Details

Title

Model-based initial residual unbalance identification for rotating machines in one and two planes using an iterative inverse approach

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

6

Affiliation

Bastakoti, Satish : Department of Mechanical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, Finland ; Choudhury, Tuhin : Department of Mechanical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, Finland ; Viitala, Risto : Department of Mechanical Engineering, School of Engineering, Aalto University, 00076 Espoo, Finland ; Kurvinen, Emil : Department of Mechanical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, Finland ; Sopanen, Jussi : Department of Mechanical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, Finland

Authors

Keywords

flexible rotor ; inverse approach ; onsite-balancing ; residual unbalance ; single and double plane

Divisions of PAS

Nauki Techniczne

Coverage

e139790

Bibliography

  1.  A. Shrivastava and A.R. Mohanty, “Estimation of single plane unbalance parameters of a rotor-bearing system using kalman filtering based force estimation technique,” J. Sound Vib., vol.  418, pp. 184–199, 2018, doi: 10.1016/j.jsv.2017.11.020.
  2.  E. Thearle, “Dynamic balancing of rotating machinery in the field,” Trans. ASME, vol. 56, no. 10, pp. 745–753, 1934.
  3.  K. Hopkirk, “Notes on methods of balancing,” The engineer, vol. 170, pp. 38–39, 1940.
  4.  S. Zhou, S.W. Dyer, K.-K. Shin, J. Shi, and J. Ni, “Extended Influence Coefficient Method for Rotor Active Balancing During Acceleration,” J. Dyn. Syst. Meas. Contr., vol. 126, no. 1, pp. 219–223, 04 2004, doi: 10.1115/1.1651533.
  5.  T.P. Goodman, “A Least-Squares Method for Computing Balance Corrections,” J. Eng. Ind., vol. 86, no. 3, pp.  273–277, 08 1964, doi: 10.1115/1.3670532.
  6.  M.S. Darlow, “Balancing of high-speed machinery: Theory, methods and experimental results,” Mech. Syst. Sig. Process., vol.  1, no. 1, pp. 105–134, 1987, doi: 10.1016/0888-3270(87)90087-2.
  7.  E. Gunter et al., “Balancing of multimass flexible rotors,” in Proceedings of the 5th Turbomachinery Symposium. Texas A&M University. Gas Turbine Laboratories, 1976, doi: 10.21423/R1W38D.
  8.  R.E.D. Bishop and G.M.L. Gladwell, “The vibration and balancing of an unbalanced flexible rotor,” J. Mech. Eng. Sci., vol. 1, no. 1, pp. 66–77, 1959, doi: 10.1243/JMES_JOUR_1959_001_010_02.
  9.  R.E.D. Bishop, “On the possibility of balancing rotating flexible shafts,” J. Mech. Eng. Sci., vol. 24, no. 4, pp.  215–220, 1982, doi: 10.1243/ JMES_JOUR_1982_024_040_02.
  10.  J.W. Lund and J. Tonnesen, “Analysis and experiments on multiplane balancing of a flexible rotor,” J. Eng. Ind., vol. 94, no. 1, pp. 233–242, 1972, doi: 10.1115/1.3428116.
  11.  M.S. Darlow, Review of Literature on Rotor Balancing. New York, NY: Springer New York, 1989, pp. 39–52, doi: 10.1007/978-1-4612- 3656-6_3.
  12.  ISO, “Mechanical vibration. rotor balancing. part 11: Procedures and tolerances for rotors with rigid behaviour,” International Organization for Standardization, Geneva, CH, Standard ISO 21940‒11:2016, 2016. [Online]. Available: https://www.iso.org/standard/54074.html.
  13.  R. Platz and R. Markert, “Fault models for online identification of malfunctions in rotor systems,” Transactions of the 4th Internation- al Conference Acoustical and Vibratory Surveillance, Methods and Diagnostic Techniques, University of Compiegne, France, vol. 2, pp. 435–446., 2001.
