. China foundry. 8(1) 25-29. ID: 1672-6421(2011)01-025-05.
[8] Schijndel, van, A.W.M.(2007). Integrated heat air and moisture modeling and simulation. Doctoral dissertation, Eindhoven University of Technology. https://doi.org/ 10.6100/IR622370.
[9] Terzaghi, K. (1976). Earthwork mechanics based on soil physics (in German). G. Gistel & Cie. GmbH, Wien.
[10] Tomas, J. (1991). Modeling of the flow behavior of bulk solids on the basis of the interaction forces between the particles and applications in the design of bunkers (in German). Habilitation thesis, TU Bergakademie Freiberg.
[11] Inoue, Y., Motoyama, Y., Takahashi, H., Shinji, K. & Yoshida, M. (2013). Effect of sand mold models on the simulated mold restraint force and the contraction of the casting during cooling in green sand molds. Journal of Materials Processing Technology. 213(7), 1157-1165. https://doi.org/10.1016/j.jmatprotec.2013.01.011.
[12] Kadauw, A. (2006). Mathematical modeling of the moulding material processes (in German). Doctoral dissertation, TU- Bergakademie Freiberg.
[13] Lang, H.-J., Huder, J., Amann, P., Puzrin, A.M. (1996). Soil mechanics and foundation (in German). Springer, Berlin Heidelberg.
[14] Suroso, P., Samang, L., Tjaronge, W. & Muhammad Ramli. (2016). Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ijuk-Aren, International Journal of Innovative Research in Advanced Engineering (IJIRAE), 3(4), 21-26.
[15] Nujid, M.M. & Taha, M.R. (2016). Soil Plasticity Model for Analysis of Collapse Load on Layers Soil. EDP Sciences, MATEC Web of Conferences. 47(03020) 1-6. DOI: 10.1051/matecconf/ 20164703020.
[16] Chen, W.F. Mizuno, E. (1990). Nonlinear Analysis in Soil Mechanics: Theory and Implementation, Elsevier Science Publishers B. V., ISBN 978-0444430434, 5-36.
[17] Bast, J., Kadauw, A. (2004). 3D-Numerical Simulation of Squeeze Moulding with the Finite element Method. Proceeding of 66th World Foundry Congress Istanbul, 247 - 258.
Go to article

Authors and Affiliations

Dheya Abdulamer
ORCID: ORCID
A. Kadauw
1 2

  1. IMKF. TU - Bergakademie Freiberg, Germany
  2. Salahddin University-Erbil, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The parameters of the injection moulding process have a significant influence on the properties of the moulded parts. Selection of appropriate injection conditions (e. g. the injection temperature, mould temperature, injection and holding pressure, injection speed) contributes to the productivity and energy consumption of the injection moulding process as well as to the quality of the moulded parts. The aim of this study was to evaluate the influence of injection moulding parameters on properties of poly(ethylene) mouldings. Regranulate obtained from recycled film, which is a mixture of low-density poly(ethylene) and linear low-density poly(ethylene), was used for testing. Samples in the form of standardised tensile bars of type A1 were produced by injection moulding. A Krauss-Maffei KM65-160C4 injection moulding machine was used for this purpose. Variable parameters of the this process used in the study were: injection speed, mould temperature and holding pressure. The results of tensile strength tests of the obtained samples are presented. The weight and dimensions of mouldings from four different regranulates were also investigated. The effect of injection moulding conditions on the properties of poly(ethylene) mouldings was shown in the investigations. The mass of poly(ethylene) mouldings is dependent on the holding pressure.
Go to article

Authors and Affiliations

A. Kalwik
1
ORCID: ORCID
R. Humienny
1
ORCID: ORCID
K. Mordal
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42- 201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Until now, the mould sand in general use in the foundry industry are based on bentonite, which resulted from the fact that a good recognition properties and phenomena associated with this material. Come to know and normalized content of montmorillonite and carbonates and their important role in the construction of bentonite, and mass properties of the participation of compressive strength or scatter. Halloysite is widely used in industry and beyond them. However, little is known about its use in the foundry in Poland and abroad. This article presents preliminary research conducted at the Foundry Department of Silesian University of Technology on this material. Will raise the question of the representation of this two materials, which contains information connected with history and formation of materials, their structure and chemical composition. In the research, the results of compressive strength tests in wet masses of quartz matrix, where as a binder is used halloysite and bentonite in different proportions.

