Applied sciences

Archives of Metallurgy and Materials

Content

Archives of Metallurgy and Materials | 2021 | vol. 66 | No 3

Download PDF Download RIS Download Bibtex

Abstract

In order to the long-term stability of DSE for electroplating process, the lifetime equations were calculated from the results of the accelerated life testing, and the lifetime of DSE was predicted. The nano-embossing pre-treatment led to 2.65 times in the lifetime of DSE. The degradation mechanism of DSE with a thick metal oxide layer for applied highly current density process condition was identified. The improvement of durability of DSE seems to be closely related to adhesion between titanium plate and mixed metal oxide layer.
Go to article

Bibliography

[1] S.R. Park, J.S. Park, J. Korean Electrochem. Soc. 23, 1 (2020).
[2] J.E. Park, H. Kim, E.S. Lee, Materials 13, 1969 (2020).
[3] A.N.S. Rao , V. T. Venkatarangaiah, Environ. Sci. Pollut. Res. 21, 3197 (2014).
[4] J.Y. Lee, D.K. Kang, K.H. Lee, D.Y. Chang, Mater. Sci. Appl. 2, 237(2011).
[5] S.H. Son, S.C. Park, M.S. Lee, Arch. Metall. Mater. 62, 1019 (2017).
[6] Z. Yan, Y. Zhao, Z. Zhang, G. Li, H. Li, J. Wang, Z. Feng, M. Tang, X. Yuan, R. Zhang, Y. Du, Electrochimica Acta 157, 345 (2015).
[7] D.S. Kim, Y.S. Park, Electrode. J. Environ. Sci. Int. 27, 467 (2018).
[8] S.C. Park , Y.B. Park, J. Electron. Mater. 37, 1565 (2008).
Go to article

Authors and Affiliations

Sung Cheol Park
1 2
ORCID: ORCID
Yeon Jae Jung
1
ORCID: ORCID
SeokBon Koo
1
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Seong Ho Son
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Advanced Functional Technology R&D Department, Incheon, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The objective of the present research is to develop new admixed lubricants which can be used for high-density sintered iron when processed using warm die and warm compaction. Depending on various lubricants, the effect of compaction temperature on the ejection behavior and sintered properties was studied. Lubricants were prepared by mixing of Zn-stearate and ethylene bis stearamide (EBS) in various compositions. The iron powders blended with lubricants were compacted under the pressure of 700 MPa at various temperatures. The green compacts were sintered at 1120°C for 30 min. Microstructure, density, hardness, and transverse rupture strength of sintered materials with different lubricants were investigated in detail.
Go to article

Bibliography

[1] Y.Y. Li, T.L. Nagi, D.T. Zhang, Y. Long, W. Xia, J. Mater. Process. Technol. 129, 354 (2002).
[2] N.G. Tupper, J.K. Elbaum, H.M. Burtle, JOM 30, 7 (1978).
[3] W. Kehl, M. Bugajska, H.F. Fischmeister, Powder Metall. 26, 221 (1983)
[4] G . Welsch, Y.-T. Lee, P.C. Eloff, D. Eylon, F.H. Froes, Metall. Trans. A 14, 761 (1983).
[5] G . Hammes, R. Schroeder, C. Binder, A.N. Klein, J.D.B. Mello, Tribol. Trans. 70, 119 (2014).
[6] S. Unami, Y. Ozaki, S. Uenosono, JFE Technical Report 4, 81 (2004).
[7] M.C. Oh, M. Kim, J. Lee, B. Ahn, Arch. Metall. Mater. 64, 539 (2019).
[8] Y. Huang, J. Mater. Sci. 48, 4484 (2013).
[9] G . Jiang, G.S. Daehn, J.J. Lannutti, Y. Fu, R.H. Wagoner, Acta Mater. 49, 1471 (2001).
[10] M.M. Rahman, S.S.M. Nor, A.K. Ariffin, Procedia Eng. 68, 425 (2013).
[11] M.C. Oh, H. Seok, H.-J. Kim, B. Ahn, Arch. Metall. Mater. 60, 1427 (2015)
Go to article

Authors and Affiliations

Min Chul Oh
1 2
ORCID: ORCID
Byungmin Ahn
1
ORCID: ORCID

  1. Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 WORLDCUP-RO, SUWON, Gyeonggi, 16499, Korea
  2. AI & Mechanical System Center, Institute for Advanced Engineering, 175-28 GOAN-RO 51 BEON-GIL, Yyongin, Gyeonggi, 17180, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of the addition of ZrO2 and Al2O3 ceramic powders to Cu-Mo-Cr alloy was studied by examining the physical properties of the composite material. The ceramic additives were selected based on the thermodynamic stability calculation of the Cu-Mo-Cr alloys. Elemental powders, in the ratio Cu:Mo:Cr = 60:30:10 (wt.%), and approximately 0-1.2 wt.% of ZrO2 and Al2O3 were mixed, and a green compact was formed by pressing the mixture under 186 MPa pressure and sintering at 1250°C for 5 h. The raw powders were evenly dispersed in the mixed powder, as observed by scanning electron microscopy. After sintering, the microstructures, densities, electrical conductivities, and hardness of the composites were evaluated. We found that the addition of ZrO2 and Al2O3 increased the hardness and decreased the electrical conductivity and density of the composites.
Go to article

