Details

Title

Application of mixed-nanoparticle coating as a novel simple method in generating speckle pattern to study small fields of view by digital image correlation

Journal title

Archive of Mechanical Engineering

Yearbook

2022

Volume

vol. 69

Issue

No 1

Affiliation

Aghdam, Milad Zolfipour : School of Mechanical Engineering, Collegeof Engineering, University of Tehran, Iran ; Soltani, Naser : School of Mechanical Engineering, Collegeof Engineering, University of Tehran, Iran ; Nobakhti, Hadi : School of Mechanical Engineering, Collegeof Engineering, University of Tehran, Iran

Authors

Keywords

digital image correlation ; speckle pattern ; nanoparticle ; coating

Divisions of PAS

Nauki Techniczne

Coverage

45-58

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] M. Abshirini, N. Soltani, and P. Marashizadeh. On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method. Optics and Lasers in Engineering, 78:99–105, 2016. doi: 10.1016/j.optlaseng.2015.10.006.
[2] M. Sahlabadi and N. Soltani. Experimental and numerical investigations of mixed-mode ductile fracture in high-density polyethylene. Archive of Applied Mechanics, 88(6):933–942, 2018. doi: 10.1007/s00419-018-1350-5.
[3] M.R.Y. Dehnavi, I. Eshraghi, and N. Soltani. Investigation of fracture parameters of edge Vnotches in a polymer material using digital image correlation. Polymer Testing, 32(4):778–784, 2013. doi: 10.1016/j.polymertesting.2013.03.012.
[4] N.S. Ha, V.T. Le, and S.G. Goo. Investigation of fracture properties of a piezoelectric stack actuator using the digital image correlation technique. International Journal of Fatigue, 101(1):106–111, 2017. doi: 10.1016/j.ijfatigue.2017.02.020.
[5] B. Pan. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals. Measurement Science and Technology, 29(8):082001, 2018. doi: 10.1088/1361-6501/aac55b.
[6] Y.L. Dong and B. Pan. A review of speckle pattern fabrication and assessment for digital image correlation. Experimental Mechanics, 57(8):1161–1181, 2017. doi: 10.1007/s11340-017-0283-1.
[7] N.S. Ha, T.L. Jin, N.S. Goo, and H.C. Park. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane. Bioinspiration and Biomimetics, 6(4):046003, 2011. doi: 10.1088/1748-3182/6/4/046003.
[8] T. Jin,N.S. Ha,V.T. Le,N.S. Goo, and H.C. Jeon. Thermal buckling measurement of a laminated composite plate under a uniform temperature distribution using the digital image correlation method. Composite Structures, 123:420–429, 2015. doi: 10.1016/j.compstruct.2014.12.025.
[9] T.L. Jin,N.S. Ha, andN.S. Goo.Astudy of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis. Thin-Walled Structures, 77:187–197, 2014. doi: 10.1016/j.tws.2013.10.012.
[10] N.S. Ha, V.T. Le, and N.S. Goo. Thermal strain measurement of austin stainless steel (SS304) during a heating-cooling process. International Journal of Aeronautical and Space Sciences, 18(2):206-214, 2017. doi: 10.5139/ijass.2017.18.2.206.
[11] N.S. Ha, H.M. Vang, andN.S. Goo. Modal analysis using digital image correlation technique: an application to artificial wing mimicking beetle’s hind wing. Experimental Mechanics, 55:989– 998, 2015. doi: 10.1007/s11340-015-9987-2.
[12] T. Sadowski and M. Knec. Application of DIC techniques for monitoring of deformation process of spr hybrid joints. Archives of Metallurgy and Materials, 58(1):119–125, 2013. doi: 10.2478/v10172-012-0161-x.
[13] W.H. Peters and W.F. Ranson. Digital imaging techniques in experimental stress analysis. Optical Engineering, 21(3):427–431, 1982. doi: 10.1117/12.7972925.
[14] W.H. Peters, W.F. Ranson, M.A. Sutton, T.C. Chu, and J. Anderson. Application of digital correlation methods to rigid body mechanics. Optical Engineering, 22(6):738–742, 1983. doi: 10.1117/12.7973231.
[15] M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, and S.R. McNeill. Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3)133–139, 1983. doi: 10.1016/0262-8856(83)90064-1.