Go to article

Authors and Affiliations

M. Cholewa
Ł. Kozakiewicz
Download PDF Download RIS Download Bibtex

Abstract

Moulding properties of Isasa River Sand bonded with Ipetumodu clay (Ife-North Local Government Area, Osun State, Nigeria) were

investigated. American Foundry men Society (AFS) standard cylindrical specimens 50mm diameter and 50mm in height were prepared

from various sand and clay ratios (between 18% and 32%) with 15% water content. The stress-strain curves were generated from a

universal strength testing machine. A flow factor was calculated from the inclination of the falling slope beyond the maximum

compressive strength. The result shows that the flowability of the samples increases from 18% to 26% clay content, its maximum value

was attained at 26% and then it decreases from 30% to 32% clay content. The green compressive strength, dry compressive strength and

air permeability values obtained from the mould samples were in accordance with standard values used in foundry practice. The x-ray

diffraction test shows that the sand contains silicon oxide (SiO2), Aluminium oxide (Al2O3), and Aluminium silicate (Al6Si2O13). The

mould samples were heated to a temperature of 1200 o

C to determine the sintering temperature; fussion did not take place at this

temperature. The results showed that the sand and clay mixture can be used to cast ferrous and non-ferrous alloys.

Go to article

Authors and Affiliations

A.O. Oke
B.V. Omidiji
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the applicability of a new product added to water glass-containing foundry sands hardened with

ethylene glycol diacetate. The new additive designated by the symbol "B" is a composition of aqueous solutions of modified polyalcohols,

improving the sand knocking out properties. The scope of studies included testing various mechanical and technological properties

of foundry sand mixtures, such as permeability, friability, life cycle of cores and knocking out properties.

In the technological studies, two types of water glass with different values of the silica modulus and density, designated as R145 and R150,

were used. Moulding sands were prepared with the additive "B". For comparison, reference sands with water glass but without the additive

"B" were also made. In Part I of the article, the results of studies of the effect of additive "B" on the properties of foundry sands with water

glass hardened by CO2 blowing were discussed.

Go to article

Authors and Affiliations

I. Izdebska-Szanda
J. Kamińska
M. Angrecki
Z. Stefański
A. Palma
Download PDF Download RIS Download Bibtex

Abstract

Modern investigation methods and equipment for the quality estimation of the moulding sands matrices with organic binders, in their circulation process, are presented in the paper. These methods, utilising the special equipment combined with the authors investigation methods developed in the Faculty of Foundry Engineering, AGH the University of Science and Technology, allow for the better estimation of the matrix quality. Moulding sands systems with organic binders require an in-depth approach to factors deciding on the matrix technological suitability as well as on their environmental impact. Into modern methods allowing for the better assessment of the matrix quality belongs the grain size analysis of the reclaimed material performed by means of the laser diffraction and also the estimation of the moulding sand gas evolution rate and identification of the emitted gases and their BTEX group gases content, since they are specially hazardous from the point of view of the Occupational Safety and Health.

Go to article

Authors and Affiliations

R. Dańko
Download PDF Download RIS Download Bibtex

Abstract

Using the available analytical methods, including the determination of chemical composition using wavelength-dispersive X-ray

fluorescent spectroscopy technique and phase composition determined using X-ray diffraction, microstructural observations in a highresolution

scanning microscope equipped with an X-ray microanalysis system as well as determination of characteristic softening and

sintering temperatures using high-temperature microscope, the properties of particular chromite sands were defined. For the study has been

typed reference sand with chemical properties, physical and thermal, treated as standard, and the sands of the regeneration process and the

grinding process. Using these kinds of sand in foundries resulted in the occurrence of the phenomenon of the molding mass sintering.

Impurities were identified and causes of sintering of a moulding sand based on chromite sand were characterized. Next, research methods

enabling a quick evaluation of chromite sand suitability for use in the preparation of moulding sands were selected.

