Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 98
items per page: 25 50 75
Sort by:
Keywords Fan CFD Cyclorotor
Download PDF Download RIS Download Bibtex

Bibliography

[1] Morandini M., Xisto C., Pascoa J., Quaranta G., Gagnon L., Masarati P.: Aeroelastic analysis of a cycloidal rotor under various operating conditions. J. Aircraft. 55(2018), 4, 1675–1688.
[2] Muscarello V., Masarati P., Quaranta G., Georges T., Gomand J., Malburet F., Marilena P.: Instability mechanism of roll/lateral biodynamic rotorcraft–pilot couplings. J. Am. Helicopter Soc. 63(2018), 1–13.
[3] Xisto C. Leger J., Pascoa J., Gagnon L., Masarati P., Angeli D., Dumas A.: Parametric analysis of a large-scale cycloidal rotor in hovering conditions. J. Aerospace Eng. 30(2017), 1.
[4] Xisto C., Pascoa J., Abdollahzadeh M., Leger J., Masarati P., Gagnon L., Schwaiger M., Wills D.: PECyT – plasma enhanced cycloidal thruster. In: Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. July 28–30, 2014, Cleveland.
[5] Andrisani A., Angeli D., Dumas A.: Optimal pitching schedules for a cycloidal rotor in hovering. Aircr. Eng. Aerosp. Tec. 88(2016), 5.
[6] Xisto C., Pascoa J., Leger J.: Cycloidal rotor propulsion system with plasma enhanced aerodynamics. In: Proc. ASME 2014 Int.l Mechanical Engineering Congress and Exposition; Montreal, Nov. 14–20, 2014; V001T01A005.
[7] Xisto C., Pascoa J., Trancossi M.: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high solidity VAWT. J. Sol. Energy Eng. 138(2016), 031006.
[8] Benedict M.: Fundamental understanding of cycloidal-rotor concept for micro air vehicle applications. PhD thesis, Univ. Maryland, College Park, 2010.
[9] Benedict M., Ramasamy M., Chopra I.: Improving the aerodynamic performance of micro-air-vehicle-scale cycloidal rotor: An experimental approach. J. Aircraft 47(20104), 1117–1125.
[10] Heimerl J., Halder A., Benedict M.: Experimental and computational investigation of a UAV-scale cycloidal rotor in forward flight. In: Proc. The Vertical Flight Society’s 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10–14, 2021.
[11] Halder A., Benedict M.: Nonlinear aeroelastic coupled trim analysis of a twin cyclocopter in forward flight. AIAA J., 59, 2021, 305–319.
[12] Lee B., Saj V., Benedict M., Kalathil D.: A Vision-Based Control Method for Autonomous Landing Of Vertical Flight Aircraft On A Moving Platform Without Using GPS. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[13] Denton H., Benedict M., Kang H., Hrishikeshavan V.: Design, development and flight testing of a gun-launched rotary-wing micro air vehicle. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[14] Halder A., Benedict M.: Understanding upward scalability of cycloidal rotors for large-scale UAS applications. In: Proc. Aeromechanics for Advanced Vertical Flight Technical Meeting 2020, Transformative Vertical Flight 2020, San Jose, 21–23 Jan. 2020, 311–330.
[15] Runco C., Benedict M.: Flight dynamics model identification of a meso-scale twin-cyclocopter in hover. Paper presented at the 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10-14, 2021.
[16] Runco C., Coleman D., Benedict M.: Design and development of a 30 g cyclocopter. J. Am. Helicopter Soc. 64(2019), 1.
[17] Coleman D., Halder A., Saemi F., Runco C., Denton H., Lee B., Benedict M.: Development of “Aria”, a compact, ultra-quiet personal electric helicopter. In: Proc. 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight, Virtual, May 10–14, 2021.
[18] Koschorrek P., Siebert Ch., Haghani A., Jeinsch T.: Dynamic positioning with active roll reduction using Voith Schneider propeller. IFAC-PapersOnLine, 48(2015), 16, 178–183.
[19] Schubert A., Koschorrek P., Kurowski M., Lampe B., Jeinsch T.: Roll damping using Voith Schneider propeller a repetitive control approach. IFACPapersOnLine 49(2016), 23, 557–561.
[20] Hahn T., Koschorrek P., Jeinsch T.: Parameter estimation of wave-induced oscillatory ship motion for wave filtering in dynamic positioning. IFAC-PapersOnLine 51(2018), 29, 183–188.
[21] Hashem I., Mohamed M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142(2018), 531–545
[22] Siegel S.: Numerical benchmarking study of a cycloidal wave energy converter. Renew. Energ. 134(2019), 390–405.
[23] Siegel S.: Wave radiation of a cycloidal wave energy converter. Appl. Ocean Res. 49(2015), 9–19.
[24] Bianchini A., Balduzzi F., Rainbird J., Peiro J., Graham M., Ferrara G.: An experimental and numerical assessment of airfoil polars for use in Darrieus wind turbines – Part I: Flow curvature effects. J. Eng. Gas Turb. Power 138(2016), 032602-1.
[25] Dykas S., Majkut M., Smołka K., Strozik M., Chmielniak T., Stasko T.: Numerical and experimental investigation of the fan with cycloidal rotor. Mech. Mechanical Eng. 22(2018), 2, 447–454.
[26] Stasko T., Dykas S., Majkut M., Smołka K.: An attempt to evaluate the cycloidal rotor fan performance, Open J. Fluid Dyn. 9(2019), 292–30.
[27] Shyy W., Lian Y., Tang J., Viieru D., Liu H.: Aerodynamics of Low Reynolds Flyers. Cambridge Univ. Press, 2008.
[28] Ansys Fluent User Guide 2020 R1. Ansys, Canonsburg 2020.
[29] Shrestha E., Yeo D., Benedict M., Chopra I.: Development of a meso-scale cycloidal-rotor aircraft for micro air vehicle application. Int. J. Micro Air Veh. 9(2017), 3.
[30] Augusto J., Monteiro L., Pascoa J., Xisto C.: Aerodynamic optimization of cyclorotors. Aircraft Eng. Aerosp. Tec. 88(2016), 2.
Go to article