Bibliography

[1] W.P. Li, R.L. Thomas, R.K. Smith, IEEE Trans. Plasma Sci. 29 (5), 744-748 (2001).
[2] X. Wei, J. Wang, Z. Yang, Z. Sun, D. Yu, X. Song, B. Ding, S. Yang, J. Alloys Compd. 509, 7116-7120 (2011).
[3] H . Fink, D. Gentsch, M. Heimbach, IEEE Trans. Plasma Sci. 31, 973-976 (2003).
[4] K. Maiti, M. Zinzuwadia, J. Nemade, J. Adv. Mat. Res. 585, 250- 254 (2012).
[5] C. Zhang, Z. Yang, Y. Wang, J. Mater. Process. Technol. 178, 283-286 (2006).
[6] C. Aguilar, D. Guzman, F. Castro, V. Martínez, F. de Las Cuevas, S. Lascano, T. Muthiah, Mater. Chem. Phys. 146, 493- 502 (2014).
[7] M . Venkatraman, J.P. Neumann, Bull. Alloy Phase Diagr. 8, 216- 220 (1987).
[8] X. Yang, S. Liang, X. Wang, P. Xiao, Z. Fan, Int. J. Refract. Met. 28, 305-311 (2010).
[9] S. Bera, I. Manna, Mater. Chem. Phys. 132, 109-118 (2012).
[10] A. Kumar, S.K. Pradhan, K. Jayasankar, M. Debata, R.K. Sharma, A. Mandal, J. Electron. Mater. 46, 1339-1347 (2017).
[11] D . Shen, Y. Zhu, W. Tong, An investigation on morphology and structure of Cu-Cr-Al2O3 powders prepared by mechanical milling, in: M. Wang, X. Zhou (Eds.), Proceedings of the 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Atlantis Press (2017).
[12] C. Cui, Y. Gao, S. Wei, High Temp. Mater. Proc. 36, 163- 166 (2016). DOI: https://doi.org/10.1515/htmp-2015-0180
[13] S. Bera, W. Lojkowsky, I. Manna, Metall. Mater. Trans. A. 40, 3276 (2009). DOI: https://doi.org/10.1007/s11661-009-0019-7
[14] J. Zygmuntowicz, A. Łukasiak, P. Piotrkiewicz, W. Kaszuwara, Compos. Theory Pract. 19, 43-49 (2019).
[15] S.D. Salman, Z.B. Lemon, Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. 249-263 (2018). DOI : https://doi.org/10.1016/B978-0-08-102160-6.00013-5
[16] M . Elmahdy, G. Abouelmagd, A.A. Elnaeem Mazen, J. Mat. Res. 21, 1 (2018).
[17] M . Wang, N. Pan. J. Mater. Sci. Eng. R Rep. 63, 1-30 (2008).
[18] J. Kovác̆ik, Scripta Mater. 39, 153-157 (1998). DOI : https://doi.org/10.1016/S1359-6462(98)00147-X
[19] M. Orolinova, J. Ďurišin, K. Ďurišinová, Z. Danková, M. Besterci, Kovove Mater. 53, 409-414 (2015). DOI : https://doi.org/10.4149/km_2015_6_409
[20] Z.-Q. Wang, Y.-B. Zhong, X.-J. Rao, C. Wang, J. Wang, Z.- G. Zhang, W.-L. Ren, Z-M. Ren, Trans. Nonferrous Met. Soc. China 22, 1106-1111 (2012).
[21] J. Zygmuntowicz, J. Los, B. Kurowski, P. Piotrkiewicz, W. Kaszuwara, Adv. Compos. Hybrid Mater. 1-11 (2020). DOI : https://doi.org/10.1007/s42114-020-00188-8
Go to article

Authors and Affiliations

Yeong-Woo Cho
1 2
ORCID: ORCID
Jae-Jin Sim
1 2
ORCID: ORCID
Sung-Gue Heo
1 3
ORCID: ORCID
Hyun-Chul Kim
1 3
Yong-Kwan Lee
1 2
ORCID: ORCID
Jong-Soo Byeon
1 2
ORCID: ORCID
Yong-Tak Lee
1 2
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Seok-Jun Seo
1
ORCID: ORCID
Kyoung-Tae Park
1
ORCID: ORCID

  1. Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-50 Songdo-dong Yeonsoo-gu, Incheon 21999, Korea
  2. Inha University, Department of Advanced Materials Engineering, Incheon 22212, Korea
  3. Korea University, Department of Materials Science and Engineering, Seoul 02841, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, we propose a cooling structure manufactured using a specialized three-dimensional (3D) printing design method. A cooling performance test system with complex geometry that used a thermoelectric module was manufactured using metal 3D printing. A test model was constructed by applying additive manufacturing simulation and computational fluid analysis techniques, and the correlation between each element and cooling efficiency was examined. In this study, the evaluation was conducted using a thermoelectric module base cooling efficiency measurement system. The contents were compared and analyzed by predicting the manufacturing possibility and cooling efficiency, through additive manufacturing simulation and computational fluid analysis techniques, respectively.
Go to article

Bibliography

[1] M .K. Thompson et al, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Annuals 65, 737-760 (2016).
[2] M . Kumke, H. Watschke, T. Vietor, A new methodological framework for design for additive manufacturing, Virtual and Physical Prototyping 11, 3-19 (2016).
[3] L. Frizziero and et al., Design for Additive Manufacturing and Advanced Development Methods Applied to an Innovative Multifunctional Fan, Additive Manufacturing: Breakthoughs in Research and Practic 34 (2020).
[4] F .F. Wang, E. Parker, 3D printed micro-channel heat sink design considerations, 2016 International Symposium on 3D Power Electronics Integration and Manufacturing 16320350 (2016).
[5] Chunlei Wan and et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dischalcogenide TiS2, Nature Materials 14, 622-627 (2015).
[6] M . Helou, S. Kara, Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing 31, 243-261 (2018).
[7] C. Dimitrios et al., Design for additive manufacturing (DfAM) of hot stamping dies with improved cooling performance under cyclic loading conditions, Additive Manufacturing 18, 101720 (2020).
[8] D. Yong et al., Thermoelectric materials and devices fabricated by additive manufacturing, Vacuum 178, 109384 (2020).
[9] S. Ning et al., 3D-printing of shape-controllable thermoelectric devices with enhanced output performance, Energy 195, 116892 (2020).
[10] S. Emrecan et al., Thermo-mechanical simulations of selective laser melting for AlSi10Mg alloy to predict the part-scale deformations, Progress in Additive Manufacturing 465-478 (2019).
Go to article