  14.  R. Markert, R. Platz, and M. Seidler, “Model based fault identification in rotor systems by least squares fitting,” Int. J. Rotating Mach., vol. 7, no. 5, pp. 311–321, 2001.
  15.  J.R. Jain and T.K. Kundra, “Model based online diagnosis of unbalance and transverse fatigue crack in rotor systems,” Mech. Res. Com- mun., vol. 31, no. 5, pp. 557–568, 2004.
  16.  G.N.D.S. Sudhakar and A.S. Sekhar, “Identification of unbalance in a rotor bearing system,” J. Sound Vib., vol. 330, no. 10, pp. 2299–2313, 2011.
  17.  J. Yao, L. Liu, F. Yang, F. Scarpa, and J. Gao, “Identification and optimization of unbalance parameters in rotor-bearing systems,” J. Sound Vib., vol. 431, pp. 54–69, 2018.
  18.  N. Bachschmid, P. Pennacchi, and A. Vania, “Identification of multiple faults in rotor systems,” J. Sound Vib., vol.  254, no. 2, pp. 327–366, 2002.
  19.  P. Pennacchi, R. Ferraro, S. Chatterton, and D. Checcacci, “A model-based prediction of balancing behavior of rotors above the speed range in available balancing systems,” in Turbo Expo: Power for Land, Sea, and Air, vol. 10 B. Virtual, Online: American Society of Mechanical Engineers, September, 2020, p. V10BT29A015.
  20.  P. Pennacchi, “Robust estimation of excitations in mechanical systems using m-estimators – experimental applications,” J. Sound Vib., vol. 319, no. 1‒2, pp. 140–162, 2009.
  21.  D. Zou, H. Zhao, G. Liu, N. Ta, and Z. Rao, “Application of augmented Kalman filter to identify unbalance load of rotorbearing system: Theory and experiment,” J. Sound Vib., vol. 463, p.  114972, 2019.
  22.  O. Mey, W. Neudeck, A. Schneider, and O. Enge-Rosenblatt, “Machine learning-based unbalance detection of a rotating shaft using vibration data,” in 25th IEEE International Conference on Emerging Technologies and Factory Automation, Vienna, Austria, September, 2020, pp. 1610–1617.
  23.  G. Hübner, H. Pinheiro, C. de Souza, C. Franchi, L. da Rosa, and J. Dias, “Detection of mass imbalance in the rotor of wind turbines using support vector machine,” Renewable Energy, vol. 170, pp. 49–59, 2021, doi: 10.1016/j.renene.2021.01.080.
  24.  A.A. Pinheiro, I.M. Brandao, and C. Da Costa, “Vibration analysis in turbomachines using machine learning techniques,” Eur. J. Eng. Technol. Res., vol. 4, no. 2, pp. 12–16, 2019.
  25.  J.K. Sinha, A. Lees, and M. Friswell, “Estimating unbalance and misalignment of a flexible rotating machine from a single rundown,” J. Sound Vib., vol. 272, no. 3‒5, pp. 967–989, 2004.
  26.  J. Sinha, M. Friswell, and A. Lees, “The identification of the unbalance and the foundation model of a flexible rotating machine from a single run-down,” Mech. Syst. Sig. Process., vol. 16, no. 2, pp. 255–271, 2002, doi: 10.1006/mssp.2001.1387.
  27.  S. Edwards, A. Lees, and M. Friswell, “Experimental identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run-down,” J. Sound Vib., vol. 232, no. 5, pp. 963–992, 2000.
  28.  A. Lees, J.K. Sinha, and M. Friswell, “The identification of the unbalance of a flexible rotating machine from a single rundown,” J. Eng. Gas Turbines Power, vol. 126, no. 2, pp. 416–421, 2004.
  29.  A. Lees, J.K. Sinha, and M.I. Friswell, “Estimating rotor unbalance and misalignment from a single run-down,” in Mater. Sci. Forum, vol. 440. Trans Tech Publ, 2003, pp. 229–236.
  30.  S.M. Ibn Shamsah and J.K. Sinha, “Rotor unbalance estimation with reduced number of sensors,” Machines, vol. 4, no. 4, p.  19, 2016.