Authors and Affiliations

Tomasz Staśko
1
Mirosław Majkut
1
Sławomir Dykas
1
Krystian Smołka
1

  1. Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Besides centrifugal pumps, centrifugal fans are the most common turbomachines used in technical applications. They are commonly used in power engineering systems, such as heat engines and chillers, heating, ventilation, and air conditioning systems, supply and exhaust air systems. They are also used as machines consuming final energy (electricity). Therefore, any improvement in their efficiency affects the efficiency of energy generation and the level of electricity consumption. Many efforts have been made so far to find the most efficient numerical method of modelling flows in fans. However, only a few publications focus on the unsteadiness that may have an impact on device efficiency and noise generation. This paper presents an attempt to identify unsteadiness in the flow through a centrifugal fan by means of computational fluid dynamics and computational aeroacoustics methods. The works were performed using the Ansys CFX commercial software and the results of numerical studies are compared with experimental data.
Go to article

Bibliography

[1] Dykas S., Wróblewski W., Rulik S., Chmielniak T.: Numerical method for modelling of acoustic waves propagation. Arch. Acoust. 35(2010), 1, 35–48.
[2] Fortuna S., Sobczak K.: Numerical and experimental investigations of the flow in radial fan. Mechanics 27(2008), 4, 138–143
[3] Moon Y.J., Cho Y., Nam H.S.: Computation of unsteady viscous flow and aeroacoustic noise of the cross flow fan. Comput. Fluids 32(2003), 7, 995–1015.
[4] Rulik S., Dykas S., Wroblewski W.: Modelling of aerodynamic noise using hybrid SAS and DES methods. In: Proc. ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, June 14–18, 2010, 7(2010), 2835–2844., GT2010-2269.
[5] Stasko T., Dykas S., Majkut M., Smolka K.: An attempt to evaluate the cycloidal rotor fan performance. Open J. Fluid Dynam. 9(2019), 4.
[6] Benedek T., Vad J.: Beamforming based extension of semi-empirical noise modelling for low-speed axial flow fans. Appl. Acoust. 178(2021), 108018.
[7] Jiang H., Wang Q., Zheng T.F., Tu C.X., Zhang K.: PIV measurement of internal flow field in a range hood. In: Energy and Mechanical Engineering (S.Y. Liang, Ed.), 2015 Int. Conf. on Energy and Mechanical Engineering, Wuhan, 17-18 Oct. 2015, World Scientific, 2016, 570–575.
[8] Probst M., Pritz B.: Quantitative validation of CFD-simulation against PIV data for a centrifugal fan. In: Proc. 14th Int. Symp. on Experimental Computational Aerothermodynamics of Internal Flows, Gdansk 8-11 July 2019.
[9] Neise W., Michel U.: Aerodynamic Noise of Turbomachines. DLR-Interner Bericht, Berlin 1994.
[10] Jeon W.H., Lee D.J., Rhee H.: An application of the acoustic similarity law to the numerical analysis of centrifugal fan noise. JSME Int. J. C-mech Sy. 47(2004), 3, 845–851.
[11] Kissner C., Guerin S.: Comparison of predicted fan broadband noise using a twoversus a three-dimensional synthetic turbulence method. J. Sound Vib. 508(2021), 116221.
[12] Jaron R., Herthum H., Franke M., Moreau A., Guerin S.: Impact of turbulence models on RANS-informed prediction of fan broadband interaction noise. In: Proc. 12th Eur. Turbomachinery Conference (ETC), Stockholm, 3-7 April, 2017.
[13] Carolus T.: Theoretische und experimentelle Untersuchung des Pumpens von lufttechnischen Anlagen mit Radialventilatoren. PhD thesis, Karlsruhe University of Applied Sciences, Karlsruhe 1984.
[14] Blazquez-Navarro R., Corral R.: Prediction of fan acoustic blockage on fan/outlet guide vane broadband interaction noise using frequency domain linearized Navier–Stokes solvers. J. Sound Vib. 508(2021), 116033.