Authors and Affiliations

Yeong-Jin Woo
1 2
ORCID: ORCID
Dong-Ho Nam
1
ORCID: ORCID
Seok-Rok Lee
1
ORCID: ORCID
Eun-Ah Kim
1
ORCID: ORCID
Woo-Jin Lee
1
ORCID: ORCID
Dong-Yeol Yang
1
ORCID: ORCID
Ji-Hun Yu
1
ORCID: ORCID
Yong-Ho Park
2
ORCID: ORCID
Hak-Sung Lee
1
ORCID: ORCID

  1. Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
  2. Pusan National University, Busan, 46241, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Influence of Si addition on oxide layer growth of Al-6 mass%Mg alloys in molten state was investigated in this study. After melt holding for 24 h, the melt surface of only Si-free alloy became significantly bumpy, while no considerably oxidized surface was observed even with 1 mass%Si addition. There was no visible change on the appearance of melt surfaces with increasing Si content. As a result of compositional analysis on the melt samples between before and after melt holding, the Si-added alloys nearly maintained their Mg contents even after the melt holding for 24 h. On the other hand, the Mg content in the Si-free alloy showed a great reduction. The bumpy surface on Si-free alloy melt showed a large amount of pores and oxide clusters in its cross-section, while the Si-added alloy had no significantly grown oxide clusters on the surfaces. As a result of compositional analysis on the surfaces, the oxide clusters in Si-free alloy contained a great amount of Mg and oxygen. The oxide layer on the Si-added alloy was divided into Mg-rich and Mg-poor areas and contained certain amounts of Si. Such a mixed oxide layer containing Si would act as a protective layer during the melt holding for a long duration.
Go to article

Bibliography

[1] J.R. Davis, ASM International, Aluminum and Aluminum Alloys, Materials Park 1993.
[2] G . Wu, K. Dash, M.L. Galano, K.A.Q. O’Reilly, Corros. Sci. 155, 97 (2019).
[3] B.H. Kim, S.H. Ha, Y.O. Yoon, H.K. Lim, S.K. Kim, D.H. Kim, Mater. Lett. 228, 108 (2018).
[4] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Sci. Adv. Mater. 10, 697 (2018).
[5] D . Ajmera, E. Panda, Corros. Sci. 102, 425 (2016).
[6] N. Smith, A. Kvithyld, G. Tranell, Metall. Mater. Trans. B 49, 2846 (2018).
[7] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Int. J. Metalcast. 13, 121 (2019).
[8] J. Jeong, J. Im, K. Song, M. Kwon, S.K. Kim, Y.B. Kang, S.H. Oh, Acta Mater. 61, 3267 (2013).
[9] F . Zarei, H. Nuranian, K. Shirvani, Surf. Coat. Technol. 394, 125901 (2020).
[10] Y.L. Zhang, J. Li, Y.Y. Zhang, D.N. Kang, J. Alloys Compd. 827, 154131 (2020).
[11] W. Kai, P.C. Kao, P.C. Lin, I.F. Ren, J.S.C. Jang, Intermetallics 18, 1994 (2010).
[12] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, S.K. Kim, Sci. Adv. Mater. 10, 694 (2018).
[13] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, Calphad 54, 35 (2016).
Go to article

Authors and Affiliations

Young-Ok Yoon
1
ORCID: ORCID
Seong-Ho Ha
1
ORCID: ORCID
Abdul Wahid Shah
1
ORCID: ORCID
Bong-Hwan Kim
1
ORCID: ORCID
Hyun-Kyu Lim
1
ORCID: ORCID
Shae K. Kim
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology (KITECH), Advanced Materials and Process R&D Department, Incheon 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Effect of Cu addition on oxide growth of Al-7 mass%Mg alloy at high temperature was investigated. As-cast microstructures of Al-7 mass%Mg and Al-7 mass%Mg-1 mass%Cu alloys showed α-Al dendrites and area of secondary particles. The 1 mass%Cu addition into Al-7 mass%Mg alloy formed Mg32(Al, Cu)49 ternary phase with β-Al3Mg2. The total fraction of two Mg-containing phases in Cu-added alloy was higher than the β-Al3Mg2 fraction in Cu-free alloy. From measured weight gains depending on time at 500°C under an air atmosphere, it was shown that all samples exhibited significant weight gains depending on time. Al-7mass%Mg-1mass%Cu alloy showed the relatively increased oxidation rate when compared with Cu-free alloy. All the oxidized cross-sections throughout the entire oxidation time showed coarse and dark areas regarded as oxides grown from the surface to inside, but bigger oxidized areas were formed in the Al-7mass%Mg-1mass%Cu alloy containing higher fraction of Mg-based phases in the as-cast microstructure. As a result of compositional analysis on the oxide clusters, it was found that the oxide clusters contained Mg-based oxides formed through internal oxidation during a long time exposure to oxidizing environments.
Go to article