[16] T.C. Chu, W.F. Ranson, and M.A. Sutton. Applications of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics, 25(3):232–244, 1985. doi: 10.1007/BF02325092.
[17] J.S. Lyons, J. Liu, and M.A. Sutton. High-temperature deformation measurements using digitalimage correlation. Experimental Mechanics, 36(1):64–70, 1996. doi: 10.1007/BF02328699.
[18] T.A. Berfield, J.K. Patel, R.G. Shimmin, P.V. Braun, J. Lambros, and N.R. Sottos. Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation. Experimental Mechanics, 47(1):51–62, 2007. doi: 10.1007/s11340-006-0531-2.
[19] Y. Dong, H. Kakisawa, and Y. Kagawa. Development of microscale pattern for digital image correlation up to 1400°C. Optics and Lasers in Engineering, 68:7–15, 2015. doi: 10.1016/j.optlaseng.2014.12.003.
[20] T. Niendorf, C. Burs, D. Canadinc, and H.J. Maier. Early detection of crack initiation sites in TiAl alloys during low-cycle fatigue at high temperatures utilizing digital image correlation. International Journal of Materials Research, 100(4):603–608, 2009. doi: 10.3139/146.110064.
[21] M.A. Sutton, X. Ke, S.M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H.W. Schreier. Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. Journal of Biomedical Materials Research Part A, 84A(1):178–190, 2007. doi: 10.1002/jbm.a.31268.
[22] A.D. Kammers and S. Daly. Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Experimental Mechanics, 53(8):1333–1341, 2013. doi: 10.1007/s11340-013-9734-5.
[23] K.N. Jonnalagadda, I. Chasiotis, S. Yagnamurthy, J. Lambros, J. Pulskamp, R. Polcawich, and M Dubey. Experimental investigation of strain rate dependence of nanocrystalline Pt films. Experimental Mechanics, 50(1):25–35, 2010. doi: 10.1007/s11340-008-9212-7.
[24] W.A. Scrivens, Y. Luo, M.A. Sutton, S.A. Collette, M.L. Myrick, P. Miney, P.E. Colavita, A.P. Reynolds, and X. Li. Development of patterns for digital image correlation measurements at reduced length scales. Experimental Mechanics, 47(1):63–77, 2007. doi: 10.1007/s11340-006-5869-y.
[25] N. Li, M.A. Sutton, X. Li, and H.W. Schreier. Full-field thermal deformation measurements in a scanning electron microscope by 2D digital image correlation. Experimental Mechanics, 48(5):635–646, 2008. doi: 10.1007/s11340-007-9107-z.
[26] F. Di Gioacchino and J.Q. da Fonseca. Plastic strain mapping with sub-micron resolution using digital image correlation. Experimental Mechanics, 53(5):743–754, 2013. doi: 10.1007/s11340-012-9685-2.
[27] P. Reu. All about speckles: contrast. Experimental Techniques, 39(1):1–2, 2015. doi: 10.1111/ext.12126.
[28] P. Reu. All about speckles: speckle density. Experimental Techniques, 39(3):1–2, 2015. doi: 10.1111/ext.12161.
[29] P. Reu. All about speckles: aliasing. Experimental Techniques, 38(5):1–3, 2014. doi: 10.1111/ext.12111.
[30] P. Reu. All about speckles: speckle size measurement. Experimental Techniques, 38(6):1–2, 2014. doi: 10.1111/ext.12110.
[31] B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang. Study on subset size selection in digital image correlation for speckle patterns. Optics Express, 16(10):7037–7048, 2008. doi:
10.1364/OE.16.007037.
[32] B.Wang and B. Pan. Random errors in digital image correlation due to matched or overmatched shape functions. Experimental Mechanics, 55(9):1717–1727, 2015. doi: 10.1007/s11340-015- 0080-7.
[33] B. Pan, K. Qian, H. Xie, and A. Asundi. Two-dimensional digital image correlation for inplane displacement and strain measurement: a review. Measurement Science and Technology, 20(6):062001, 2009. doi: 10.1088/0957-0233/20/6/062001.
[34] H. Haddadi and S. Belhabib. Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Optics and Lasers in Engineering, 46(2):185–196, 2007. doi: 10.1016/j.optlaseng.2007.05.008.

Date

16.11.2021

Type

Article

Identifier

DOI: 10.24425/ame.2021.139313
×