[15] Ffowcs-Williams J.E., Hawkings D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. T.R. Soc. Lond. S-A, 264(1969), 1151, 321–342.
[16] Lighthill M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lon. Ser.-A 211(1952) 1107, 564–587
[17] Menter F.R., Egorov Y.: A scale-adaptive simulation model using two-equation models. In: Proc. 43th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 10-13 Jan. 2005, AIAA 2005-1095.
[18] Ansys Fluent Theory Guide, 2021R1. https://www.ansys.com (acessed 1 July 12021).
Go to article

Authors and Affiliations

Balazs Pritz
1
Matthias Probst
1
Piotr Wiśniewski
2
Sławomir Dykas
2
Mirosław Majkut
2
Krystian Smołka
2

  1. Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology, Kaiserstraße 12 D-76131 Karlsruhe, Germany
  2. Department of Power Engineering and Turbomachinery, Silesian University of Technology, Poland
Keywords whirlpool CFD PIV
Download PDF Download RIS Download Bibtex

Abstract

The whirlpool separator, used for hot trub separation, is prevalent in the brewing industry. It is a kind of a hydrocyclone inside of which a tea leaf effect occurs, which is sediment accumulation into a cone shape at the central part of the tank’s bottom. This manner of sediment accumulation is caused by the secondary flow occurring in the so-called Ekman boundary layer. This article is a summary of the research, which has been conducted for many years and involved observation, simulation and experimental research on the recognition and formation of the secondary flow accumulating the sediment cone. Secondary flows occurring in a whirlpool were identified through CFD simulation and PIV experiments, and are presented in this paper. Based on their location and direction, an attempt to determine their impact on the separation process taking place in the whirlpool has been made. The secondary flow identification methods proposed in this paper can be successfully applied in other solutions, e. g. structural ones, which involve rotational-flow-based separation.

Go to article

Authors and Affiliations

Marek Jakubowski
Download PDF Download RIS Download Bibtex

Abstract

This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics – cokes. The study was conducted for a variety of hydrodynamic conditions, using air. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally – as a result of their anisotropic internal structure – to a significant effect of the flow direction on the value of gas stream. In aspect of scale transfer problem, a method of mapping the flow geometry of skeletal materials has been developed and usefulness of numerical methods has been evaluated to determine pressure drop and velocity distribution of gas flow. The results indicate the compliance of the used calculation method with the result of experiments.

Go to article

Authors and Affiliations

Grzegorz Wałowski
Gabriel Filipczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the full transient, two-dimensional finite volume method numerical calculations of the classical involute scroll compressor geometry. The purpose of the study was to develop and evaluate an adaptable implementation of numerical fluid mechanics and thermodynamics modeling procedure with a mesh deformation. The methodology consisting in the compression chamber geometry preparation, mesh generation and governing equations solving was described. The evaluation was carried by simulating an adiabatic compression process and the results were compared with the theoretical zero-dimensional model and the existing research concerning the scroll chamber computational fluid dynamics modeling. It has been shown that the proposed modeling routine results in good accuracy for the scroll compressors study applications.