Bibliography

[1] J.R. Davis, ASM International, Aluminum and Aluminum Alloys, Materials Park 1993.
[2] H. Watanabe, K. Ohori, Y. Takeuchi, Trans. Iron Steel Inst. Jpn. 27, 730 (1987).
[3] J.L. García-Hernández, C.G. Garay-Reyes, I.K. Gómez-Barraza, M.A. Ruiz-Esparza-Rodríguez, E.J. Gutiérrez-Castañeda, I. Estrada-Guel, M.C. Maldonado-Orozco, R. Martínez-Sánchez, J. Mater. Res. Technol. 8 (6), 5471 (2019).
[4] M . Mihara, C.D. Marioara, S.J. Andersen, R. Holmestad, E. Kobayashi, T. Sato, Mater. Sci. Eng. A, 658, 91 (2016).
[5] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Int. J. Metalcast. 13, 121 (2019).
[6] G. Wu, K. Dash, M.L. Galano, K.A.Q. O’Reilly, Corros. Sci. 155, 97 (2019).
[7] B.H. Kim, S.H. Ha, Y.O. Yoon, H.K. Lim, S.K. Kim, D.H. Kim, Mater. Lett. 228, 108 (2018).
[8] H. Okamoto, J. Phase Equilibria 19, 598 (1998).
[9] T.S. Parel, S.C. Wang, M. J. Starink, Mater. Des. 31, S2 (2010).
[10] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, Calphad 54, 35 (2016).
[11] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Sci. Adv. Mater. 10, 697 (2018).
[12] D . Ajmera, E. Panda, Corros. Sci. 102, 425 (2016).
Go to article

Authors and Affiliations

Seong-Ho Ha
1
ORCID: ORCID
Abdul Wahid Shah
1
ORCID: ORCID
Bong-Hwan Kim
1
ORCID: ORCID
Young-Ok Yoon
1
ORCID: ORCID
Hyun-Kyu Lim
1
ORCID: ORCID
Shae K. Kim
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology (KITECH), Advanced Materials and Process R&D Department, Incheon 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this work, we have designed a new high entropy alloy containing lightweight elements, e.g., Al, Fe, Mn, Ti, Cu, Si by high energy ball milling and spark plasma sintering. The composition of Si was kept at 0.75 at% in this study. The results showed that the produced AlCuFeMnTiSi0.75 high entropy alloy was BCC structured. The evolution of BCC1 and BCC2 phases was observed with increasing the milling time up to 60 h. The spark plasma sintering treatment of milled compacts from 650-950°C showed the phase separation of BCC into BCC1 and BCC2. The density and strength of these developed high entropy alloys (95-98%, and 1000 HV) improved with milling time and were maximum at 850°C sintering temperature. The current work demonstrated desirable possibilities of Al-Si based high entropy alloys for substitution of traditional cast components at intermediate temperature applications.
Go to article

Bibliography

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
[2] B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, 1st edn. Butterworth-Heinemann, Oxford 2014.
[3] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004).
[4] B. Cantor, Entropy 16, 4749 (2014). [5] W. Li, S. Cui, J. Han, C. Xu, Rare Met. 25, 133 (2006).
[6] A. Kumar, M. Gupta, Metals 6 (9), 199 (2016)
[7] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett. 3, 95 (2014).
[8] K. Tseng, Y. Yang, C. Juan, T. Chin, C. Tsai, J. Yeh, Sci China Technol Sci. 61, 184 (2018).
[9] A. Sharma, D.U. Lim, J.P. Jung, Mater. Sci. Technol. 32 (8), 773 (2016).
[10] J.J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, J. Alloy. Compd. 760, 15 (2018).
[11] J.M. Torralba, P. Alvaredo, A.G. Junceda, Powder Met. 63, 227 (2020).
[12] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, (3rd ed.), New York, Prentice Hall, 2001.
[13] M.J. Chae, A. Sharma, M.C. Oh, B. Ahn, Met. Mater. Int. 27, 629 (2021).
[14] A. Sharma, M.C. Oh, B. Ahn, Mater. Sci. Eng. A 797, 140066 (2020).
[15] J.M. Sanchez, I. Vicario, J. Albizuri, T. Guraya, E.M. Acuña, Sci Rep. 9, 6792 (2019).
[16] A. Kumar, P. Dekhne, A.K. Swarnakar, M. Chopkar, Mater. Res. Exp. 6, 026532 (2019).
Go to article

Authors and Affiliations

Minsu Kim
1
Ashutosh Sharma
1
ORCID: ORCID
Myoung Jin Chae
1
Hansung Lee
1
ORCID: ORCID
Byungmin Ahn
1
ORCID: ORCID

  1. Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-ro, Suwon-si, Gyeonggi, 16499, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, we demonstrated a method of controllably synthesizing one-dimensional nanostructures having a dense or a hollow structure using fibrous sacrificial templates with tunable crystallinity. The fibrous Ga2O3 templates were prepared by calcining the polymer/gallium precursor nanofiber synthesized by an electrospinning process, and their crystallinity was varied by controlling the calcination temperature from 500oC to 900oC. GaN nanostructures were transformed by nitriding the Ga2O3 nanofibers using NH3 gas. All of the transformed GaN nanostructures maintained a one-dimensional structure well and exhibited a diameter of about 50 nm, but their morphology was clearly distinguished according to the crystallinity of the templates. When the templates having a relatively low crystallinity were used, the transformed GaN showed a hollow nanostructure, and as the crystallinity increased, GaN was converted into a denser nanostructure. This morphological difference can be explained as being caused by the difference in the diffusion rate of Ga depending on the crystallinity of Ga2O3 during the conversion from Ga2O3 to GaN. It is expected that this technique will make possible the tubular nanostructure synthesis of nitride functional nanomaterials.
Go to article

