Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The role of slag in the process of continuous casting of steel (CCS) is reduced to the thermal and chemical insulation of the liquid steel surface, and additionally to refining. The ability to adsorb non-metallic inclusions flowing off from the crystallizer, mainly Al2O3, determines its physicochemical properties. As a result of adsorption and dissolution of inclusions tin he liquid layer the viscosity and thickness of mould flux change, which eventually affects the technological parameters and behavior of slag in the crystallizer. The influence of aluminum oxide on the viscosity of slag was empirically investigated with a structural viscosity model worked out by Nakamoto. The results of the simulation are presented in the form of plots. Authors observed a significant influence of Al2O3 on the slag viscosity, which suggests that this effect should be taken into account when selecting chemical composition of mould flux for definite types of steel. The results of calculations also show that the disturbances in casting caused by the use of the mould slag may be connected with the content of non-metallic inclusions in steel.

Go to article

Authors and Affiliations

D. Kalisz
K. Kuglin
Download PDF Download RIS Download Bibtex

Abstract

The series of experiments was performed on commercial polymeric composite material MultimetalStahl 1018. Strength tests were performed to determine the yield point of the material. The composite had the highest hardness at a temperature of 20°C. Hardness and microhardness were determined in further experiments. The adhesiveness of the material to metal surfaces and impact strength were also analyzed. The scanning electron microscopy and X-ray microanalysis methods were used for analyzing the microstructure of the material. Chemical composition of selected areas was analyzed, which allowed for a preliminary identification of metallic elements content in the composite. The microstructure of composite is highly non-homogeneous and particular phases are highly elongated and angular. The analyzed phase was enriched with silicon, aluminium, magnesium, iron and vanadium other phases enriched with metallic elements, e.g. molybdenum, titanium, vanadium and also oxygen as well as traces of cadmium and chromium. The results were presented in the form of photos and illustrations. The results confirmed the applicability of the composite as a binder for fixing mechanical and foundry devices.

Go to article

Authors and Affiliations

D. Kalisz
ORCID: ORCID
A. Arustmian
Download PDF Download RIS Download Bibtex

Abstract

Surface phenomena play a major role in metallurgical processes; their operation results, among others, from the surface tension of liquid oxidic systems. One of the methods of determining surface tension of oxidic systems is performing calculations with Butler’s method. Surface tension was calculated for two- and three-component liquid oxidic systems typical of metallurgical processes. The determined dependence of surface tension in FeO-SiO2 at temp. 1773 K and CaO-SiO2 at temp.1873 K showed that with the growing participation of SiO2 surface tension decreased. Analogous calculations were performed for three-component systems: CaO-Al2O3-SiO2 and MnO-Al2O3- SiO2. The results of calculations of surface tension were determined for temp. 1873 K and compared with the results obtained by T. Tanaka et al. [19]. In both cases the increase of Al2O3 content resulted in a growth of surface tension. The simulation results were higher than experimental result, as compared to the literature data.

Go to article

Authors and Affiliations

D. Kalisz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Composite Multimetal Stahl 1018 has been used in the process of preserving worn surfaces of materials operating in extremely difficult conditions. This work presents the results of simulation of the mechanical properties of steel samples in contact with the MM "Stahl 1018" composite. Tests were carried out for various models with with one- and two-sided contact sample models with the composite. Theoretical tests were conducted in the "SolidWorks 2019" environment. It was found that the maximum strength of the specimen layer made of MM "Stahl 1018" material, which closely adheres to the surfaces of steel bases on both sides (444 MPa) is higher than that of the material layer in one-sided contact (358 MPa), for specimens with a height of 4.5 mm and at 80 °C. Simulations also revealed a significant increase in the maximum stress in the composite MM "Stahl 1018" for specimens in the so-called free state from 285 MPa to 358 MPa with the increasing temperature from 20 °C to 80 °C, for specimens 4.5 mm high.
Go to article

