Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work the construction of experimental setup for MEMS/NEMS deflection measurements is presented. The system is based on intensity fibre optic detector for linear displacement sensing. Furthermore the electronic devices: current source for driving the light source and photodetector with wide-band preamplifier are presented.

Go to article

Authors and Affiliations

Karolina Orłowska
Michał Świątkowski
Piotr Kunicki
Piotr Słupski
Anna Sankowska
Teodor Gotszalk
Download PDF Download RIS Download Bibtex

Abstract

The paper covers some measurement aspects of transport of electrons through metals and semiconductors in magnetic field – magnetotransport – allowing for the determination of electrical parameters characteristic of three-dimensional (3D) topological insulators (TI) (i.e. those that behave like an insulator inside their volume and have a conductive layer on their surface). A characteristic feature of the 3D TI is also a lack of differences between the chemical composition of the conductive surface and the interior of the material tested and the fact that the electron states for its surface conductivity are topologically protected. In particular, the methods of generating strong magnetic fields, obtaining low temperatures, creating electrical contacts with appropriate geometry were presented, and the measurement methods were reviewed. In addition, the results of magnetotransport measurements obtained for two volumetric samples based on the HgCdTe compound grown with the molecular beam epitaxy method are presented.
Go to article

Bibliography

[1] Fu, L., Kane, C. L.,&Mele, E. J. (2007). Topological Insulators in Three Dimensions. Physical Review Letters, 98(10), 106803. https://doi.org/10.1103/physrevlett.98.106803
[2] Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., & Hasan, M. Z. (2008). A topological Dirac insulator in a quantum spin Hall phase. Nature, 452(7190), 970–974. https://doi.org/10.1038/nature06843
[3] Xu, Y., Miotkowski, I., Liu, C., Tian, J., Nam, H., Alidoust, N., Hu, J., Shih, C.-K., Hasan, M. Z., & Chen, Y. P. (2014). Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nature Physics, 10(12), 956–963. https://doi.org/10.1038/nphys3140
[4] Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J., & Ong, N. P. (2010). Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3. Science, 329(5993), 821–824. https://doi.org/10.1126/science.1189792
[5] Analytis, J. G., McDonald, R. D., Riggs, S. C., Chu, J.-H., Boebinger, G. S., & Fisher, I. R. (2010). Two-dimensional surface state in the quantum limit of a topological insulator. Nature Physics, 6(12), 960–964. https://doi.org/10.1038/nphys1861
[6] Shrestha, K. (2015). Magnetotransport Studies on Topological Insulators [Doctoral dissertation, University of Houston]. https://uh-ir.tdl.org/handle/10657/4881
[7] Zhang, J. (2016). Transport Studies of the Electrical, Magnetic and Thermoelectric Properties of Topological Insulator Thin Films. Springer-Verlag GmbH
[8] König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L., & Zhang, S.-C. (2007). Quantum Spin Hall Insulator State in HgTe QuantumWells. Science, 318(5851), 766–770. https://doi.org/10.1126/science.1148047
[9] Shamim, S., Beugeling, W., Böttcher, J., Shekhar, P., Budewitz, A., Leubner, P., Lunczer, L., Hankiewicz, E. M., Buhmann, H., & Molenkamp, L. W. (2020). Emergent quantum Hall effects below 50 mT in a two-dimensional topological insulator. Science Advances, 6(26). https://doi.org/10.1126/sciadv.aba4625
[10] Weis, J., & von Klitzing, K. (2011). Metrology and microscopic picture of the integer quantum Hall effect. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1953), 3954–3974. https://doi.org/10.1098/rsta.2011.0198
[11] K. I.Wysokinski. (2006). Quantum Hall effect: the fundamentals.Metrology and Measurement Systems, 13(2), 113–124. http://www.metrology.pg.gda.pl/full/2006/M&MS_2006_113.pdf
[12] Brüne, C., Liu, C. X., Novik, E. G., Hankiewicz, E. M., Buhmann, H., Chen, Y. L., Qi, X. L., Shen, Z. X., Zhang, S. C., & Molenkamp, L. W. (2011). Quantum Hall effect from the topological surface states of strained bulk HgTe. Physical Review Letters, 106(12), 126803. https://doi.org/10.1103/PhysRevLett.106.126803
[13] Brüne, C., Thienel, C., Stuiber, M., Böttcher, J., Buhmann, H., Novik, E. G., Liu, C.-X., Hankiewicz, E. M., & Molenkamp, L. W. (2014). Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator. Physical Review X, 4(4), 41045. https://doi.org/10.1103/PhysRevX.4.041045