Bibliography

[1] X. Yia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003).
[2] L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009).
[3] C.M. Hangarter, Y.‐I. Lee, S.C. Hernandez, Y.‐H. Choa, N.V. Myung, Angew. Chem. Int. Ed. 49, 7081 (2010).
[4] W. Han, S. Fan, Q.Q. Li, Y.D. Hu, Science 277, 1287 (1997).
[5] J .C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Nat. Mater. 1, 106 (2002).
[6] X. Zhang, Q. Liu, B. Liu, W. Yang, J. Li, P. Niu, X. Jiang, J. Mater. Chem. C 5, 4319 (2017).
[7] H. Wu, Y. Sun, D. Lin, R. Zhang, C. Zhang, W, Pan, Adv. Mater. 21, 227 (2009).
[8] F . Lu, L. Liu, J. Tian, Appl. Surf. Sci. 497, 143791 (2019).
[9] S.W. Eaton, A. Fu, A.B. Wong, C.-Z. Ning, P. Yang, Nat. Rev. Mater. 1, 16028 (2016).
[10] J . Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119, 5298 (2019)
[11] G .-D. Lim, J.-H. Yoo, M. Ji, Y.-I. Lee, J. Alloys Compd. 806, 1060 (2019).
[12] J . Xue, J. Xie, W. Liu, Y. Xia, Acc. Chem. Res. 50, 1976 (2017).
[13] Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 15, 641 (2003).
[14] F . Caruso, R. A. Caruso, H. Mohwald, Science 282, 1111 (1998).
[15] Y.-I. Lee, Mater. Chem. Phys. 180, 104 (2016).
Go to article

Authors and Affiliations

Yun Taek Ko
1
ORCID: ORCID
Mijeong Park
2
ORCID: ORCID
Jingyeong Park
1
ORCID: ORCID
Jaeyun Moon
3
ORCID: ORCID
Yong-Ho Choa
1
ORCID: ORCID
Young-In Lee
2
ORCID: ORCID

  1. Hanyang University, Dept. of Advanced Materials Science and Engineering, Ansan 15588, Republic of Korea
  2. Seoul National University of Science and Technology, Dept. of Materials Science and Engineering, Seoul 01811, Republic of Korea
  3. University of Nevada , Dept. of Mechanical Engineering, Las Vegas, 4505 S. Maryland PKWY Las Vegas, Nv 89154, United States
Download PDF Download RIS Download Bibtex

Abstract

This study fabricated a WC/T-800 cermet coating layer with Co-Mo-Cr (T-800) powder and WC powder using laser cladding, and analyzed its microstructure, hardness and wear properties. For comparison, casted bulk T-800 was used. Laser cladded ­WC/T-800 cermet coating layer showed circular WC phases in the Co matrix, and dendritic laves phases. The average laves phase size in the cermet coating layer and bulk T-800 measured as 7.9 µm and 60.6 µm, respectively, indicating that the cermet coating layer had a relatively finer laves phase. Upon conducting a wear test, the cermet coating layer added with WC showed better wear resistance. In the case of laser cladded WC/T-800 cermet coating layer, abrasion wear was observed; on the contrary, the bulk T-800 showed pulled out laves phases. Based on the above findings, the WC/T-800 cermet coating layer using laser cladding and the relationship between its microstructure and wear behavior were discussed.
Go to article

Bibliography

[1] W. Xu, R. Liu, P.C. Patnaik, M.X. Yao, X.J. Wu, Mater. Sci. Eng. A. 452-453, 427-436 (2007).
[2] T. Sahraoui, H.I. Feraoun, N. Fenineche, G. Montavon, H. Aourag, C. Coddet, Mater. Lett. 58 (19), 2433-2436 (2004).
[3] J. Przybylowicz, J. Kusinski, Surf. Coat. Tech. 125 (1-3), 13-18 (2000).
[4] X.H. Zhang, C. Zhang, Y.D. Zhang, S. Salam, H.F. Wang, Z.G. Yang, Corros. Sci. 88, 405-415 (2014).
[5] M .X. Yao, J.B.C. Wu, R. Liu, Mater. Sci. Eng. A. 407 (1-2), 299- 305 (2005).
[6] H.J. Kim, B.H. Yoon, C.H. Lee, Wear 254 (5-6), 408-414 (2003).
[7] A. Scheid, A.S.C. M. d’Oliveira, Mater. Sci. Tech. 26 (12), 1487- 1493 (2010).
[8] T.H. Kang, K.S. Kim, S.H. Park, K.A. Lee, Korean J. Met. Mater. 56 (6), 423-429 (2005).
[9] J. Nurminen, J. Näkki, P. Vuoristo, Int. J. Refract. Met. H. 27 (2), 472-478 (2009).
[10] L. Sexton, S. Lavin, G. Byrne, A. Kennedy, J. Mater. Process. Tech. 122 (1), 63-68 (2002).
[11] L. Song, J. Mazumder, IEEE Trans. Control Syst. Technol. 19, 1349-1356 (2011).
[12] C. Navas, M. Cadenas, J.M. Cuetos, J. De. Damborenea, Wear 206 (7-8), 838-846 (2006).
[13] M .J. Tobar, J.M. Amado, C. Álvarez, A. García, A. Varela, A. Yáñez, Surf. Coat. Tech. 202 (11), 2297-2301 (2008).
[14] G . Muvvala, D. Karmakar, A.K. Nath, J. Allpy. Compd. 740, 545-558 (2018).
Go to article

Authors and Affiliations

Kyoung-Wook Kim
1
Young-Kyun Kim
1
ORCID: ORCID
Sun-Hong Park
2
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Dept. Mater. Sci. Eng., Incheon 22212, Republic of Korea
  2. POSCO Technical Research Laboratories, Gwangyang 57807, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

An artificial neural network (ANN) model was developed to predict the tensile properties of dual-phase steels in terms of alloying elements and microstructural factors. The developed ANN model was confirmed to be more reasonable than the multiple linear regression model to predict the tensile properties. In addition, the 3D contour maps and an average index of the relative importance calculated by the developed ANN model, demonstrated the importance of controlling microstructural factors to achieve the required tensile properties of the dual-phase steels. The ANN model is expected to be useful in understanding the complex relationship between alloying elements, microstructural factors, and tensile properties in dual-phase steels.
Go to article