Bibliography

[1] Sołek, K., Kalisz, D., Arustamian, A. & Ishchenko, A.A. (2017). Analysis of srength characteristics of composite materials under vibration loads at higher temperatures. Journal of Machine Construction and Maintenance – Problemy Eksploatacji 93-97.
[2] Arustamian, A., Sołek, K. & Kalisz, D. (2016). Identyfication of yield point of polymer – based composite material in the conditions of increased temperatures. Archives of Metallurgy and Materials. 61(3), 1561-1566. DOI: 10.1515/amm-2016-0255
[3] Kalisz, D. & Arustamian A. (2020). Multimetal Stahl 1018 composite – structure and strength properties. Archives of Foundry Engineering. 20(4), 29-35. DOI: 10.24425/afe.2020.133351.
[4] Ischenko, A.A. (2012). Technological bases of restoration of the industrial equipment by modern polymeric materials PSTU (Mariupol). 27-39.
[5] Donev, K.V. (2007). Investigation of the properties of metalpolymer materials and the development of technology of repair roughing stand. Master's thesis, PSTU, Mariupol, Ukraine.
[6] Vorona, A.S. (2009) Theoretical and experimental research of the mechanical properties of polymer repair materials for different purposes. Master's thesis, PSTU, Mariupol, Ukraine.
[7] Kalinichenko, S.A. (2003) Research of the dynamic properties of metal-polymer materials. Master's thesis, PSTU, Mariupol, Ukraine.
[8] Timoschenko, A.V. (2010) Research of the mechanical properties of composite materials under dynamic loading. Master's thesis, PSTU, Mariupol, Ukraine.
[9] Kakareka, D.L. (2013) Research of the mechanical properties of composite materials under dynamic loading. Master's work, PSTU, Mariupol, Ukraine.
[10] Arusrtamian, A. (2023). Modeling and analysis of the mechanical properties of the composite based on a polymeric material used for the maintenance of metallurgical equipment. Doctoral thesis, AGH, Krakow, Poland.
[11] Diamant. Polymer Solutions. (2024). Retrieved January, 20, 2024, from http://diamant-polymer.de/en/products/mm1018/ 11.
[12] DIN EN ISO 604:2003-12, 2003.
[13] Stal C45 PN-EN 10083-2:1999
[14] Solidoworks.(2024). Retrieved January, 20, 2024, from https://discover.solidworks.com/
[15] Solidexpert. (2024). Retrieved December, 10, 2024 from https://solidworks.agh.edu.pl/
Go to article

Authors and Affiliations

A. Arustamian
D. Kalisz
1
ORCID: ORCID

  1. AGH University of Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Filtration is one of the most efficient methods of removing Al2O3 inclusions from liquid steel. The efficiency of this process depends on the physicochemical parameters of liquid metal, inclusion and properties of the applied filters. The particles attracted during filtration undergo agglomeration, collisions and chemical reactions on the filter surface, with the emphasis on the mechanism of particle collisions and the role of material from which the filter was made. The aluminum oxide inclusions collide with the filter surface and as the growing process continues, the particles also collide with the previously adsorbed inclusions. At the interface of particle and filter the mixing of the metal bath is most intense, being a result of a sudden change of flow direction and breaking up the stream of liquid metal which is in a direct contact with material. The efficiency of filtration is defined not only by the behavior of individual particles but of all population. The simulations revealed that only a small fraction of these particles adheres directly to the filter material; most of them stick to the former ones. Attention should be also paid to the fact that some of the inclusions which contacted the filter walls do not form a permanent connection and are then entrained by metal. Authors solved the problem of agglomeration and collisions of Al2O3 inclusions with the ceramic surface of the filter with the PSG method, mainly used for the analysis of agglomeration of inclusions during steel refining in the ladle.

Go to article

Authors and Affiliations

D. Kalisz
ORCID: ORCID
K. Kuglin

This page uses 'cookies'. Learn more