TY - JOUR N2 - Nanoparticles are very fascinating area of science not only due to their unique properties but also possibility of producing new more complex materials, which may find an application in modern chemistry, engineering and medicine. In process of nanoparticles formation very important aspect is a rate of individual stage i.e. reduction, nucleation and autocatalytic growth, because this knowledge allows for proper materials design, morphology manipulation, stability. The last one aspect can be realized using proper electrostatic, steric and electrosteric stabilization. However until now nobody reports and measures kinetic rates of all stages during process of particles formation in the presence of steric stabilizers. Thus, the main contribution of this paper is determination of individual rate constants for nanoparticles formation in the presence of steric stabilizers and their comparison to the system without stabilizer. For this purpose, an aqueous solution of Au(III) and Pt(IV) ions were mixed with steric stabilizers like PVA and PVP, and reduced using L-ascorbic acid as a mild and sodium borohydride as a strong reductant. As a results stable nanoparticles were formed and process of their formation was registered spectrophotometrically. From obtained kinetic curves the values of observed rate constants for reduction metal ions, slow nucleation and fast autocatalytic growth were determined using Watzky-Finke model. It was found that the addition of polymer affects the rate of the individual stages. The addition of steric stabilizers to gold ions reduced with L-ascorbic acid causes that the process of nucleation and autocatalytic growth slows down and the value of observed rate constants for nucleation changes from 3.79·10–3 (without polymer) to 7.15·10–5s–1 (with PVA) and for growth changes from 1.15·103 (without polymer) to 0.48·102s–1M–1 (with PVA). However, the rate of the reduction reaction of Au(III) ions is practically unchanged. In case of using strong reductant the addition of polymer effects on the shape of kinetic curve for reduction of Au(III) and it suggests that mechanism is changed. In case of Pt(IV) ions reduction with L-ascorbic acid, the process speeds up a little when PVA was added. Determined values of observed rate constants for nucleation and growth platinum nanoparticles decrease twice comparing to the system without polymer. The reduction of Pt(IV) ions with sodium borohydride accelerates when PVP was added and slows down when PVA was used. Moreover, the size of obtained colloidal gold and platinum was also analysed using DLS method. Obtained results (rate constants) may be useful in the process of nanomaterials synthesis, in particular in microflow. L1 - http://www.czasopisma.pan.pl/Content/110131/PDF/AMM-2019-1-09-Luty.pdf L2 - http://www.czasopisma.pan.pl/Content/110131 PY - 2019 IS - No 1 EP - 63 DO - 10.24425/amm.2019.126218 KW - gold KW - platinum KW - nanoparticles KW - kinetic KW - nucleation growth KW - steric stabilization A1 - Luty-Błocho, M. PB - Institute of Metallurgy and Materials Science of Polish Academy of Sciences PB - Committee of Materials Engineering and Metallurgy of Polish Academy of Sciences VL - vol. 64 DA - 2019.03.14 T1 - The influence of steric stabilization on process of Au, Pt nanoparticles formation SP - 55 UR - http://www.czasopisma.pan.pl/dlibra/publication/edition/110131 T2 - Archives of Metallurgy and Materials ER -