Go to article

Authors and Affiliations

Józef Rak
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the influence of three different ring-type inlet duct geometries on the performance of a small 1 MW backpressure steam turbine. It examines the efficiency and pressure drop of seven turbine variants, including four spiral inlet geometries and three stages with a mass flow rate around 30 t/h. A one-pipe and two-pipe inlets are analysed from aerodynamical point of view, taking into account stator and rotor blades in three stages without the outlet. An outlet is added to the best variant. Also analysed is the occurrence of vortices in the inlets of the studied variants 1–7 as well as the efficiency, drop pressure, turbine power and mass flow. Finally, the best inlet for a 1 MW steam turbine is suggested.
Go to article

Bibliography

[1] Bellucci J., Rubechin F., Arnone A.: Modeling partial admission in control stages of small steam turbines with CFD. In: Proc. ASME Turbo Expo, June 11-15 2018 Oslo, GT2018-76528, 2018.
[2] Lampart P., Szymaniak M., Rzadkowski R.: Unsteady load of partial admission control stage rotor of a large power steam turbine. In: Proc. ASME Turbo EXPO 2004, Power for Land, Sea and Air, June 14–17, 2004, Vienna, ASME GT-2004- 53886, 2004.
[3] Van den Braembussche R.A.: Flow and loss mechanisms in volutes of centrifugal pumps. Educational Notes. In: Design and Analysis of High Speed Pumps (12-1–12- 26). Educational Notes RTO-EN-AVT-143, Neuilly-sur-Seine, RTO, 2006 (available from: http://www.rto.nato.int/abstracts.asp).
[4] Drexler C.: Strömungsvorg ange und Verlustanteile in ungleichformig beaufschlagten Turbinenstufen. PhD thesis, RWTH Aachen University, Aachen 1996. Computational fluid dynamics analysis of 1 MW steam turbine inlet geometries 55
[5] Traupel W.: Thermische Turbomaschinen (4th Edn.). Springer, 2001.
[6] Kovats A.: Effect of non-rotating passages on performance of centrifugal pumps and subsonic compressors. In: Proc. Winter Annual Meeting, New York 1979.
[7] Lüdtke K.: Centrifugal process compressors – radial vs. tangential suction nozzles. In: ASME Paper 85-GT-80, 1985.
[8] Sievert R.: Analyse der Einflussparameter auf die Strömung im Eintritt von Niederdruck-Dampfturbinen. PhD thesis, Ruhr-Universität Bochum, Bochum 2006 (in German).
[9] Maier W.: Inlet casing for a turbine. US Patent US5927943A, 1999.
[10] Škach R., Uher J.: Spiral Inlets for Steam Turbines. AIP Conf. Proc. 1889, 020038, 2017.
[11] Hecker S., Rohe A., Stoff H.: Steam turbine inlet geometry from a structural and fluid dynamics point of view. In: Proc. ASME Turbo Expo 2012, GT2012-68678, 2012, 487–495.
[12] Gao K., Wang C., Xie Y., Zhang D.: Effects of inlet chamber structure of the control stage on the unsteady aerodynamic force. In: Proc. ASME Turbo Expo, Oslo, June 11–15 2018, GT2018-76632, 2018.
[13] Engelmann D., Schram A., Polklas T., Mailch P.: Losses of steam admission in industrial steam turbines depending on geometrical parameters. In: Proc. ASME Turbo Expo, Dusseldorf – Oslo, June 16-20 2014, GT2014-25172, 2014.
[14] Dejch M.,E., Filippov G.A., Lazarev L.Ja.: Collection of Profiles for Axial Turbine Cascades. Machinostroienie, Moscow 1965 (in Russian).
[15] Kietlinski K., Czerwinski P.: Retrofit of 18K370 steam turbine on the units 7–12 at Belchatow Power Plant. Arch. Energ. XLI(2011), 3-4, 77–96.
[16] Ansys CFX, Release 18.2.
[17] Ansys Meshing, Release 18.2
[18] Ansys TurboGrid, Release 18.2
[19] Ansys DesignModeller, Release 18.2
[20] Ansys CFX, Release 18.2, CFX documentation. Ansys, Inc.
Go to article

Authors and Affiliations

Arkadiusz Koprowski
1
Romuald Rzadkowski
1 2

  1. Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk, Poland
  2. Air Force Institute of Technology, Ksiecia Bolesława 6, 01-494 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study elucidates the technologies employed in membranebased water purification processes. The theoretical underpinnings of semipermeable membrane functionalities are expounded upon through the lens of Onsager’s reciprocal relations in non-equilibrium thermodynamics, delineating the fluxes and the driving forces that instigate them. Utilising a simplified Onsager matrix tailored for the ion-exchange membrane electrodialysis process, computational fluid dynamics (CFD) simulations were conducted. The computations presented herein depict the intricacies of both dialysis and electrodialysis in saline water solutions.
Go to article

