Details

Title

Topology algorithm built as an automaton with flexible rules

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

5

Affiliation

Tajs-Zielińska, Katarzyna : Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland ; Bochenek, Bogdan : Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland

Authors

Keywords

topology optimization ; cellular automaton ; flexible update rules

Divisions of PAS

Nauki Techniczne

Coverage

e138813

Bibliography

  1.  M.P. Bendsoe, “Optimal shape design as a material distribution problem,” Struct. Optim., vol. 1, pp. 193–202, 1989.
  2.  O. Sigmund, “A 99 line topology optimization code written in MATLAB,” Struct. Multidiscip. Optim., vol. 21, pp. 120–127, 2001.
  3.  E. Andreassen, A. Clausen, M. Schvenels, B.S. Lazarov, and O. Sigmund, “Efficient topology optimization in Matlab using 88 lines of code,” Struct. Multidiscip. Optim., vol. 4, pp.  1–16, 2011.
  4.  K. Liu and A. Tovar, “An efficient 3D topology optimization code written in Matlab,” Struct. Multidiscip. Optim., vol.  50, pp. 1175–1196, 2014.
  5.  X.M. Xieand and G.P. Steven, Evolutionary Structural Optimization, Berlin: Springer, 1997.
  6.  Q.M. Querin, G.P. Steven, and Y.M. Xie, “Evolutionary structural optimization using a bi-directional algorithm,” Eng. Comput., vol. 15, pp. 1034–1048, 1998.
  7.  K. Nabaki, J. Shen, and X. Xuang, “Evolutionary topology optimization of continuum structures considering fatigue failure,” Mater. Des., vol. 166, pp.13, 2019.
  8.  C. Kane, F. Jouveand, and M. Schoenauer, “Structural topology optimization in linear and nonlinear elasticity using genetic algorithms” in Proc. 21st ASME Design Automatic Conference, 1995, pp.1‒8.
  9.  R. Balamurugan, C. Ramakrishnan, and N. Singh, “Performance evaluation of a two stage adaptive genetic algorithm in structural topology optimization,” Appl. Soft Comput., vol. 8, pp.  1607–1624, 2008.
  10.  H.S. Gebremedhen, D.E. Woldemichael, and F.M. Hashimi, “A firefly algorithm based hybrid method for structural topology optimization,” Adv. Model. Simul. Eng. Sci., vol. 7, no. 44, p. 20, 2020.
  11.  A.A. Jaafer, M. Al-Bazoon, and A.O. Dawood, “Structural topology design optimization using the binary bat algorithm,” Appl. Sci., vol. 10, no. 4, p. 1481, 2020.
  12.  D. Gaweł, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741–750, 2017.
  13.  S.Y. Chang and S.K.Youn, “Material cloud method for topology optimization,” Numer. Methods Eng., vol. 65, pp.  1585–1607, 2006.
  14.  H.A. Eschenauer, V.V. Kobelevand, and A. Schumacher, “Bubble method for topology and shape optimization of structures,” Struct. Optim., vol. 8, pp. 42–51, 1993.
  15.  M.Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng., vol. 192, pp. 227–246, 2003.
  16.  P. Wei, Z. Li, X. Li, and M.Y. Wang, “An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions,” Struct. Multidiscip. Optim., vol. 58, pp. 831–849, 2018.
  17.  E. Biyikliand and A.C. To, “Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in Matlab,” PLoSONE, vol. 10, pp. 1–23, 2015.
  18.  Y. Xian and D.W. Rosen, “A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model,” Struct. Multidiscip. Optim., vol. 62, pp. 19–39, 2020.
  19.  B. Xing and W.J. Gao, Innovative computational intelligence: a rough guide to 134 clever algorithms, Switzerland: Springer, 2014.
  20.  T. Tarczewski, L.J. Niewiara, and L.M. Grzesiak, “Artificial bee colony based state feedback position controller for PMSM servo-drive–the efficiency analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 997–1007, 2020.
  21.  Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 679–685, 2019.
  22.  A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C 0 separators for efficient isogeometric analysis simulations with direct solvers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907–917, 2018.
  23.  J. Von Neumann, Theory of self-reproducing automata, Urbana IL: University of Illinois Press, 1966.
  24.  S. Ulam, “Random processes and transformations,” in Proc. International Congress of Mathematics, 1952, vol. 2, pp. 85–87.
  25.  B. Chopard and M. Droz, “Cellular automata model for the diffusion equation,” J. Stat. Phys., vol. 64, pp. 859–892, 1991.
  26.  J.P. Crutchfield and J.E. Hanson, “Turbulent pattern bases for cellular automata,” Physica D, vol. 69, pp. 279–301, 1993.
  27.  Y. Zhao, S.A. Billings, and D. Coca, “Cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighborhoods,” Int. J. Model. Identif. Control, vol.  2, no. 6, pp. 119–25, 2009.
  28.  P. Rosin, A. Adamatzky, and X. Sun (eds.), Cellular Automata in Image Processing and Geometry, Switzerland: Springer International Publishing, 2014.
  29.  N. Inou, N. Shimotai, and T. Uesugi, “A cellular automaton generating topological structures,” in Proc. 2nd European Conference on Smart Structures and Materials, 1994, vol. 2361, pp. 47–50.
  30.  N. Inou, T. Uesugi, A. Iwasaki, and S. Ujihashi, “Self-organization of mechanical structure by cellular automata,” Key Eng. Mater., vol. 145‒149, pp. 1115–1120, 1998.
  31.  E. Kita and T. Toyoda, “Structural design using cellular automata,” Struct. Multidiscip. Optim., vol. 19, pp. 64–73, 2000.
