Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

When exposed to high cadmium concentrations applied to the soil, the abiotic stress-tolerant, semi-halophytic C3/CAM (Crassulacean Acid Metabolism) photosynthetic intermediate plant Mesembryanthemum crystallinum L. demonstrates negligible poisoning symptoms with well-protected photochemical activity. Gas exchange analysis of the soil-grown plants exposed to Cd concentrations ranging from 0.01 to 10.0 mM revealed stimulation of net photosynthesis in the C 3 metabolic state, and this observation coincided with an increase in the transpiration level. The obtained results suggest that the initial action of Cd after the administration of this heavy metal is the stimulation of stomata opening.
Go to article

Bibliography

[1]. Adams, P., Nelson, D. E., Yamada, S., Chmara, W., Jensen, R. G., Bohnert, H. J. & Griffiths, H. (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). The New Phytologist, 138, 171–190. DOI:10.1046/j.1469-8137.1998.00111.x
[2]. Adamakis, I.-D.S., Sperdouli, I., Hanć, A., Dobrikova, A., Apostolova, E. & Moustakas, M. (2021). Rapid hormetic responses of photosystem II photochemistry of clary sage to cadmium exposure. International Journal of Molecular Sciences, 22, 41. DOI:10.3390/ijms22010041
[3]. Ali, H., Khan, E. & Sajad, M.A. (2013) Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91, 869–881. DOI:10.1016/j.chemosphere.2013.01.075
[4]. Amari, T., Ghnaya, T., Debez, A., Taamali, M., Ben Youssef, N., Lucchini, G., Sacchi, G.A. & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. Journal of Plant Physiology, 171, 1634–1644. DOI:10.1016/j.jplph.2014.06.020
[5]. Arshad, M., Ali, S., Noman, A., Ali, Q., Rizwan, M., Farid, M. & Irshad, M.K. (2015). Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science, 62(4), 533-546. DOI:10.1080/03650340.2015.1064903
[6]. Björkman, O. & Demming, B. (1987). Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77ºK among vascular plants of diverse origin. Planta, 170, 489–504. DOI:10.1007/BF00402983
[7]. Carvalho, M.E.A., Piotto, F.A., Franco, M.R., Rossi, M.L., Martinelli, A.P., Cuypers, A. & Azevedo R.A. (2019). Relationship between Mg, B and Mn status and tomato tolerance against Cd toxicity. Journal of Environmental Management, 240, 84-92. DOI:10.1016/j.jenvman.2019.03.026
[8]. Chibuike, G.U. & Obiora, S.C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 1-13. DOI:10.1155/2014/752708
[9]. Cushman, J.C. & Borland, A.M. (2002). Induction of crassulacean acid metabolism by water limitation. Plant Cell & Environment, 25(2), 295-310. DOI:10.1046/j.0016-8025.2001.00760.x
[10]. Dias, M.C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B. & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35, 1281-1289. DOI:10.1007/s11738-012-1167-8
[11]. Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Zawoznik, M.S., Groppa, M.D. & Benavides, M.P. (2012). Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46. DOI:10.1016/j.envexpbot.2012.04.006
[12]. Gawrońska, K. & Niewiadomska, E. (2015). Participation of citric acid and isocitric acid in the diurnal cycle of carboxylation and decarboxylation in the common ice plant. Acta Physiologiae Plantarum, 37, 61. DOI:10.1007/s11738-015-1807-x
[13]. Gawroński S., Łutczyk G., Szulc W. & Rutkowska B. (2022) Urban mining: Phytoextraction of noble and rare earth elements from urban soils. Archives of Environmental Protection 48(2),24-33 DOI:10.24425/aep.2022.140763
[14]. Haag-Kerwer, A., Schäfer, H.J., Heiss, S., Walter, C. & Rausch, T. (1999). Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, 50, 1827–1835. DOI:10.1093/jxb/50.341.1827