[14] Mikitik, G. P., & Sharlai, Y. V. (1999). Manifestation of Berry’s Phase in Metal Physics. Physical Review Letters, 82(10), 2147–2150. https://doi.org/10.1103/physrevlett.82.2147
[15] Taskin, A. A., & Ando, Y. (2011). Berry phase of nonideal Dirac fermions in topological insulators. Physical Review B, 84(3), 35301. https://doi.org/10.1103/physrevb.84.035301
[16] Tomaka, G., Grendysa, J., Sliz, P., Becker, C. R., Polit, J., Wojnarowska, R., Stadler, A., & Sheregii, E. M. (2016). High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction. Physical Review B, 93(20), 205419. https://doi.org/10.1103/physrevb.93.205419
[17] Melhem, Z. (2019). Cryogenics at Oxford Instruments. Oxford Instruments. https://indico.cern.ch/event/792215/contributions/3408669/attachments/1938018/3212326/Melhem_Ziad_Cryo_at_OI_ EasiTrain_2Oct19_.pdf
[18] Balshaw, N. H. (1996). Practical Cryogenics: An Introduction to Laboratory Cryogenics. Oxford Instruments, Scientific Research Division
[19] LakeShore. (n.d.). Lake Shore 7500/9500 Series Hall System User’s Manual. http://sites.science.oregonstate.edu/~tatej/TateLabWiki/lib/exe/fetch.php?media=manuals:lakeshore_7504_complete.pdf
[20] MagLab. (2018). National MagLab – Elevate your research with higher fields. Brochure. https://nationalmaglab.org/images/research/publications/searchable_docs/print_media/maglab_ elevate_brochure_2018.pdf
[21] Markiewicz,W. D., Larbalestier, D. C.,Weijers, H. W., Voran, A. J., Pickard, K. W., Sheppard,W. R., Jaroszynski, J., Xu, A., Walsh, R. P., Lu, J., Gavrilin, A. V, & Noyes, P. D. (2012). Design of a Superconducting 32 T Magnet With REBCO High Field Coils. IEEE Transactions on Applied Superconductivity, 22(3), 4300704. https://doi.org/10.1109/tasc.2011.2174952
[22] Hahn, S., Kim, K., Kim, K., Hu, X., Painter, T., Dixon, I., Kim, S., Bhattarai, K. R., Noguchi, S., Jaroszynski, J., & Larbalestier, D. C. (2019). 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature, 570(7762), 496–499. https://doi.org/10.1038/s41586-019-1293-1 [23] Nakamura, D., Ikeda, A., Sawabe, H., Matsuda, Y. H.,& Takeyama, S. (2018). Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Review of Scientific Instruments, 89(9), 95106. https://doi.org/10.1063/1.5044557
[24] Liu, Q., Zhang, S., Ding, L., Zuo, H., & Han, X. (2019). Magnetoresistance Measurement of Topological Quantum Materials in Pulsed High Magnetic Field. 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–6. https://doi.org/10.1109/I2MTC.2019.8827073
[25] Courts, S. S. (2003). Review of CernoxTM (Zirconium Oxy-Nitride) Thin-Film Resistance Temperature Sensors. AIP Conference Proceedings, 684, 393–398. https://doi.org/10.1063/1.1627157
[26] Kowalewski, A.,Wróbel, J., Boguski, J., Gorczyca, K.,&Martyniuk, P. (2019). Semiconductor contact layer characterization in a context of hall effect measurements. Metrology and Measurement Systems, 26(1), 109–114. https://doi.org/10.24425/mms.2019.126324
[27] Mleczko, K., & Ptak, P. (2015). Low-temperature properties of RuO2-based resistors. Scientific Journals of Rzeszów University of Technology, Series: Electrotechnics, 275–294. https://doi.org/10.7862/re.2015.21
[28] ZurichInstruments. (n.d.). Hall Effect for Sensing and Materials Characterization. https://www.zhinst.com/europe/en/publications/hall-effect-sensing-and-materials-characterization
[29] Vaklinova, K. (2017). Spin Transport in Topological Insulator-Based Nanostructures, [Doctoral dissertation, École Polytechnique Fédérale de Lausanne]. https://doi.org/10.5075/epfl-thesis-7585
[30] Chiatti, O., Riha, C., Lawrenz, D., Busch, M., Dusari, S., Sánchez-Barriga, J., Mogilatenko, A., Yashina, L. V, Valencia, S., Ünal, A. A., Rader, O., & Fischer, S. F. (2016). 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Scientific Reports, 6(1). https://doi.org/10.1038/srep27483
[31] Meyyappa, M. (2007). Nanotechnology Measurement Handbook. A Guide to Electrical Measurements for Nanoscience Applications. Keithley Instruments, Inc. https://download.tek.com/document/1KW-30011-0%20NanotechHandbook.pdf
[32] Suslov, A. V. (2010). Stand alone experimental setup for dc transport measurements. Review of Scientific Instruments, 81(7), 75111. https://doi.org/10.1063/1.3463691
[33] Nawrocki, W. (2005). Measurement Systems and Sensors. Artech House
[34] Sewell, R. H., Musca, C. A., Dell, J. M., Faraone, L., Usher, B. F.,&Dieing, T. (2005). High-resolution X-ray diffraction studies of molecular beam epitaxy-grown HgCdTe heterostructures and CdZnTe substrates. Journal of Electronic Materials, 34(6), 795–803. https://doi.org/10.1007/s11664-005-0023-7
Go to article