Bibliography

[1] H.L. Kim, S.H. Bang, J.M. Choi, N.H. Tak, S.W. Lee, S.H. Park, Met. Mater. Int. 26, 1757-1765 (2020).
[2] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A 758, 56-59 (2019).
[3] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334-343 (2019).
[4] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[5] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A 711, 22-28 (2018).
[6] W . Bleck, S. Papaefthymiou, A. Frehn, Steel Res. Int. 75, 704-710 (2004).
[7] M .J Jang, H. Kwak, Y.W Lee, Y.J. Jeong, J. Choi, Y.H. Jo, W.M. Choi, H.J. Sung, E.Y. Yoon, S. Praveen, S. Lee, B.J. Lee, M.I. Abd El Aal, H.S. Kim, Met. Mater. Int. 25, 277-284 (2019).
[8] N. Saeidi, M. Jafari, J.G. Kim, F. Ashrafizadeh, H.S. Kim, Met. Mater. Int. 26, 168-178 (2020).
[9] M . Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882-890 (2020).
[10] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, Annual Rev. Mater. Res. 45, 391-431 (2015).
[11] D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957-2965 (2009).
[12] D.K. Mondal, R.M. Dey, Mater. Sci. Eng. A 149, 173-181 (1992).
[13] M . Sarwar, R. Priestner, J. Mater. Sci. 31, 2091-2095 (1996).
[14] B. Hwang, T. Cao, S.Y. Shin, S. Lee, S.J. Kim, Mater. Sci. Tech. 21, 967-975 (2005).
[15] F. Najafkhani, H. Mirzadeh, M. Zamani, Met. Mater. Int. 25, 1039-1046 (2019).
[16] J.I. Yoon, J. Jung, H.H. Lee, J.Y. Kim, H.S. Kim, Met. Mater. Int. 25, 1161-1169 (2019).
[17] H. Duan, Y. Li, G. He, J. Zhang, Int. J. Mod. Phys. B 23, 1191- 1196 (2009).
[18] S. Krajewski, J. Nowacki, Arch. Civ. Mech. Eng. 14, 278-286 (2014).
[19] N.S. Reddy, C.H. Park, Y.H. Lee, C.S. Lee, Mater. Sci. Tech. 24, 294-301 (2008).
[20] N.S. Reddy, Y.H. Lee, C.H. Park, C.S. Lee, Mater. Sci. Eng. A 492, 276-282 (2008).
[21] N.S. Reddy, B.B. Panigrahi, M.H. Choi, J.H. Kim, C.S. Lee, Comput. Mater. Sci. 107, 175-183 (2015).
[22] N.S. Reddy, J. Krishnaiah, S.G. Hong, J.S. Lee, Mater. Sci. Eng. A 508, 93-105 (2009).
[23] T. Dutta, S. Dey, S. Datta, D. Das, Comput. Mater. Sci. 157, 6-16 (2019).
[24] C. Lin, P.L. Nrayana, N.S. Reddy, S.W. Choi, J.T. Yeom, J.K Hong, C.H. Park, J. Mater. Sci. Tech. 35, 907-916 (2019).
[25] I .D. Jung, D.S. Shin, D. Kim, J. Lee, M.S. Lee, H.J. Son, N.S. Reddy, M. Kim, S.K. Moon, K.T. Kim, J. Yu, S. Kim, S.J. Park, H. Sung, Materialia 11, 100699 (2020).
[26] H.S. Lim, J.Y. Kim, B. Hwang, J. Korean. Soc. Heat Treat. 30, 106-112 (2017).
[27] S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370-379 (2012).
[28] Z. Jiang, Z. Guan, J. Lian, Mater. Sci. Eng. A 190, 55-64 (1995).
[29] P . Chang, A.G. Preban, Acta Metall. 33, 897-903 (1985).
[30] N.D. Beynon, S. Oliver, T.B. Jones, G. Fourlaris, Mater. Sci. Tech, 21, 771-778 (2005).
Go to article

Authors and Affiliations

Seung-Hyeok Shin
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, energetic behaviors of polyvinylidene fluoride (PVDF)-coated zirconium (Zr) powders were investigated using thermogravimetric analyzer-differential scanning calorimetry (TGA-DSC). PVDF-coated Zr powder had 1.5 times higher heat flow than ZrO2-passivated Zr powder. PVDF-coated Zr powder had a Zr-F compound formed on its surface by its strong chemical bond. This compound acted as an oxidation-protecting layer, providing an efficient combustion path to inner pure Zr particle while thermal oxidation was progressing at the same time. PVDF coating layers also made thermal reaction start at a lower temperature than ZrO2-passivated Zr powder. It was obtained that the surface PVDF coating layer evaporated at approximately 673 K, but the surface oxide layer fully reacted at approximately 923 K by DSC analysis. Hence, Zr powders showed enhanced energetic properties by the PVDF-coated process.
Go to article

