Details

Title

Charcoal rot and root-knot nematode control on faba bean by photosynthesized colloidal silver nanoparticles using bioactive compounds from Moringa oleifera leaf extract

Journal title

Journal of Plant Protection Research

Yearbook

2021

Volume

vol. 61

Issue

No 4

Affiliation

Mohamed, Yasser Mahmoud A. : Photochemistry Department, National Research Center, Dokki, Giza, Egypt ; Osman, Samira A. : Genetics and Cytology Department, National Research Center, Dokki, Giza, Egypt ; Elshahawy, Ibrahim E. : Plant Pathology Department, National Research Center, Dokki, Giza, Egypt ; Soliman, Gazeia M. : Plant Pathology Department, Nematology Unit, National Research Center, Dokki, Giza, Egypt ; Ahmed, Aisha M.A. : Botany Department, National Research Center, Dokki, Giza, Egypt

Authors

Keywords

colloidal AgNPs ; Macrophomina phaseolina ; Meloidogyne incognita ; Moringa oleifera ; Vicia faba

Divisions of PAS

Nauki Biologiczne i Rolnicze

Coverage

414-429

Publisher

Committee of Plant Protection PAS ; Institute of Plant Protection – National Research Institute

Bibliography


Abd-Elgawad M.M.M., Askary T.H. 2018. Fungal and bacterial nematicides in integrated nematode management strategies. Egyptian Journal of Biological Pest Control 28: 74. DOI: https://doi.org/10.1186/s41938-018-0080-x
Abdel-Monaim M.F. 2013. Improvement of biocontol of damping- off and root-rot/wilt of faba bean by salicylic acid and hydrogen peroxide. Mycobiology 41: 47−55. DOI: https://doi.org/10.5941/MYCO.2013.41.1.47
Abdelsalam A.Z.E., Hassan H.Z., El-Domyati M., Eweda M.A., Bahieldin A., Ibrahim S.A. 1993. Comparative mutagenic effects of some compounds using different eukaryotic systems. Egyptian Journal of Genetics and Cytology 22: 129−153.
Al-Huqail A.A., Hatata M.M., AL-Huqail A.A., Ibrahim M.M. 2018. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi Journal of Biological Sciences 25: 313−319. DOI: https://doi.org/10.1016/j.sjbs.2017.08.013
Baird R.E., Watson C.E., Scruggs M. 2003. Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Disease 87: 563−566. DOI: https://doi.org/10.1094/PDIS.2003.87.5.563
Barker T.R. 1985. Nematode extraction and bioassays. p. 19−35. In: “An Advanced Treatise on Meloidogyne”. Vol. II. (T.R. Barker, C.C. Carter, J.N. Sasser, eds.). North Carolina University, Graphics, Raleigh, N.C.
Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205−207. DOI: https://doi.org/10.1007/BF00018060
Cayrol J.C., Djian C., Pijarowski L. 1989. Study of the nematocidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev Nematol 12: 331–336.
Dietz K.J., Herth S. 2012. Plant nanotoxicology. Trends in Plant Science 16: 582−589. DOI: https://doi.org/10.1016/j.tplants.2011.08.003
El-Nagdi W.M.A., Youssef M.M.A. 2004. Soaking faba bean seed in some bio-agents as prophylactic treatment for controlling Meloidogyne incognita root-knot nematode infection. Journal of Pest Science 77: 75−78. DOI: https://doi.org/10.1007/s10340-003-0029-y
El-Refai A.A., Ghoniem G.A., El-Khateeb A.Y., Hassaan M.M. 2018. Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. Journal of Nanostructure in Chemistry 8: 71−81. DOI: https://doi.org/10.1007/s40097-018-0255-8
Elshahawy I., Abouelnasr H.M., Lashin S.M., Darwesh O.M. 2018. First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. Journal of Plant Protection Research 58: 137−151. DOI: https://doi.org/10.24425/122929
Fouad M., Mohammed N., Aladdin H., Ahmed A., Xuxiao Z., Shiying B., Tao Y. 2013. Faba bean. p. 113−136. In: “Genetic and Genomic Resources of Grain Legume Improvement” (M. Singh, H.D. Upadhyaya, I.S. Bisht, eds.). Elsevier. DOI: https://doi.org/10.1016/C2012-0-00217-7
