Search results

Filters

  • Journals

Search results

Number of results: 553
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a formula useful for prediction of loss density in soft magnetic materials, which takes into account multi-scale energy dissipation. A universal phenomenological P(Bm, f) relationship is used for loss prediction in chosen soft magnetic materials. A bootstrap method is used to generate additional data points, what makes it possible to increase the prediction accuracy. A substantial accuracy improvement for estimated model parameters is obtained in the case, when additional data points are taken into account. The proposed description could be useful both for device designers and researchers involved in computational electromagnetism.
Go to article

Authors and Affiliations

Jan Szczygłowski
Paweł Kopciuszewski
Krzysztof Chwastek
Mariusz Najgebauer
Wiesław Wilczyński
Download PDF Download RIS Download Bibtex

Abstract

The purpose of that paper is to develop of unified equations of electromechanical energy converters accounting for the magnetic non-linearity of the main magnetic circuit of a converter. The concept of applying higher order forms of winding currents for the description of the co-energy function is introduced in order to derive the structure of converter equations via mathematical analysis. Also, another concept of equivalent magnetizing currents is applied to determine the higher order forms for selected converters designs. The structure of circuital equations for converters with multiple windings has been unified by means of the introduction of matrices of dynamic and nonlinear inductances following the higher order forms of the co-energy function.
Go to article

Authors and Affiliations

Tadeusz Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

An extension of the modified Jiles-Atherton description to include the effect of anisotropy is presented. Anisotropy is related to the value of the angular momentum quantum number J, which affects the form of the Brillouin function used to describe the anhysteretic magnetization. Moreover the shape of magnetization dependent R(m) function is influenced by the choice of the J value.
Go to article

Authors and Affiliations

Krzysztof Chwastek
Jan Szczygłowski
Download PDF Download RIS Download Bibtex

Abstract

The paper investigates a significant influence of transients on steady states in a matrix converter with the one-periodic control strategy. Proposed controller can be used as an interconnection device within a power system for a power flow control. However, the presence of inductances in external systems has the significant influence on steady state of a matrix converter operation. The special current injection method has been developed to ensure a proper operation of a matrix converter. Presented analysis of steady states is carried out in a frequency domain using the harmonic balance method. Obtained numerical results, which are confirmed by a time domain analysis, prove the effectiveness of the proposed method.
Go to article

Authors and Affiliations

Dariusz Borkowski
Tadeusz Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

A method for modeling of the dynamics characteristics for a 5-phase permanent magnet tubular linear motor (PMTLM) is presented. Its electromagnetic nonlinear field analysis with finite element method (FEM) has been coupled with the circuit model. The calculation model includes the equations for electrical circuits and mechanical quantities as well. They have been obtained using Lagrange's method. The calculated and measured waves of the mover position have been compared for several values of the excitation current. This comparison yields a good agreement. Presented calculation model is very useful in designing and optimization of the PMTLM and in the calculation of the parameters for the control algorithms intended for such a type of actuators.
Go to article

Authors and Affiliations

Bronisław Tomczuk
Andrzej Waindok
Download PDF Download RIS Download Bibtex

Abstract

This research presents a method of modeling and numerical simulation of a reluctance stepper motor using reduced finite-element time-stepping technique. In presented model, the circuit equations are reduced to non-stationary differential equations, i.e. the inductance mapping technique is used to find relationship between coil inductance and rotor position. A strongly coupled field-circuit model of the stepper motor is presented. In analyzed model the magnetostatic field partial differential equations are coupled with rotor motion equation and solved simultaneously in each iterative step. The nonlinearity problem is solved using Newton-Raphson method with spline approximation of the B-H curve.
Go to article

Authors and Affiliations

Jakub Bernat
Jakub Kołota
Sławomir Stępień
Grzegorz Szymański
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method for estimation of core losses in banks of single phase power transformers that are subjected to an injected DC current such as geomagnetically induced currents (GIC). The main procedure of the core loss calculation is to obtain a magnetic flux density waveform in both time and location by using a novel algorithm based on 3D FEM inside the core and then to calculate the loss distribution based on loss separation theory. Also, a simple and effective method is proposed for estimation of losses of asymmetric minor loops by using combination of symmetric loops. The effect of DC biasing on core losses in single phase power transformers is investigated and the sensitivity of core type and material is evaluated. the results shows that DC current biasing could increase core losses up to 40 percent or even more.
Go to article

Authors and Affiliations

Seyed Mousavi
Göran Engdahl
Edris Agheb
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of computing electrical and mechanical variables of BLDC motors. It takes into account electrical, magnetic and mechanical phenomena in the power supply-converter-BLDC motor-load machine system. The solution to the problem is the so-called circuit-field method. The results determined with the use of time stepping finite element method were used as the parameters of equations of the developed mathematical model. Losses in the motor, losses in transistors and diodes of the converter as well as the actual back EMF waveforms, variable moment of inertia and variable load torque are accounted for. The designed laboratory stand and the test results are presented in the paper. The experimental verification shows the correctness of the developed method, algorithm and program. The developed computational method is universal with respect to different electromechanical systems with cylindrical BLDC motors. It can be applied to electromechanical systems with BLDC motors operating at constant but also variable load torque and moment of inertia.
Go to article

