Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To further enhance the speed regulation range of the hybrid excited machine (HEM), the structure of a magnetic ring is optimized using a combination of the magnetic circuit method (MCM) and numerical analysis method in this paper, and a disc magnetic ring (DMR) is proposed. The magnetic density distribution of the proposed disc magnetic ring hybrid excited machine (DMRHEM) is compared to the radial-axial hybrid excited machine (RAHEM), and the superiority of alleviating a saturation problem in the proposed DMRHEM is determined. To improve the power density, the spoke-type permanent magnet (PM) rotor is applied. The influence of the proposed DMR on the HEM is analyzed, and the field adjustment capability of the proposed DMRHEM is better. Based on this, by combining the bypass principle, the analytical expressions for the relations between the rotor pole-pair number and the motor axial length/stator inner diameter (MAL/SID) as well as flux regulation capability are derived to further explore the superiority of the proposed DMRHEM. The influence mechanism of the rotor pole-pair number and the MAL/SID on the proposed DRMHEM is determined. The optimal MAL/SID and pole-pair number are obtained.
Go to article

Authors and Affiliations

Hongbo Qiu
1
Wenhao Gao
1
Shuaishuai Duan
1

  1. Zhengzhou University of Light Industry China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, by using a semi-analytical solution based on multi-layered approach, the authors present the solutions of temperature, displacements, and transient thermal stresses in functionally graded circular hollow cylinders subjected to transient thermal boundary conditions. The cylinder has finite length and is subjected to axisymmetric thermal loads. It is assumed that the functionally graded circular hollow cylinder is composed of N fictitious layers and the properties of each layer are assumed to be homogeneous and isotropic. Time variations of the temperature, displacements, and stresses are obtained by employing series solving method for ordinary differential equation, Laplace transform techniques and a numerical Laplace inversion.

Go to article

Authors and Affiliations

Jafar Eskandari Jam
Y. Rahmati Nezhad

This page uses 'cookies'. Learn more