Go to article

Authors and Affiliations

K. Stec
J. Podwórny
B. Psiuk
Ł. Kozakiewicz
Download PDF Download RIS Download Bibtex

Abstract

The cumulative results of investigations of the possibility of using the reclaimed materials after the mechanical, thermal or

mechanical-thermal reclamation for making cores by means of the blowing method in the alkaline CO2 technology, are

presented in the paper. Three kinds of spent sands: with furfuryl resin, bentonite and alkaline phenolic resin, obtained from

the foundry, were subjected to three kinds of reclamation: mechanical, thermal and combined mechanical-thermal, applying

for this aim adequate experimental devices. The obtained reclaims were assessed with regard to the degree of the matrix

liberation from the determined binding material. Reclaims of moulding sands with binders of the form of resin were assessed

with regard to ignition loss values and pH reaction, while reclaims of moulding sands with bentonite with regard to the

residual clay content and pH value. In all cases the results of the performed sieve analyses were estimated and the average

characteristic diameter dl was determined. The reclaimed matrix was applied as a full substitute of the fresh high-silica sand in typical

procedures of preparing core sands used for making shaped samples for bending strength investigations, Rg

u

.

Go to article

Authors and Affiliations

R. Dańko
J. Dańko
M. Skrzyński
Download PDF Download RIS Download Bibtex

Abstract

The aim of the hereby paper is to present the developed model of determining the volume and surface porosity based on the main fraction

of polifractional materials, its experimental verification and utilisation for the interpretation of effects accompanying the formation of a

moulding sand apparent density, porosity and permeability in the blowing processes of the core and moulds technology.

Go to article

Authors and Affiliations

R. Dańko
J. Dańko
Download PDF Download RIS Download Bibtex

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Go to article

Authors and Affiliations

A. Grabarczyk
1
ORCID: ORCID
K. Major-Gabryś
1
ORCID: ORCID
J. Jakubski
1
ORCID: ORCID
St.M. Dobosz
1
ORCID: ORCID
D. Bolibruchová
2
ORCID: ORCID
R. Pastirčák
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of Zilina, Žilinská Univerzita v Žiline, Faculty of Mechanical Engineering, Žilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The results of computer modelling of an injection moulding process with microcellular foaming (MuCell®) were presented in this work. The process is based on the dissolving nitrogen in a liquid polymer which is possible when nitrogen is in supercritical fluid state (SCF). After pressure drop of the melt in the injection mould the intensive nucleation of pores occurs and, as the result, the material with high concentration of small pores is created. The pores obtained in this way are of much smaller size than in a conventional foaming process. The pore size in the cross-section of an exemplary injection moulded part was calculated in the computer modelling and compared to the results of microscopical investigation made on the real injection moulded part. It was found that the size of the pores depends on the flow length inside the injection mould and on the position in the part’s cross-section.
Go to article

Authors and Affiliations

J. Nabiałek
1
ORCID: ORCID
T. Jaruga
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The injection moulding conditions may change the degree of crystallinity of the plastic to some extent, which affects the mechanical properties such as tensile strength and hardness. Moreover, the cooling conditions of the moulded parts may contribute to changes in their shrinkage. The paper presents the results of determination of the melting enthalpy of a polypropylene. The melting enthalpy ∆ Hm was determined by differential scanning calorimetry. It was found, that the value of the melting enthalpy depends on the physical conditions prevailing during the sample production process, such as the temperature of the liquid material, the cooling rate of the plastic (related to the mould temperature Tm) and the flow rate of the plastic in the mould. The degree of crystallinity of the obtained samples was also determined, which, depending on the measured enthalpy of fusion, influences the degree of structural order of the polymer. Standardized test samples were also analysed in terms of transversal shrinkage and longitudinal shrinkage. The shrinkage of the injection moulded parts results from the change of physical state of plastic during its solidification in the mould.
Go to article