Authors and Affiliations

Robert Matysko
1
Tomasz Ochrymiuk
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Two systems of hydraulic mixing in a vertical cylindrical anaerobic digester: standard and modernised are discussed in the paper. Numerical investigations that were carried out are focused on a study of hydrodynamic processes in an aerobic digester using two various systems of hydraulic mixing as well as on analysis of the efficiency of methane fermentation process accomplished under different geometric parameters of an anaerobic digester and systems of hydraulic mixing.

Go to article

Authors and Affiliations

Julia V. Karaeva
Galia R. Khalitova
Dmitry A. Kovalev
Irene A. Trakhunova
Download PDF Download RIS Download Bibtex

Abstract

Generally, the temperature of flue gases at the furnace outlet is not measured. Therefore, a special computation procedure is needed to determine it. This paper presents a method for coordination of the numerical model of a pulverised fuel boiler furnace chamber with the measuring data in a situation when CFD calculations are made in regard to the furnace only. This paper recommends the use of the classical 0-dimensional balance model of a boiler, based on the use of measuring data. The average temperature of flue gases at the furnace outlet tk" obtained using the model may be considered as highly reliable. The numerical model has to show the same value of tk" . This paper presents calculations for WR-40 boiler. The CFD model was matched to the 0-dimensional tk" value by means of a selection of the furnace wall emissivity. As a result of CFD modelling, the flue gas temperature and the concentration of CO, CO2, O2 and NOx were obtained at the furnace chamber outlet. The results of numerical modelling of boiler combustion based on volumetric reactions and using the Finite-Rate/Eddy-Dissipation Model are presented.

Go to article

Authors and Affiliations

Bartłomiej Hernik
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model of waste tyre pyrolysis process is developed in this work. Tyre material decomposition based on a simplified reaction mechanism leads to main product lumps: noncondensable (gas), condensable (pyrolytic oil) and solid (char). The model takes into account kinetics of heat and mass transfer in the grain of the shredded rubber material as well as surrounding gas phase. The main reaction routes were modelled as the pseudo-first order reactions with a rate constant calculated from the Arrhenius type equation using literature values of activation energy determined for main tyre constituents based on TG/DTG measurements and tuned pre-exponential parameter values obtained by fitting theoretical predictions to the experimental results obtained in our laboratory reactor. The model was implemented within the CFD software (ANSYS Fluent). The results of numerical simulation of the pyrolysis process revealed non-uniformity of sample’s porosity and temperature. The simulation predictions were in satisfactory agreement with the experimentally measured mass loss of the tyre sample during pyrolysis process investigated in a laboratory reactor.

Go to article

Authors and Affiliations

Leszek Rudniak
Piotr M. Machniewski
Download PDF Download RIS Download Bibtex

Abstract

The primary methods of reducing nitrogen oxides, despite the development of more advanced technologies, will continue to be the basis for NOx reduction. This paper presents the results of multivariate numerical studies on the impact of air staging on the flue gas temperature and composition, as well as on NOx emissions in a OP 230 boiler furnace. A numerical model of the furnace and the platen superheater was validated based on measurements using a 0-dimensional model of the boiler. Numerical simulations were performed using the ANSYS Workbench package. It is shown that changes in the distribution of air to OFA nozzles, the angle of the air outflow from the nozzles and the nozzle location involve a change in the flue gas temperature and in the volume of NOx and CO emissions at the furnace outlet.
Go to article

Authors and Affiliations

Bartłomiej Hernik
Katarzyna Jagodzińska
Dominik Matuszek
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was initial modification of the construction of a commercially produced heat exchanger – recuperator with CFD (computational fluid dynamics) methods, based on designs and process parameters which were provided. Uniformity of gas distribution in the space between the tubes of the apparatus as well as the pressure drop in it were taken as modification criteria. Uniformity of the gas velocity field between the tubes of the heat exchanger should cause equalization of the local individual heat transfer coefficient values and temperature value. Changes of the apparatus construction which do not worsen work conditions of the equipment, but cause savings of constructional materials (elimination or shortening some parts of the apparatus) were taken into consideration.