  31.  S.I. Shamsah, J. Sinha, and P. Mandal, “Application of modelbased rotor unbalance estimation using reduced sensors and data from a single run-up,” in 2nd International Conference on Maintenance Engineering (IncoME-II), 2017.
  32.  S.M.I. Shamsah, J.K. Sinha, and P. Mandal, “Estimating rotor unbalance from a single run-up and using reduced sensors,” Measurement, vol. 136, pp. 11–24, 2019.
  33.  E. Knopf, T. Krüger, and R. Nordmann, “Residual unbalance determination for flexible rotors at operational speed,” in Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, P. Pennacchi, Ed. Cham: Springer International Publishing, 2015, pp.  757–768, doi: 10.1007/978-3-319-06590-8_62.
  34.  Y. Khulief, M. Mohiuddin, and M. El-Gebeily, “A new method for field-balancing of high-speed flexible rotors without trial weights,”Int. J. Rotating Mach., vol. 2014, 2014, doi: 10.1155/2014/603241.
  35.  R. Nordmann, E. Knopf, and B. Abrate, “Numerical analysis of influence coefficients for on-site balancing of flexible rotors,” in Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM, K.L. Cavalca and H.I. Weber, Eds. Cham: Springer International Publishing, 2019, pp. 157–172, doi: 10.1007/978-3-319-99272-3_12.
  36.  ISO, “Mechanical vibration. rotor balancing. part 12: Procedures and tolerances for rotors with flexible behavior,” International Organization for Standardization, Geneva, CH, Standard ISO 21940-12, 2016, https://www.iso.org/standard/50429.html.
  37.  M.I. Friswell, J.E. Penny, A.W. Lees, and S.D. Garvey, Dynamics of rotating machines. Cambridge University Press, 2010.
  38.  P. Kuosmanen and P. Väänänen, “New highly advanced roll measurement technology,” in Proc. 5th International Conference on New Available Techniques, The World Pulp and Paper Week, 1996, pp.  1056–1063.
  39.  H. Kato, R. Sone, and Y. Nomura, “In-situ measuring system of circularity using an industrial robot and a piezoactuator,” Int. J. Jpn. Soc. Precis. Eng., vol. 25, no. 2, pp. 130–135, 1991.
  40.  P. McFadden, “A revised model for the extraction of periodic waveforms by time domain averaging,” Mech. Syst. Sig. Process., vol. 1, no. 1, pp. 83–95, 1987, doi: 10.1016/0888-3270(87)90085-9.
  41.  H.D. Nelson, “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” J. Mech. Des., vol. 102, no. 4, pp. 793‒803, 10 1980, doi: 10.1115/1.3254824.
  42.  K. Cavalca, P. Cavalcante, and E. Okabe, “An investigation on the influence of the supporting structure on the dynamics of the rotor system,” Mech. Syst. Sig. Process., vol. 19, no. 1, pp.  157–174, 2005, doi: 10.1016/j.ymssp.2004.04.001.
  43.  P.F. Cavalcante and K. Cavalca, “A method to analyse the interaction between rotor-foundation systems,” in SPIE proceedings series, 1998, pp. 775–781.
  44.  B. Ghalamchi, J. Sopanen, and A. Mikkola, “Modeling and dynamic analysis of spherical roller bearing with localized defects: analytical formulation to calculate defect depth and stiffness,” Shock Vib., vol. 2016, 2016, doi: 10.1155/2016/2106810.
  45.  T. Choudhury, R. Viitala, E. Kurvinen, R. Viitala, and J. Sopanen, “Unbalance estimation for a large flexible rotor using force and dis- placement minimization,” Machines, vol. 8, no. 3, 2020, doi: 10.3390/machines8030039.
  46.  J. Juhanko, E. Porkka, T. Widmaier, and P. Kuosmanen, “Dynamic geometry of a rotating cylinder with shell thickness variation,” Est. J. Eng., vol. 16, no. 4, p. 285, 2010.

Date

08.12.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.139790
×