Authors and Affiliations

P. Palutkiewicz
1
ORCID: ORCID
A. Kalwik
1
ORCID: ORCID
T. Jaruga
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 19C Armii Krajowej Av., 42- 201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main objective of the present study is enhanced of the sand moulding process through addressing the sand mould defects and failures, ultimately lead to improve production of the sand castings with well-defined of pattern profiles. The research aimed to reduce the cost and energy expenditure associated with the compaction time of the sand moulding process. Practical destructive tests were conducted to assess properties of the green sand moulds. Linear regression and multi-regression methods were employed to identify the key factors influencing the sand moulding process. The proposed experimental destructive tests and predicted regression methods facilitated measurement of the green sand properties and enabled evaluation of the effective moulding parameters, thereby enhancing the sand moulding process. Factorial design of experiments approach was employed to evaluate effect of parameters of water content and mixing time of the green sand compaction process on the mechanical properties of green sand mould namely the tensile strength, and compressive strength.
Go to article

Bibliography

[1] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance. 28(7), 3994-4001. DOI: https://doi.org/10.1007/s11665-019-04089-w.
[2] Shahria, S., Tariquzzaman, M., Rahman, H., Al Amin, M., & Rahman, A. (2017). Optimization of molding sand composition for casting Al alloy. International Journal of Mechanical Engineering and Applications. 5(3), 155-161. DOI:10.11648/j.ijmea.20170503.13.
[3] Patil, G. & Inamdar, K. (2014). Optimization of casting process parameters using taguchi method. International Journal of Engineering Development and Research. 2(2), 2506-2511.
[4] Kassie, A. & Assfaw, S. (2013). Minimization of casting defects. IOSR Journal of Engineering. 3(5), 31-38. DOI:10.9790/3021-03513138.
[5] Gadag, S. Sunni Rao, K. Srinivasan, M. et al. (1987). Effect of organic additives on the properties of green sand assessed from design of experiments. AFS Transactions. 42, 179-186.
[6] Karunaksr, D. & Datta, G. (2007). Controlling green sand mold properties using artificial neural networks and genetic algorithms- A comparison. Applied Caly Science. 37(1-2), 58-66. DOI:10.1016/j.clay.2006.11.005.
[7] Said, R. Kamal, M. Miswan, N. & Ng, S. (2018). Optimization of moulding composition for quality improvement of sand casting. Journal of Advanced Manufacturing Technology. 12(1(1), 301-310.
[8] Pulivarti, S. & Birru, A. (2018). Optimization of green sand mould system using Taguchi based grey relational analysis. China Foundry. 15, 152-159. DOI: 10.1007/s41230-018-7188-1.
[9] Abdulamer, D. (2023). Impact of the different moulding parameters on engineering properties of the green sand mould. Archives of Foundry. 23(2), 5-9. DOI: 10.24425/afe.2023.144288.
[10] Kumar, S. Satsangi, P. & Prajapati, D. (2011). Optimization of green sand casting process parameters of a foundry by using taguchi’s method. International Journal of Advanced Manufacturing Technology. 55(1-4), 23-34. DOI: 10.1007/s00170-010-3029-0.
[11] Murguía, P. Ángel, R. Villa González del Pino, E. Villa, Y. & Hernández del Sol, J. (2016). Quality improvement of a casting process using design of experiments. Prospectiva. 14(1), 47-53. DOI: 10.15665/rp.v14i1.648.
[12] Abdullah, A. Sulaiman, S. Baharudin, B. Arifin, M. & Vijayaram, T. (2012). Testing for green compression strength and permeability properties on the tailing sand samples gathered from ex tin mines in perak state, Malaysia. Advanced Materials Research. 445, 859-864. DOI: 10.4028/www.scientific.net/AMR.445.859.
[13] Abdulamer, D. (2021). Investigation of flowability of the green sand mould by remote control of portable flowability sensor. Archives of Materials Science and Engineering, 112(2), 70-76. DOI: 10.5604/01.3001.0015.6289.
[14] Bast, J., Simon, W. & Abdullah, E. (2010). Investigation of cogs defects reason in green sand moulds. Archives of Metallurgy and Materials. 55(3), 749-755. DOI: 10.24425/afe.2023.144288.
[15] Montgomery, D.C. (2001). Design and Analysis of Experiments. (5th ed.). John Wiley & Sons, Inc.
[16] Dhindaw, B.K., Chakraborty, M. (1974). Study and control of properties and behavior of different sand systems by application of statistical design of experiments In the 41st International Foundry Congress, (pp. 9-14). Belgique.
[17] Abdulamer, D. (2023). Utilizing of the statistical analysis for evaluation of the properties of green sand mould. Archives of Foundry Engineering. 23(3), 67-73, DOI: 10.24425/afe.2023.146664, 2023.
[18] Parappagoudar, M. Pratihar, D. & Datta, G. (2007). Linear and non-linear statistical modelling of green sand mould system. International Journal of Cast Metals Research. 20(1), 1-13. DOI: 10.1179/136404607X184952.
[19] Dietert, H. W. Brewster, F. S. & Graham, A. L. (1996). AFS Trans. 74, 101-111.
[20] Parappagoudar, M. Pratihar, D. & Datta G. (2005). Green sand mould system modelling through design of experiments. Indian Foundry Journal. 51(4), 40-51.