Go to article

Authors and Affiliations

Wojciech Ludwig
Daniel Zając
Download PDF Download RIS Download Bibtex

Abstract

Heat exchangers are widely employed in numerous industrial applications to serve the heat recovery and cooling purpose. This work reports a performance analysis of a tube in tube heat exchanger for different flow configuration under variable operating conditions. The experimental investigation was performed on a U-shaped double pipe heat exchanger set up whereas Commercial Computational Fluid Dynamics code FLUENT along with k-ε turbulence modeling scheme was implemented for the simulation study. The flow solution was achieved by implementing k-ε turbulence modeling scheme and the simulation findings were compared with the experimental results. The experimental findings were in good agreement with the simulation results. The counter-flow configuration was found to be 29.4% more effective than the co-current one at low fluid flow rate. Direct relationship between heat transfer rate and flow rate is observed while effectiveness and LMTD showed inverse relationship with it. The significance of inlet temperature of hot and cold stream has been evaluated, they play crucial role in heat exchange process.

Go to article

Authors and Affiliations

Vikas Kannojiya
Rahul Gaur
Pushpender Yadav
Riya Sharma
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the results of numerical modelling of a rectangular tube filled with a mixture of air and CO2 by means of the induced standing wave. Assumed frequency inducing the acoustic waves corresponds to the frequency of the thermoacoustic engine. In order to reduce the computational time the engine has been replaced by the mechanical system consisting of a piston. This paper includes the results of model studies of an acoustic tube filled with a mixture of air and CO2 in which a standing wave was induced.

Go to article

Authors and Affiliations

Sebastian Rulik
Leszek Remiorz
Sławomir Dykas
Download PDF Download RIS Download Bibtex

Abstract

The ethanol fire hazards will become more frequent due to the new established targets for the consumption of renewable energy sources. With this in mind, this paper aims to widen the current knowledge on CFD modelling of such a fire. As previous works rely heavily on the data of small pool fire diameters (below 1 m), this research deals with ethanol pool fire on a one-meter test tray, using our own experimental data. A mathematical model was developed and solved using a commercial CFD package (ANSYS Fluent). A new hybrid RANS-LES (SBES) model was employed to calculate turbulent stresses. Generally, the simulation results showed a good fit with the experimental results for flame temperatures at different elevations. In particular, a minor discrepancy was only observed for the top thermocouple (1.9 m above the tray). The flame heights computed with the CFD model were on average higher than the experimental one. Good agreement was observed for the radiative fraction and the axial temperature profile on the plume centreline. The latter showed an almost perfect fit between the temperature profiles obtained from CFD simulations and those calculated from the plume law for temperature.
Go to article

Authors and Affiliations

Robert Cherbański
1
ORCID: ORCID
Leszek Rudniak
1
Piotr Machniewski
1
Eugeniusz Molga
1
ORCID: ORCID
Jarosław Tępiński
2
Wojciech Klapsa
2
Piotr Lesiak
2

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
  2. Scientific and Research Centre for Fire Protection of the National Research Institute, ul. Nadwislanska 213, 05-420 Józefów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Optimization plays an important role in scientific and engineering research. This paper presents the effects of using the catenoidal shape to design the structure of a chimney cooling tower. The paper compares some geometrical variations of the catenoid with the reference existing hyperboloidal structure. It also compares internal forces, deformation and stability of the catenoidal structure. The comparison shows some predominance of the catenoid over the popular hyperboloid structure of the shell. The paper attempts to find an optimal shape of the cooling tower in order to reduce the amount of material and labor. The paper utilizes engineering tools and the designing process for chimney cooling towers.
Go to article

Authors and Affiliations

Maciej Wiśniowski
1
ORCID: ORCID
Robert Walentyński
1
ORCID: ORCID
Dawid Cornik
1
ORCID: ORCID

  1. Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hydraulic and transport properties of periodic open cellular structures (POCS) based on cubic cells were investigated numerically. Different cell and strut dimensions, as well as strut shapes, were examined. Numerical results of heat transfer and flow resistance, as well as modeled morphological parameters were verified experimentally. The most beneficial properties were obtained for the POCS with convex triangular, circular and hexagonal struts.
Go to article