Bibliography

[1] Y. Cao, H. Su, L. Ge, Y. Li, Y. Wang, L. Xie, B. Li, J. Hazard. Mater. 365, 413–420 (2019).
[2] K.R. Overdeep, H. Joress, L. Zhou, K.J.T. Livi, S.C. Barron, M.D. Grapes, K.S. Shanks, D.S. Dale, M.W. Tate, H.T. Philipp, S.M. Gruner, T.C. Hufnagel, T.P. Weihs, Combust. Flame. 191, 442–452 (2018).
[3] H. Nersisyan, B.U. Yoo, S.C. Kwon, D.Y. Kim, S.K. Han, J.H. Choi, J.H. Lee, Combust. Flame. 183, 22–29. (2017)
[4] K.R. Overdeep, K.J.T. Livi, D.J. Allen, N.G. Glumac, T.P. Weihs, Combust. Flame. 162, 2855-2864 (2015).
[5] D.W. Kim, K.T. Kim, G.H. Kwon, K. Song, I. Son, Sci. Rep. 9, 1-8 (2019).
[6] D.W. Kim, K.T. Kim, T.S. Min, K.J. Kim, S.H. Kim, Sci. Rep. 7, 1-9 (2017).
[7] K.T. Kim, D.W. Kim, C.K. Kim, Y.J. Choi, Mater. Lett. 167, 262- 265 (2016).
[8] J . Dai, D.M. Sullivan, M.L. Bruening, Ind. Eng. Chem. Res. 39, 3528-3535 (2000).
[9] C.A. Crouse, C.J. Pierce, J.E. Spowart, ACS Appl. Mater. Interfaces 2, 2560-2569 (2010).
[10] O . V. Kravchenko, K.N. Semenenko, B.M. Bulychev, K.B. Kalmykov, J. Alloys Compd. 397, 58-62 (2005).
[11] C.E. Bunker, M.J. Smith, K.A. Shiral Fernando, B.A. Harruff, W.K. Lewis, J.R. Gord, E.A. Guliants, D.K. Phelps, ACS Appl. Mater. Interfaces 2, 11-14 (2010).
[12] T. Otsuka, Y. Chujo, Polymer (Guildf) 50, 3174-3181 (2009).
[13] D. Dambournet, A. Demourgues, C. Martineau, S. Pechev, J. Lhoste, J. Majimel, A. Vimont, J.C. Lavalley, C. Legein, J.Y. Buzaré, F. Fayon, A. Tressaud, Chem. Mater. 20, 1459-1469 (2008).
[14] J . McCollum, M.L. Pantoya, S.T. Iacono, ACS Appl. Mater. Interfaces 7, 18742-18749 (2015).
[15] D.T. Osborne, M.L. Pantoya, Combust. Sci. Technol. 179, 1467- 1480 (2007).
Go to article

Authors and Affiliations

Won Young Heo
1
ORCID: ORCID
Sung Hwa Bae
2
ORCID: ORCID
Injoon Son
1
ORCID: ORCID

  1. Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu 41566, Republic of Korea
  2. Kyushu University, Department of Materials Process Engineering, Graduate School of Engineering, Fukuoka, Japan
Download PDF Download RIS Download Bibtex

Abstract

Ferrotitanium can be produced as a method of recycling Ti scraps. The eutectic composition of ferrotitanium, Fe29.5Ti70.5, can be obtained as a nanocrystalline phase due to relatively low melting point. Fe29.5Ti70.5 in which FeTi and β-Ti form a lamellar structure have high strength but low strain. To improve this, impurities were removed through hydrogen plasma arc melting (HPAM) and annealed. HPAM can remove substitutional/interstitial solid solutions. As a result, from 6733 ppm to 4573 ppm of initial impurities were removed by HPAM process. In addition, the strain was improved by spheroidizing and coarsening the lamellar structure through annealing. The effect of impurities removed through HPAM on the Young’s modulus, yield strength, and strain was observed.
Go to article

Bibliography

[1] J.M. Park, D.H. Kim, K.B. Kim, N. Mattern, J. Eckert, J. Mater. Res. 26, 365 (2011).
[2] M. Dao, L. Lu, R. Asaro, J.T. M. De Hosson, E. Ma, Acta Mater. 55, 4041 (2007).
[3] K . Bensadok, S. Benammar, F. Lapicque, G. Nezzal, J. Hazard. Mater. 152, 423 (2008).
[4] J. Chae, J.-M. Oh, S. Yoo, J.-W. Lim, Korean J. Met. Mater. 57, 569 (2019).
[5] J.-M. Oh, K.-M. Roh, J.-W. Lim, J. Hydrog. Energy 41, 23033 (2016).
[6] J.-M. Oh, B.-K. Lee, C.-Y. Suh, J.-W. Lim, J. Alloy. Compd. 574, 1 (2013).
[7] J.-W. Lim, G.-S. Choi, K. Mimura, M. Isshiki, Met. Mater. Int. 14, 539 (2008).
[8] K . Mimura, S.-W. Lee, M. Ishiki, J. Alloy. Compd. 211, 267 (1995).
[9] M.W. Chase Jr, W. Malcom, NIST-JANAF Thermochemical Table, 4th ed, J. Phys. Chem. Ref. Deta, Mohograph 9, 154, 1537, 1759, 1776 (1995).
[10] J. Das, K. Kim, F. Baier, W. Lӧser, J. Eckert, Appl. Phys. Lett. 87, 161907 (2005).
Go to article

Authors and Affiliations

Suhwan Yoo
1
Jung-Min Oh
1
Jaeyeol Yang
2
Jaesik Yoon
2
Jae-Won Lim
1

  1. Jeonbuk National University, Division of Advanced Materials Engineering, College of Engineering, Jeonju 54896, Republic of Korea
  2. Korea Basic Science Institute, Division of Earth and Environmental Science, Cheongju 28119, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Oxide-dispersion-strengthened high-entropy alloys were produced by hot-pressing a ball-milled mixture of Y2O3 and atomized CoCrFeMnNi powder. The effect of milling duration on grain size reduction, oxide formation behavior, and the resulting mechanical properties of the alloys was studied. Both the alloy powder size and Y2O3 particle size decreased with milling time. Moreover, the alloy powder experienced severe plastic deformation, dramatically generating crystalline defects. As a result, the grain size was reduced to ~16.746 nm and in-situ second phases (e.g., MnO2 and σ phase) were formed at the defects. This increased the hardness of the alloys up to a certain level, although excessive amounts of in-situ second phases had the reverse effect.
Go to article