Go to article

Authors and Affiliations

Dheya Abdulamer
1
ORCID: ORCID

  1. University of Technology- Iraq
Download PDF Download RIS Download Bibtex

Abstract

The results of testing the strength properties of experimental ceramic materials containing spending moulding sand after initial mechanical reclamation as a material for subsequent layers of the stucco composition were presented. Tests were carried out on spent moulding sands from various foundry technologies, i.e. sand with furfuryl resin and sand with hydrated sodium silicate. The spent, agglomerated moulding sand has undergone a crushing process. Next, the required granular fractions used for individual layers of the stucco material were separated. Ceramic samples, in which the spent moulding sand was a substitute for fresh silica sand in successive layers of the stucco composition, were prepared. As a reference material, identical ceramic samples were used but with all layers made from the fresh silica sand. Samples prepared in this way were used to determine the bending strength of ceramic materials in the temperature range from 20 to 900ºC. The obtained values of the bending strength have demonstrated that spent moulding sand can be used in investment casting with no adverse effect on the strength of ceramic materials.

Go to article

Authors and Affiliations

M. Angrecki
ORCID: ORCID
J. Kamińska
ORCID: ORCID
J. Jakubski
ORCID: ORCID
P. Wieliczko
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

It was found that the addition of carbon fibers (CFs) does not affect the crosslinking process in the microwave radiation (800 W, 2.45

GHz) of the BioCo2 binder, which is a water solution of poly(acrylic acid) and dextrin (PAA/D). It has influence on BioCo2 thermal

properties. The CFs addition improves the thermostability of a binder and leads to the reduction of gas products quantity generated in the

temperature range of 300-1100°C (TG-DTG, Py-GC/MS). Moreover, it causes the emission of harmful decomposition products such as

benzene, toluene, xylene and styrene to be registered in a higher temperatures (above 700°C). BioCo2 binder without CFs addition is

characterized by the emission of these substances in the lower temperature range. This indicates the positive effect of carbon fibers

presence on the amount of released harmful products.

The selected technological tests (permeability, friability, bending strength, tensile strength) have shown that the moulding sand with the

0.3 parts by weight carbon fibers addition displays the worst properties. The addition of 0.1 parts by weight of CFs is sufficient to obtain a

beneficial effect on the analyzed moulding sands properties. The reduction of harmful substances at the higher temperatures can also be

observed.

Go to article

Authors and Affiliations

S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
D. Drożyński
K. Kaczmarska
S. Cukrowicz
B. Gawluk
Download PDF Download RIS Download Bibtex

Abstract

Bentonite is clay rock, which is created by decomposition of vulcanic glass. It is formed from mixture of clay minerals of smectite group,

mainly montmorillonite, beidellite and nontronite. Its typical characteristics is, that when in contact with water, it intensively swells. First

who used this term was W.C. Knight in 1887. The rock had been named after town Fort Benton in American state Montana. For its

interesting technological properties and whiteness has wide technological use. Bentonite is selectively mined and according to its final use

separately modified, which results in high quality product with specific parameters.