  32.  P. Hajela and B. Kim, “On the use of energy minimization for CA based analysis in elasticity,” Struct. Multidiscip. Optim., vol. 23, pp. 24–33, 2001.
  33.  B. Tatting and Z. Gurdal, “Cellular automata for design of two-dimensional continuum structures,” in Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000, p. 10.
  34.  S. Missoum, Z. Gurdal, and S. Setoodeh, “Study of a new local update scheme for cellular automata in structural design,” Struct. Multidiscip.  Optim., vol. 29, pp. 103–112, 2005.
  35.  M.M. Abdalla and Z. Gurdal, “Structural design using cellular automata for eigenvalue problems,” Struct. Multidiscip.  Optim., vol. 19, pp. 64–73, 2004.
  36.  B. Hassani and M. Tavakkoli, “A multi-objective structural optimization using optimality criteria and cellular automata,” Asian J Civ. Eng. Build. Hous., vol. 8, pp. 77–88, 2007.
  37.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” in Proc. 8th World Congress on Struct. Multidiscip. Optim., 2009, p. 10.
  38.  J. Jia et al., “Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata,” Struct. Multidiscip. Optim.,vol. 62, pp. 757–770, 2020.
  39.  M. Afrousheh, J. Marzbanrad, and D. Gohlich, “Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm,” Struct. Multidiscip.  Optim., vol. 60, pp. 1021‒1034, 2019.
  40.  A. Tovar, N.M. Patel, and A.K. Kaushik, “Hybrid cellular automata: a biologically-inspired structural optimization technique,” in Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p.15.
  41.  A. Tovar, N.M. Patel, G.L. Niebur, M. Sen, and J.E. Renaud, “Topology optimization using a hybrid cellular automaton method with local control rules,” J. Mech. Des., vol. 128, pp. 1205–1216, 2006.
  42.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” Int. J. Pure Appl. Math., vol. 66, pp. 245–262, 2011.
  43.  B. Bochenek and K. Tajs-Zielinska, “Novel local rules of Cellular Automata applied to topology and size optimization,” Eng. Optim., vol. 44, pp. 23–35, 2012.
  44.  B. Bochenek and K. Tajs-Zielinska, “Topology optimization with efficient rules of cellular automata,” Eng. Comput., vol. 30, pp. 1086– 1106, 2013.
  45.  B. Bochenek and K. Tajs-Zielinska, “Minimal compliance topologies for maximal buckling load of columns,” Struct. Multidiscip.  Optim., vol. 51, pp. 1149–1157, 2015.
  46.  B. Bochenek and K. Tajs-Zielinska, “GOTICA – generation of optimal topologies by irregular cellular automata,” Struct. Multidiscip.  Optim., vol. 55, pp. 1989–2001, 2017.
  47.  M.P. Bendsoe and N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197–224, 1988.
  48.  J. Lim, C. You, and I. Dayyani, “Multi-objective topology optimization and structural analysis of periodic spaceframe structures,” Mater. Des., vol. 190, pp.16, 2020.
  49.  P. Gomes and R. Palacios, “Aerodynamic-driven topology optimization of compliant airfoils,” Struct. Multidiscip. Optim., vol. 62, pp. 2117– 2130, 2020.
  50.  J. Wu and J. Wu, “Revised level set-based method for topology optimization and its applications in bridge construction,” Open Civ. Eng. J., vol. 11, pp. 153–166, 2017.
  51.  A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  52.  L.L. Beghini, A. Beghini, N. Katz, W.F. Baker, and G.H. Paulino, “Connecting architecture and engineering through structural topology optimization,” Eng. Struct., vol. 59, pp. 716–726, 2014.
  53.  K. Tajs-Zielinska and B. Bochenek, “Topology optimization – engineering contribution to architectural design,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 245, pp.10, 2017.
  54.  F. Regazzoni, N. Parolini, and M. Verani, “Topology optimization of multiple anisotropic materials, with application to self-assembling diblock copolymers,” Comput. Methods Appl. Mech. Eng., vol. 338, pp. 562–596, 2018.
  55.  S. Das and A. Sutradhar, “Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems,” Mater. Des., vol. 193, pp.13, 2020.
  56.  M.P. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York: Springer, 2003.
  57.  O. Sigmund and K. Maute, “Topology optimization approaches,” Struct. Multidiscip. Optim., vol.48, pp. 1031–1055, 2013.
  58.  J.D. Deaton, and R.V. Grandhi, “A survey of structural and multidisciplinary continuum topology optimization: post 2000,” Struct. Multidiscip. Optim., vol. 49, pp. 1–38, 2014.
  59.  J. Liu et al., “Current and future trends in topology optimization for additive manufacturing,” Struct. Multidiscip.  Optim., vol. 57, pp. 2457– 2483, 2018.
  60.  M.A. Herfelt, P.N. Poulsen, and L.C. Hoang, “Strength-based topology optimization of plastic isotropic von Mises materials,” Struct. Multidiscip. Optim., vol.59, pp. 893–906, 2019.
  61.  B. Błachowski, P. Tauzowski, and J. Lógó, “Yield limited optimal topology design of elastoplastic structures,” Struct. Multidiscip.  Optim., vol.61, pp. 1953–1976, 2020.
  62.  L. Xia, F. Fritzen, and P. Breitkopf, “Evolutionary topology optimization of elastoplastic structures,” Struct. Multidiscip. Optim., vol. 55, pp. 569–581, 2017
  63.  B. Bochenek and M. Mazur, “A novel heuristic algorithm for minimum compliance optimization,” Eng. Trans., vol. 64, pp.  541–546, 2016.

Date

15.09.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.138813
×