Authors and Affiliations

Paweł Śliż
1
ORCID: ORCID
Iwona Sankowska
2
Ewa Bobko
1
ORCID: ORCID
Eugeniusz Szeregij
1
Jakub Grendysa
1
Grzegorz Tomaka
1
Dariusz Żak
1
Dariusz Płoch
1
ORCID: ORCID
Agata Jasik
2
ORCID: ORCID

  1. University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
  2. Łukasiewicz Research Network – Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results of the characterisation of type I GaSb/AlSb superlattices (SLs) with a thin GaSb layer and varying thicknesses of an AlSb layer. Nextnano software was utilized to obtain spectral dependence of absorption and energy band structure. A superlattice (SL) with an energy bandgap of ~ 1.0 eV and reduced mismatch value was selected for experimental investigation. SLs with single (sample A) and double (sample B) AlSb barriers and a single AlSb layer (sample C) were fabricated using molecular beam epitaxy (MBE). Optical microscopy, high-resolution X-ray diffractometry, and photoluminescence were utilized for structural and optical characterisation. The presence of satellite and interference peaks in diffraction curves confirms the high crystal quality of superlattices. Photoluminescence signal associated with the superlattice was observed only for sample B and contained three low-intensity peaks: 1.03, 1.18, and 1.25 eV. The first peak was identified as the value of the energy bandgap of the SL. Other two peaks are related to optical transitions between defect states located at the interface between the SL and the top AlSb barrier. The time-dependent changes observed in the spectral characteristics are due to a modification of the SL/AlSb interface caused by the oxidation and hydroxylation of the AlSb layer.
Go to article

Authors and Affiliations

Maciej Fokt
1 2
ORCID: ORCID
Agata Jasik 
1
ORCID: ORCID
Iwona Sankowska 
1
ORCID: ORCID
Herbert S. Mączko 
3
ORCID: ORCID
Karolina M. Paradowska 
1
ORCID: ORCID
Krzysztof Czuba
1 2
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  2. Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  3. nextnano GmbH, Konrad-Zuse-Platz 8, 81829 München, Germany

This page uses 'cookies'. Learn more