Authors and Affiliations

Marzena Iwaniszyn
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Steam discharge produces noise due to rapid expansion and a temperature drop of ejected steam. This is why steam silencers are used to change one-stage into multi-stage expansion, which reduces the intensity of pressure and temperature drop during this process and shifts emitted noise into higher frequencies, which are easier to dampen. This paper presents a flow-acoustic numerical model of a steam silencer. It is meant to help to obtain a precise analysis of phenomena occurring in steam silencers and improve the process of designing this type of device. The model described in this paper was based on the parameters of a real working unit manufactured in the Institute of Power Engineering – Thermal Technology Branch. Most of the steam silencers are designed based on construction guidelines that have not been changed for a long time. This restrained an increase in the acoustics efficiency of the steam silencers. An improvement of their flow and acoustic properties allows for the development of smaller, more efficient, and lighter construction. The current version of the model was used for the analysis of flow and acoustic changes which occur after modifying the lower region of a shell of the steam silencer. The proposed modification allowed for a 19% increase in mass flow rate through the silencer and noise reduction in the low-frequency range.
Go to article

Bibliography

[1] Karczewski J., Kopania J., Bogusławski G.: Reduction of noise from industrial installations, i.e. steam blow-off silencers. Energetyka Cieplna i Zawodowa 712(2018), 14–19 (in Polish).
[2] Vincent P., Larsonnier F., Rodrigues D., Durand S.: Analytical modeling and characterization of an infrasound generator in the air. Appl. Acoust. 148(2019), 476–483.
[3] Nowicki G., Nowicki T.J., Prystup A., Slusarska B., Chemperek E.: Effects of infrasound generated in urban areas on health of people and animals – an attempt to localize environmental infrasound sources using computer simulations. J. Pre-Clin. Clin. Res. 8(2014), 2, 81–85.
[4] Sorokin L.I.: Calculation and Measurements of the Characteristics of Noise Created in a Far Noise Field by Jet Planes. Mashinostroenie, Moscow 1968 (in Russian).
[5] Klyuevl V.V.: Handbook on the Control of Industrial Noises. Mashinostroenie, Moscow 1979 (in Russian).
[6] Dragun D.K., Perfil’ev Yu.P., Liukevich N.V., Khotulev V.A.: Shaft-Type Launchers. Bauman MGTU, Moscow 2003 .
[7] Lukashchuk V.N.: Noise generated during operations for purging steam superheaters and development of measures to reduce its influence on the environment. PhD thesis, Moscow 1988.
[8] Hockle M., Muller H.A.: A Handbook on Technical Acoustics. Sudostroenie, Leningrad 1980 (in Russian).
[9] Kurlze G.: Physik und Technik der Lermbergdampfung. G. Brann Buchverlag, Karlsruhe 1963 (in German).
[10] Middelberg J.M., Barber T.J., Leong S.S., Byrne K.P., Leonardi E.: Computational fluid dynamics analysis of the acoustic performance of various simple expansion chamber mufflers. In: Proc. Acoustics 2004, Gold Coast, 3-5 Now. 2004.
[11] Hu X., Zhou Y., Fang J., Man X., Zhao Z.: Computational fluid dynamics research on pressure loss of cross-flow perforated muffler. Chin. J. Mech. Eng. 20(2007), 2, 88–93 (English Edn.).
[12] Tupov V.B., Taratorin A.A.: The choice of turbulence models for steam jet. Procedia Engineer. Dynamic and Vibroacoustics of Machines (DVM2016) 176(2017), 199–206.
[13] Taratorin A.A., Tupov V.B.: Detection techniques of acoustical centre of noise source, Therm. Eng. 62(2015), 7, 480–483.
[14] Journal of Laws of the Republic of Poland (Dziennik Ustaw Rzeczypospolitej Polskiej), Item 2288, Attachment 7, 21/11/2019.
[15] Mohanty A.R, Pattnaik S.P.: An Optimal Design Methodology for a Family of Perforated Mufflers. SAE Tech. Pap. 2005-26-053, 2005.
[16] Zheng S., Kamg Z.X., Lian X.M.: Acoustic Matching Simulation of Muffler with Hybrid Approach. SAE Tech. Pap. 2011-01-1516, 2011.
[17] Comsol Multiphysics 5.6 Release Highlights. https://www.comsol.com/release/5.6 (acessed 24 March 2021).