In the beginning of 21st century belong bentonite moulding mixtures in foundry to always perspective. Mainly increased ratio of ductile

cast iron castings production cannot be ensured without the need of quality bentonite. Great area of scope remains to further research of

moulding materials, which return also to bentonite producers.

Go to article

Authors and Affiliations

I. Vasková
M. Hrubovčáková
Download PDF Download RIS Download Bibtex

Abstract

Substituting of ethyl silicate with ecologic sols of colloidal silica in the investment casting technology, resulting from the increased demands concerning environmental protection, caused the prolongation of production cycle for precision castings produced in multi-layer thin-walled ceramic shell moulds. Modification of Sizol 030 binder with benzoyl peroxide, proposed in the paper, was aimed at restriction of time needed for realization of a single layer of the shell mould, and by the same, of such a mould as a whole. Examination of kinetics of the drying process were held for the layers made of prepared moulding material and the influence of binder modification on the mould curing time was determined.
Go to article

Authors and Affiliations

M. Nadolski
Z. Konopka
M. Łągiewka
A. Zyska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in thesandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.
Go to article

Authors and Affiliations

D. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents measurement results of standing wave ratio to be used as an efficiency indicator of microwave absorption by used moulding and core sands chosen for the microwave utilization process. The absorption measurements were made using a prototype stand of microwave slot line. Examined were five used moulding and core sands. It was demonstrated that the microwave absorption measurements can make grounds for actual microwave utilization of moulding and core sands.
Go to article

Authors and Affiliations

D. Nowak
M. Stachowicz
K. Granat
M. Pigiel
Download PDF Download RIS Download Bibtex

Abstract

Casting quality depends on many factors including the quality of the input materials, technology, material securing and last but not least, the mould into which the casting is casted. By pouring into a single-shot mould, based mainly on 1st generation binders, is is a very important factor. Basically, a bentonite mixture represents either a three- or four-component system, but each component of the system is a heterogeneous substance. This heterogeneity punctuates mainly a non-stationary heat field, presented throughout the whole process of the casting production. The most important component is a binder and in the case of first generation binders mostly bentonites are used - clays that contain minimum of 80% of montmorillonite
Go to article

Authors and Affiliations

I. Vasková
D. Fecko
J. Malik
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory tests into the effects of moisture and the content of two types of bentonite on dielectric properties of moulding sand. The use of electromagnetic waves in foundry industry is becoming more and more popular, which provides to some extent alternatives to conventional drying methods. Experimental studies published so far have shown the validity of using microwaves for drying classic moulding sands with bentonite. However, these studies lack data on the effect of moisture or bentonite content in moulding sand on the real component ε' or imaginary component ε'' of the relative complex electrical permittivity. The presented results may become in the future the basis for the evaluation of the composition of moulding sands, taking into account the phenomena occurring under the influence of electromagnetic field, which directly translates into the quality of the castings made and may constitute an attempt to develop a mathematical model of electric properties of moulding sands.

Go to article

Authors and Affiliations

D. Nowak
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the issue of using moulding sands with a new two-component binder: furfuryl-resole resin – PCL polycaprolactone for the production of ductile iron heavy castings. The previous laboratory studies showed the possibility of using biodegradable materials as binders or parts of binders’ compositions for foundry moulding and core sands. The research proved that addition of new biodegradable PCL in the amount of 5% to the furfuryl-resole resin does not cause significant changes in moulding sand’s properties. The article presents research related to the production of ductile iron castings with the use of moulds with a modified composition, i.e. sands with furfuryl resole resin with and without PCL. Mechanical properties and microstructure of the casting surface layer at the metal/ mould interface are presented. The obtained test results indicate that the use of a biodegradable additive for making foundry moulds from moulding sand with a two-component binder does not deteriorate the properties of ductile iron castings.
Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Warmuzek
1
ORCID: ORCID
M. Brůna
3
ORCID: ORCID

  1. Lukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  3. University of Žilina, Department of Technological Engineering, Faculty of Mechanical Engineering, Univerzitná 1, 010 26, Slovak Republic

This page uses 'cookies'. Learn more