Foyer C.H., Noctor G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment 28: 1056−1071. DOI: https://doi.org/10.1111/j.1365-3040.2005.01327.x
Feizi H., Amirmoradi S., Abdollahi F., Pour S.J. 2013. Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Research & Review in Biology 3: 814−824.
Giraldo J.P., Landry M.P., Faltermeier S.M., McNicholas T.P., Iverson N.M., Boghossian A.A., Reuel N.F., Hilmer A.J., Sen F., Brew J.A., Strano M.S. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials 13 (4): 400−408. DOI: https://doi.org/10.1038/nmat3890
Hamed S.M., Hagag E.S., Abd El-Raouf N. 2019. Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef University Journal of Basic and Applied Sciences 8: 9. DOI: https://doi.org/10.1186/s43088-019-0010-3
Hassan H.Z., Haliem A.S., Abd El-Hady E.A. 2002. Effect of pre and post treatments with ferty green foliar fertilizer on mutagenic potentiality of gokilaht insecicide. Egyptian Journal of Biotechnology 11: 282−304.
Hatami M., Ghorbanpour M. 2013. Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. Journal of Horticultural Research 21: 15−20. DOI: https://doi.org/10.2478/johr-2013-0003
Hegaba A.S.A., Fayed M.T.B., Hamada M.M.A., Abdrabbo M.A.A. 2014. Productivity and irrigation requirements of faba-bean in North Delta of Egypt in relation to planting dates. Annals of Agricultural Sciences 59: 185−193. DOI: https://doi.org/10.1016/j.aoas.2014.11.004
Hussey R.S., Barker K.R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025−1028. DOI: https://eurekamag.com/research/000/002/000002412.php
Hajipour M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. 2012. Antibacterial properties of nanoparticles. Trends in Biotechnology 30: 499−511. DOI: https://doi.org/10.1016/j.tibtech.2012.06.004
Hayat Sh., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. 2012. Role of proline under changing environments. Plant Signaling & Behavior 7: 1456−1466. DOI: https://doi.org/10.4161/psb.21949
Iqbal M., Raja N.I., Mashwani Z.U.R., Hussain M., Ejaz M., Yasmeen F. 2019. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science 43: 387−395. DOI: https://doi.org/10.1007/s40995-017-0417-4.
Javed R., Zia M., Naz S., Aisid S.O., ul Ain N., Ao Q. 2020. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology 18: 172. DOI: https://doi.org/10.1186/s12951-020-00704-4
Jasim B., Roshmi T., Jyothis M., Radhakrishnan E.K. 2017. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal 25 (3): 443−447. DOI: https://doi.org/10.1016/j.jsps.2016.09.012
Jeschke P. 2016. Progress of modern agricultural chemistry and future prospects. Pest Management Science 72: 433−455. DOI: https://doi.org/10.1002/ps.4190
Jurkow R., Pokluda R., Sękara A., Kalisz A. 2020. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biology 20: 290. DOI: https://doi.org/10.1186/s12870-020-02490-5
Karthick S., Chitrakala K. 2011. Ecotoxicological effect of Lecani cilium Lecanii (Ascomycota: Hypocereales) based silver nanoparticles on growth parameters of economically important plants. Journal of Biopesticides 4: 97−101.
Khiew P., Chiu W., Tan T., Radiman S., Abd-Shukor R., Chia C.H. 2011. Capping effect of palm-oil based organometallic ligand towards the production of highly monodispersed nanostructured material. p. 189−219. In: “Palm Oil Nutr Uses Impacts”. Nova Science.
Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H., Cho M.H. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 3: 95−101. DOI: https://doi.org/10.1016/j. nano.2006.12.001
Kumari M., Pandey S., Bhattacharya A., Mishra A., Nautiyal C.S. 2017. Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiology and Biochemistry 121: 216−225. DOI: https://doi.org/10.1016/j.plaphy.2017.11.004
Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680−685. DOI: https://doi.org/10.1038/227680a0
Marklund S., Marklund G. 1974. Involvement of thesuperoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469−474. DOI: http://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Mehta P.C.M., Srivastava R., Arora S., Sharma A.K. 2016. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6: 254. DOI: https://doi.org/10.1007/s13205-016-0567-7
Min J.S., Kim K.S., Kim S.W., Jung J.H., Lamsal K., Kim S.B., Jung M., Lee Y.S. 2009. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal 25: 376−380. DOI: https://doi.org/10.5423/PPJ.2009.25.4.376
Mohamed A.S.H., Qayyum M.F., Abdel-Hadi A.M., Rehman R.A., Ali S., Rizwan M. 2017. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science 63: 1476−3567. DOI: https://doi.org/10.1080/0 3650340.2017.1300256
Monreal J.A., Jimenez E.T., Remesal E., Morillo-Velarde R., Garcia- Maurino S., Echevarria C. 2007. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany 60: 257−267. DOI: https://doi.org/10.1016/j.envexpbot.2006.11.002
Mukherjee S.P., Choudhuri M.A. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiology 58: 166−170. DOI: https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
Muller H.P., Gottschelk W. 1973. Quantitative and qualitative situation of Pisum sativum. p. 235−253. In: “Nuclear Techniques for Seed Protein Improvement”. International Atomic Energy Agency, Vienna, 430 pp.
Musante C., White J.C. 2012. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology 27 (9): 510−517. DOI: http://doi.org/10.1002/tox.20667
Narayanan K.B., Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science 156: 1−13. DOI: https://doi.org/10.1016/j.cis.2010.02.001
Nazir K., Mukhtar T., Javed H. 2019. In vitro effectiveness of silver nanoparticles against root-knot nematode (Meloidogyne incognita). Pakistan Journal of Zoology 51: 2077−2083. DOI: http://dx.doi.org/10.17582/journal.pjz/2019.51.6.2077.2083
Osman S.A., Salama D.M., Abd El-Aziz M.E., Shaaban E.A., Abd Elwahed M.S. 2020. The influence of MoO3-NPs on agro-morphological criteria, genomic stability of DNA, biochemical assay, and production of common dry bean (Phaseolus vulgaris L.). Plant Physiology and Biochemistry 151: 77−87. DOI: https://doi.org/10.1016/j.plaphy.2020.03.009.
Pirtarighat S., Ghannadnia M., Baghshahi S. 2019. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry 9: 1−9. DOI: https://doi.org/10.1007/s40097-018-0291-4
Prasad T., Elumalai E. 2011. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine 1: 439−442. DOI: https://doi.org/10.1016/S2221-1691(11)60096-8
Salama H.M.H. 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology 3: 190−197. DOI: http://www.interesjournals.org/IRJOB
Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology 167: 2225−2233. DOI: https://doi.org/10.1007/s12010-012-9759-8
Sharon M., Choudhary A.K., Kumar R. 2010. Nanotechnology in agricultural diseases and food safety. The Journal of Phytology 2: 83−92.
Singleton L.L., Mihail J.D., Rush C.M. 1993. Methods for research on soilborne phytopathogenic fungi 85 (1): 140–141. DOI: http://doi.org/10.2307/3760494
Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. 2013. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8: e6875. DOI: https://doi.org/10.1371/journal.pone.0068752
Wrather J.A., Anderson T.R., Arsyad D.M., Tan Y., Ploper L.D., Puglia A.P. 2011. Soyabean disease loss estimates for the top 10 soybean producing countries. Canadian Journal of Plant Pathology 23: 115−121. DOI: https://doi.org/10.1094/PDIS.1997.81.1.107

Date

2021.12.30

Type

Article

Identifier

DOI: 10.24425/jppr.2021.139248
×