Authors and Affiliations

Marek Ciurys
Ignacy Dudzikowski
Download PDF Download RIS Download Bibtex

Abstract

A simplified isoperibol calorimetry method for measuring specific heat in solids is described. Taking advantage of the classical Nernst dependency the specific heat is calculated from time-domain temperature curves registered for a sample forced heating and natural cooling phase. In order to improve accuracy of the measurements a correction factor, taking into account the heat transferred to the surrounding, is introduced along with a procedure of statistical elimination of unavoidable measurement deviations. The method is implemented in a simple and straightforward measuring system involving no vacuum calorimeter. The method is applicable for quick and routine specific heat measurements performed on small solid dielectric or metallic specimens at near-room temperature. Test results of various materials used commonly in electrical engineering are demonstrated and discussed as well as comparison to drop calorimetry and differential scanning calorimetry reference measurements is included. The overall repeatability of the test method and the simplified apparatus is estimated as not worse than 2.6%.
Go to article

Authors and Affiliations

Leszek Moroń
Paweł Żyłka
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the possibility of exciting high quality trapped resonant modes on frequency selective surfaces consisting of identical sub-wavelength metallic inclusions (symmetrically split rings) with no structural asymmetry but exhibitting electrical asymmetry. The electrical symmetry is broken by using different dielectric substrates. The existence of such anti-symmetric trapped mode on geometrical symmetric structure is demonstrated through numerical simulation. Numerical results suggest that the high quality factor observed for these resonant modes is achieved via weak coupling between the "trapped modes" and free space which enables the excitation of these modes.
Go to article

Authors and Affiliations

Mihai Rotaru
Jan Sykulski
Download PDF Download RIS Download Bibtex

Abstract

The matrix rectifier modulated by the classical space vector modulation (SVM) strategy generates common-mode voltage (CMV). The high magnitude and high du/dt of the CMV causes serious problems such as motor damage, electromagnetic noise and many others. In this paper, an improved SVM strategy is proposed by replacing the zero vectors with suitable couple of active ones that substantially eliminate the CMV. Theoretical analysis proves that the proposed strategy can reduce the amplitude of the CMV to half of the original value. In addition, the quality of the input and output waveforms is not affected by extra active vectors. Simulation and experimental results demonstrate the feasibility and effectiveness of the proposed strategy are shown.

Go to article

Authors and Affiliations

Xiao Liu
Qingfan Zhang
Dianli Hou
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a methodology for the optimization of a Brushless Direct Current motor (BLDC). In particular it is focused on multiobjective optimization using a genetic algorithm (GA) developed in Matlab/Optimization Toolbox coupled with Maxwell from ANSYS. Optimization process was divided into two steps. The aim of the first one was to maximize the RMS torque value and to minimize the mass. The second part of the optimization process was to minimize the cogging torque by selecting proper magnet angle. The paper presents the methodology and capabilities of scripting methods rather than specific optimization results for the applied geometry.

Go to article

Authors and Affiliations

R. Caramia
R. Piotuch
R. Pałka
Download PDF Download RIS Download Bibtex

Abstract

The optimization method using the ON/OFF sensitivity analysis has an advantage hat an epoch-making construction of magnetic circuit may be obtained. Therefore, it is attractive for designers of magnetic devices. We have already developed the ON/OFF method for the optimization of a static magnetic field problem, and the effectiveness is verified by applying it to the optimization of magnetic recording heads. In this paper, the ON/OFF sensitivity method is extended to the optimization of the eddy current problem using the adjoint variable. The newly developed ON/OFF method is applied to the determination of the optimal topology of the yoke of the billet heater for rolling wire rod. As a result, the optimal shape of yoke, which we could not imagine beforehand can be obtained. It is shown that the local heating of the yoke was reduced without decreasing the heating efficiency.

Go to article

Authors and Affiliations

Norio Takahashi
Shunsuke Nakazaki
Daisuke Miyagi
Naoki Uchida
Keiji Kawanaka
Hideyuki Namba
Download PDF Download RIS Download Bibtex

Abstract

This work summarizes efficiency measurement results of a full bridge, 3 phase inverter composed of state-of-the-art Si IGBT transistors and Si or SiC diodes. Different (symmetrical and discontinuous) space vector modulation strategies were chosen in order to examine their influence (together with modulation frequency) on inverter losses. Induction machine was used as load, different load points were examined. Results clearly show, that proper modulation strategy, minimizing the switching losses of semiconductor switches, can increase the overall output efficiency at about 1% in case of both silicon and hybrid constructions. The drawback of DPWM approach is connected with the decreased quality of inverter output current. Hybrid technology can also improve the output efficiency at about 1% when compared to traditional constructions, but only in case of elevated switching frequencies. At low frequencies (below 10 kHz) modern semiconductor offer comparable results at much lower device costs.

Go to article

Authors and Affiliations

Michał Bonisławski
Marcin Hołub

This page uses 'cookies'. Learn more