Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The impacts of long-term polycyclic aromatic hydrocarbons (PAHs) and heavy metal pollution on soil microbial communities functioning were studied in soils taken from an old coke plant. The concentrations of PAHs in the tested soils ranged from 171 to 2137 mg kg-1. From the group of tested heavy metals, concentrations of lead were found to be the highest, ranging from 57 to 3478 mg kg-1, while zinc concentrations varied from 247 to 704 mg kg-1 and nickel from 10 to 666 mg kg-1. High dehydrogenase, acid and alkaline phosphatase activities were observed in the most contaminated soil. This may indicate bacterial adaptation to long-term heavy metal and hydrocarbon contamination. However, the Community Level Physiological Profiles (CLPPs) analysis showed that the microbial functional diversity was reduced and influenced to a higher extent by some metals (Pb, Ni), moisture and conductivity than by PAHs.

Go to article

Authors and Affiliations

Anna Markowicz
Grażyna Płaza
Zofia Piotrowska-Seget
Download PDF Download RIS Download Bibtex

Abstract

Since fluoroquinolone (FQ) antibiotics are extensively used both in human and veterinary medicine their accumulation in the environment is causing increasing concern. The aim of the study was to isolate a microbial consortium resistant to ofl oxacin and norfl oxacin and able to biodegrade both antibiotics. Green compost was used as a source of microorganisms. The biodegradation effi ciency was monitored by changes of antibiotics concentrations and toxicity. The microbial consortium was composed of two bacterial isolates: Klebsiella pneumoniae (K2) and Achromobacter sp. (K3) and two fungi Candida manassasensis (K1) and Trichosporon asahii (K4). All the isolates were characterized as highly resistant to both antibiotics – ofl oxacin and norfl oxacin. FQs were supplied individually into the culture medium in the presence of an easily degradable carbon source – glucose. Biodegradation of norfl oxacin was much faster than ofl oxacin biodegradation. During 20 days of the experiment, the norfl oxacin level decreased by more than 80%. Ofl oxacin was generally biodegraded thereafter at relatively slow biodegradation rate. After 28 days the ofl oxacin level decreased by 60%. Similarly, the toxicity of biodegraded antibiotics decreased 4-fold and 3.5-fold for norfl oxacin and ofl oxacin, respectively. The ability of the bacterial-fungal consortium to degrade antibiotics and reduce toxicity could help to reduce environmental pollution with these pharmaceutical.

Go to article

Authors and Affiliations

Łukasz Jałowiecki
Grażyna Płaza
Helene Ejhed
Monika Nawrotek
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of moulding sands with an inorganic binder called GEOPOL, developed by the SAND TEAM Company are

presented in the paper. Hardeners of various hardening rates are used for moulding sands with this binder. The main aim of investigations

was determination of the influence of the hardening rate of moulding sands with the GEOPOL binder on technological properties of these

sands (bending strength, tensile strength, permeability and grindability). In addition, the final strength of moulding sands of the selected

compositions was determined by two methods: by splitting strength and shear strength measurements. No essential influence of the

hardening rate on such parameters as: permeability, grindability and final strength was found. However, the sand in which the slowest

hardener (SA 72) were used, after 1 hour of holding, had the tensile and bending strength practically zero. Thus, the time needed for taking

to pieces the mould made of such moulding sand will be 1.5 - 2 hours.

Go to article

Authors and Affiliations

M. Holtzer
A. Bobrowski
D. Drożyński
W. Plaza
Download PDF Download RIS Download Bibtex

Abstract

The increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pol-lution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biolog-ical membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and ef-fectiveness of using an MBR at the Głogów Małopolski operation.Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. More-over, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).

Go to article

Authors and Affiliations

Magdalena Domańska
Anna Boral
Kamila Hamal
Magdalena Kuśnierz
Janusz Łomotowski
Paulina Płaza-Ożóg

This page uses 'cookies'. Learn more