Go to article

Authors and Affiliations

Patryk Gaj
1
Krzysztof Sobczak
2
Joanna Kopania
3
Kamil Wójciak
1

  1. Institute of Power Engineering, Mory 8, 01-330 Warsaw, Poland
  2. Lodz University of Technology, Wólczanska 219, 90-924 Lodz, Poland
  3. Lodz University of Technology, Piotrkowska 266, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the considered work is to adjust mathematical modeling for mass transfer, to specific conditions resulting from presence of chemical surface reactions in the flow of the mixture consisting of helium and methanol. The thermocatalytic devices used for decomposition of organic compounds incorporate microchannels coupled at the ends and heated to 500 ◦C at the walls regions. The experiment data were compared with computational fluid dynamics results to calibrate the constants of the model’s user defined functions. These extensions allow to transform the calculations mechanisms and algorithms of commercial codes adapting them for the microflows cases and increased chemical reactions rate on the interphase between fluid and solid, specific for catalytic reactions. Results obtained on the way of numerical calculations have been calibrated and compared with the experimental data to receive satisfactory compliance. The model has been verified and the performance of the thermocatalytic reactor with microchannels under hydrogen production regime has been investigated.

Go to article

Authors and Affiliations

Janusz Badur
Michał Stajnke
Paweł Ziółkowski
Paweł Jóźwik
Zbigniew Bojar
Piotr Józef Ziółkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the methodology of designing a system for accumulating waste heat from industrial processes. The research aimed to analyse the fluid’s movement in the heat accumulator to unify the temperature field in the volume of water constituting the heat buffer. Using the computer program Ansys Fluent, a series of computational fluid dynamics simulations of the process of charging the heat storage with water at 60°C, 70°C, and 80°C was carried out. The selected temperatures correspond to the temperature range of unmanaged waste heat. In the presented solution, heat storage is loaded with water from the cooling systems of industrial equipment to store excess heat and use it at a later time. The results of numerical calculations were used to analyse the velocity and temperature fields in the selected structure of the modular heat storage. A novelty in the presented solution is the use of smaller modular heat storage units that allow any configuration of the heat storage system. This solution makes it possible to create heat storage with the required heat capacity.
Go to article

Authors and Affiliations

Piotr Górszczak
1
Marcin Rywotycki
1
Marcin Hojny
1
Grzegorz Filo
2

  1. AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland
  2. Cracow University of Technology, Jana Pawła II 37, 31-864 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the real behaviour of the fluid in the channels of a three-end membrane module. The commonly accepted mathematical model of membrane separation of gas mixtures in such modules assumes a plug flow of fluid through the feed channel and perfect mixing in the permeate channel. This article discusses the admissibility of accepting such an assumption regarding the fluid behaviour in the permeate channel. Throughout analysis of the values of the Péclet number criterion, it has been demonstrated that in the industrial processes of membrane gas separation, the necessary conditions for the perfect mixing in the permeate channel are not met. Then, CFD simulations were performed in order to establish the real fluid behaviour in this channel. It was proved that in the permeate channel the fluid movement corresponds to the plug flow, with the concentration differences at both ends of the module being insignificant. In view of the observations made, the admissibility of concentration stability assumptions in the mathematical models for the permeate channel was discussed.

Go to article

Authors and Affiliations

Maciej Szwast
Download PDF Download RIS Download Bibtex

Abstract

In this paper a three-dimensional model for determination of a microreactor's length is presented and discussed. The reaction of thermocatalytic decomposition has been implemented on the base of experimental data. Simplified Reynolds-Maxwell formula for the slip velocity boundary condition has been analysed and validated. The influence of the Knudsen diffusion on the microreactor's performance has also been verified. It was revealed that with a given operating conditions and a given geometry of the microreactor, there is no need for application of slip boundary conditions and the Knudsen diffusion in further analysis. It has also been shown that the microreactor's length could be practically estimated using standard models.

Go to article

Authors and Affiliations

Janusz Badur
Paweł Jóźwik
Michał Karcz
Download PDF Download RIS Download Bibtex

Abstract

The subject of the CFD analysis presented in this paper is the process of biomass indirect co-firing carried out in a system composed of a stoker-fired furnace coupled with a gasification reactor. The installation is characterised by its compact structure, which makes it possible to minimise heat losses to the environment and enhance the physical enthalpy of the oxidising agent – flue gases – having a favourable chemical composition with oxygen and water vapour. The test results provided tools for modelling of biomass thermal processing using a non-standard oxidiser in the form of flue gases. The obtained models were used to optimise the indirect co-combustion process to reduce emissions. An overall effect of co-combustion of gas from biomass gasification in the stoker furnace is the substantial reduction in NO emissions by about 22%.

Go to article

Authors and Affiliations

Rafał Litka
Sylwester Kalisz

This page uses 'cookies'. Learn more