Details

Title

Nanomechanics = biomechanics

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2009

Volume

vol. 57

Issue

No 1

Authors

Divisions of PAS

Nauki Techniczne

Coverage

47-53

Date

2009

Identifier

DOI: 10.2478/v10175-010-0104-5 ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2009; vol. 57; No 1; 47-53

References

Skubiszak L. (2007), Force is generated by elongation of the actin filament, FEBS J, 274. ; Kinosita K. (1998), F1-ATPase: a rotary motor made of a single molecule, J. Cell, 93, 1, 21. ; Yoshida M. (2001), ATP synthase-a marvellous rotary engine of the cell, Nat. Rev. Mol. Cell Biol, 2, 9, 669. ; Stryer L. (2002), Biochemistry. ; Huxley A. (1954), Structural changes in muscle during contraction, Nature, 173, 971. ; Huxley H. (1954), Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation, Nature, 173, 973. ; Small J. (1988), Myosin filaments on the move, Nature, 331, 568. ; Small J. (2005), The comings and goings of actin: coupling protrusion and retraction in cell motility, Curr. Opin Cell Biol, 17, 5, 517. ; Lewis A. (1992), Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, J. Cell Biol, 119, 5, 1219. ; Heath J. (1993), On the mechanisms of cortical actin flow and its role in cytoskeletal organisation of fibroblasts, Symp. Soc. Exp. Biol, 47, 35. ; Shaevitz J. (2008), Curvature and torsion in growing actin networks, Phys. Biol, 5, 2, 26006. ; Pedersen L. (2008), Assembly of primary cilia, Dev. Dyn, 237, 8, 1993. ; Rayment I. (1993), Structure of the actin-myosin complex and its implications for muscle contraction, Science, 261, 5117, 58. ; Rayment I. (1993), Three-dimensional structure of myosin subfragment-1: a molecular motor, Science, 261, 5117, 50. ; Uyeda T. (1996), The neck region of the myosin motor domain acts as a lever arm to generate movement, Proc. Natl Acad. Sci. USA, 93, 9, 4459. ; Skubiszak L. (2002), Myosin molecule packing within the vertebrate skeletal muscle thick filaments. A complete bipolar model, Acta Biochim. Pol, 49, 4, 829. ; Skubiszak L. (2006), Thin filament flexibility and its role in muscle contraction, Biophysics, 51, 5, 692. ; Geeves M. (2005), Molecular mechanism of actomyosin-based motility, Cell Mol. Life Sci, 62, 13, 1462. ; Dominguez R. (1998), Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state, Cell, 94, 5, 559. ; Houdusse A. (1999), Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head, Cell, 97, 4, 459. ; Risal D. (2004), Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding, Proc. Natl Acad. Sci. USA, 101, 24, 8930. ; Peskin C. (1993), Cellular motions and thermal fluctuations: the Brownian ratchet, Biophys J, 65, 1, 316. ; Pollard T. (2003), The cytoskeleton, cellular motility and the reductionist agenda, Nature, 422, 6933, 741. ; Pollard T. (2003), Cellular motility driven by assembly and disassembly of actin filaments, Cell, 112, 4, 453. ; Plastino J. (2005), The actin slingshot, Curr. Opin. Cell Biol, 17, 1, 62. ; Mogilner A. (2006), On the edge: modeling protrusion, Curr. Opin. Cell Biol, 18, 1, 32. ; Stossel T. (1984), Contribution of actin to the structure of the cytoplasmic matrix, J. Cell Biol, 99, 1, 15. ; Begg D. (1978), The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments, J. Cell Biol, 79, 3, 846. ; Soldati D. (2004), Toxoplasma as a novel system for motility, Curr. Opin. Cell Biol, 16, 1, 32. ; Ridley A. (1992), The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell, 70, 3, 389. ; Ridley A. (2001), Rho family proteins: coordinating cell responses, Trends Cell Biol, 11, 12, 471. ; Ridley A. (2001), Rho GTPases and cell migration, J. Cell Sci, 114, 15, 2713. ; Papakonstanti E. (2008), Cell responses regulated by early reorganization of actin cytoskeleton, FEBS Lett, 582, 14, 2120. ; Cameron L. (2001), Dendritic organization of actin comet tails, Curr. Biol, 11, 2, 130. ; Kuo S. (2000), Steps and fluctuations of Listeria monocytogenes during actin-based motility, Nature, 407, 6807, 1026. ; Even-Ram S. (2005), Cell migration in 3D matrix, Curr. Opin. Cell Biol, 17, 5, 524. ; Bindschadler M. (2004), Formin' new ideas about actin filament generation, Proc. Natl Acad. Sci. U S A, 101, 41, 14685. ; Bindschadler M. (2004), A mechanistic model of the actin cycle, Biophys. J, 86, 5, 2720. ; Skubiszak L. (1985), Participation of the individual overmolecular muscular cell in movement, VII State Scientific Conf. Biocybernetics and Biomedical Engineering, 1, 122. ; Skubiszak L. (1989), Force generation in muscle. Organization in working structures of muscle, Lect. Not. ICB Sem, 5, 237. ; Skubiszak L. (2005), On muscle contraction mechanism, Lecture Notes Modelling in Biomechanics, 19, 537. ; <a target="_blank" href='http://sarcomere.ibib.waw.pl'>http://sarcomere.ibib.waw.pl</a>
×