[15]. Jia, L., Liu, Z., Chen, W., Ye, Y., Yu, S. & He, X. (2015). Hormesis effects induced by cadmium on growth and photosynthetic performance in hyperaccumulator Lonicera japonica Thunb. Journal of Plant Growth Regulation, 34, 13-21. DOI:10.1007/s00344-014-9433-1
[16]. Kholodova, V., Volkov, K. & Kuznetsov, V. (2005). Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russian Journal of Plant Physiology, 52, 748–757. DOI:10.1007/s11183-005-0111-9
[17]. Larsson, F.H., Bornman, J.F. & Asp, H. (1998). Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany, 49, 1031-1039. DOI:10.1093/jxb/49.323.1031
[18]. Liang, L., Liu,W., Sun, Y., Huo, X., Li, S. & Zhou, Q. (2017) Phytoremediation of heavy metal contaminated saline soils using halophytes: Current progress and future perspectives. Environmental Reviews, 25, 269–281. DOI:10.1139/er-2016-0063
[19]. Lösch, R. & Köhl, K.I. (1999). Plant respiration under influence of heavy metals, [In:] Prasad, M.N.V. & Hagemeyer, J. (Eds): Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg, 139-156.
[20]. Małachowska-Jutsz, A. & Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41, 4, 104-114. DOI:10.1515/aep-2015-0045
[21]. Moradi, L. & Ehsanzadeh, P. (2015). Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica, 53(4), 506-518. DOI:10.1007/s11099-015-0150-1
[22]. Moustakas, M., Moustakas, J. & Sperdouli I. (2022). Hormesis in photosystem II: a mechanistic understanding. Current Opinion in Toxicology, 29, 57-64. DOI:10.1016/j.cotox.2022.02.003[
[23]. Nosek, M., Kaczmarczyk, A., Śliwa, M., Jędrzejczyk, R., Kornaś, A., Supel, P., Kaszycki, P. & Miszalski, Z. (2019). The response of a model C3/CAM intermediate semi-halophyte Mesembryanthemum crystallinum L. to elevated cadmium concentrations. Journal of Plant Physiology, 240, 153005. DOI:10.1016/j.jplph.2019.153005
[24]. Nosek, M., Kaczmarczyk, A., Jędrzejczyk, R.J., Supel, P., Kaszycki, P. & Miszalski, Z. (2020). Expression of genes involved in heavy metal trafficking in plants exposed to salinity stress and elevated Cd concentrations. Plants, 9, 475. DOI:10.3390/plants9040475
[25]. Prasad, M.N.V., Malec, P., Waloszek, A., Bojko, M. & Strzałka, K. (2001). Physiological responses of Lemma trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science, 161, 881-889. DOI:10.1016/S0168-9452(01)00478-2
[26]. Śliwa-Cebula, M., Kaszycki, P., Kaczmarczyk, A., Nosek, M., Lis-Krzyścin, A. & Miszalski, Z. (2020). The common ice plant (Mesembryanthemum crystallinum L.) – phytoremediation potential for cadmium and chromate-contaminated soils. Plants, 9, 1230. DOI:10.3390/plants9091230
[27]. Śliwa-Cebula, M., Koniarz, T., Szara-Bąk, M., Baran A., Miszalski Z. & Kaszycki, P. (2023). Phytoremediation of metal-contaminated bottom sediments by the common ice plant (Mesembryanthemum crystallinum L.) in Poland. Journal of Soils and Sediments, 23, 1065-1082. DOI:10.1007/s11368-022-03401-x
[28]. Tokarz, K., Piwowarczyk, B., Wysocka, A., Wójtowicz, T., Makowski, W. & Golemiec, E. (2019). Response of grass pea (Lathyrus sativus L.) photosynthetic apparatus to short-term intensive UV-A: red radiation. Acta Physiologiae Plantarum, 41, 168. DOI:10.1007/s11738-019-2962-2
Go to article

Authors and Affiliations

Adriana Maria Kaczmarczyk
1
ORCID: ORCID
Michał Nosek
2
Paweł Kaszycki
3
ORCID: ORCID
Paulina Supel
3
ORCID: ORCID
Zbigniew Miszalski
1

  1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
  2. Institute of Biology, University of the National Education Comission Kraków, Poland
  3. Department of Plant Biology and Biotechnology, University of Agriculture in Kraków

This page uses 'cookies'. Learn more