Bibliography

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A. 375-377, 213-218 (2004).
[2] F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743-5755 (2013).
[3] G .T. Lee, J.W. Won, K.R. Lim, M. Kang, H.J. Kwon, Y.S. Na, Y.S. Choi, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00786-7
[4] J .H. Kim, Y.S. Na, Met. Mater. Int. 25, 296-303 (2019).
[5] Y.Z. Tian, Y. Bai, M.C. Chen, A. Shibata, D. Terada, N. Tsuji, Metall. Mater. Trans. A, 45, 5300-5304 (2014).
[6] R . Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Scr. Mater. 131, 1-5 (2017).
[7] Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, Mater. Charact. 126, 74-80 (2017).
[8] A. Siahsarani, F. Samadpour, M.H. Mortazavi, G. Faraji, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00828-0
[9] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 258-268 (2015).
[10] H . Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A. 676, 294-303 (2016).
[11] C.L. Chen, C.L. Huang, Met. Mater. Int. 19, 1047-1051 (2013).
[12] B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, R. Banerjee, Scr. Mater. 162, 477-481 (2019).
[13] L. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, I. Dlouhy, Scr. Mater. 157, 24-29 (2018).
[14] P. He, J. Hoffmann, A. Möslang, J. Nucl. Mater. 501, 381-387 (2018).
[15] J .M. Byun, S.W. Park, Y.D. Kim, Met. Mater. Int. 24, 1309-1314 (2018).
[16] A. Patra, S.K. Karak, S. Pal, IOP Cof. Ser. Mater. Sci. Eng. 75 (012032), 1-6 (2015).
[17] S. Nam, S.E. Shin, J.H. Kim, H. Choi, Met. Mater. Int. 26, 1385- 1393 (2020).
[18] N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, S. Al-Hamedi, Int. J. Nanomed. 6, 863-869 (2011).
[19] H . Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A. 676, 294-303 (2016).
[20] N. Park, B.-J. Lee, N. Tsuji, J. Alloys Compd. 719, 189-193 (2017).
[21] Q. Wang, Z. Li, S. Pang, X. Li, C. Dong, P. Liaw, Entropy 20, 878 (2018).
[22] V. Rajkovic, D. Božić, A. Devečerski, J. Serb. Che. Soc. 72, 45-53 (2007).
[23] S.K. Vajpai, R.K. Dube, P. Chatterjee, S. Sangal, Metall. Mater. Trans. A. 43, 2484-2499 (2012).
Go to article

Authors and Affiliations

Yongwook Song
1
ORCID: ORCID
Daeyoung Kim
1
ORCID: ORCID
Seungjin Nam
1
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Hyunjoo Choi
1
ORCID: ORCID

  1. Kookmin University, School of Materials Science and Engineering, Seoul, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Selective deposition was performed on a micrometer trench pattern using a microcontact printing (μCP) process. Alkanethiols required for selective deposition were analyzed according to the carbon chain by linear sweep voltammetry (LSV). According to the LSV analysis, the effect of inhibiting Cu deposition depending on the length of the carbon chain was observed. During the Cu electrodeposition, the trench could be filled without voids by additives (PEG, SPS, JGB) in the plating solution. A μCP process suppressing the deposition of the sample was used for selective Cu electrodeposition. However, there was oxidation and instability of the sample and 1-hexadecanethiol in air. To overcome these problems, the μCP method was performed in a glove box to achieve effective inhibition.
Go to article

Bibliography

[1] P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, Damascene copper electroplating for chip interconnections, IBM Journal of Research and Development 42 (1998) 567-574.
[2] S.-Y. Chang, C.-W. Lin, H.-H. Hsu, J.-H. Fang, S.-J. Lin, Integrated Electrochemical Deposition of Copper Metallization for Ultralarge-Scale Integrated Circuits, Journal of The Electrochemical Society 151, C81 (2004).
[3] M.J. Kim, Y. Seo, H.C. Kim, Y. Lee, S. Choe, Y.G. Kim, S.K. Cho, J.J. Kim, Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums, Electrochimica Acta 163, 174-181 (2015).
[4] V .S. Rao, C.T. Chong, D. Ho, D.M. Zhi, C.S. Choong, L.P.S. Sharon, D. Ismael, Y.Y. Liang, Development of High Density Fan Out Wafer Level Package (HD FOWLP) with Multi-layer Fine Pitch RDL for Mobile Applications, in: 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 1522-1529 (2016).
[5] F.I. Lizama-Tzec, L. Canché-Canul, G. Oskam, Electrodeposition of copper into trenches from a citrate plating bath, Electrochimica Acta, 56, 9391-9396 (2011).
[6] T.P. Moffat, J.E. Bonevich, W.H. Huber, A. Stanishevsky, D.R. Kelly, G.R. Stafford, D. Josell, Superconformal Electrodeposition of Copper in 500–90 nm Features, Journal of The Electrochemical Society 147, 4524 (2000).
[7] F.Q. Liu, T. Du, A. Duboust, S. Tsai, W.-Y. Hsu, Cu Planarization in Electrochemical Mechanical Planarization, Journal of The Electrochemical Society 153, C377 (2006).
[8] S. Deshpande, S.C. Kuiry, M. Klimov, Y. Obeng, S. Seal, Chemical Mechanical Planarization of Copper: Role of Oxidants and Inhibitors, Journal of The Electrochemical Society 151, G788 (2004).
[9] F.B. Kaufman, D.B. Thompson, R.E. Broadie, M.A. Jaso, W.L. Guthrie, D.J. Pearson, M.B. Small, Chemical‐Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects, Journal of The Electrochemical Society 13, 3460- 3465 (1991).
[10] N.B. Larsen, H. Biebuyck, E. Delamarche, B. Michel, Order in Microcontact Printed Self-Assembled Monolayers, Journal of the American Chemical Society 119, 3017-3026 (1997).
[11] S.H. Lee, W.-Y. Rho, S.J. Park, J. Kim, O.S. Kwon, B.-H. Jun, Multifunctional self-assembled monolayers via microcontact printing and degas-driven flow guided patterning, Scientific Reports 8, 16763 (2018).
[12] T.E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N.D. Spencer, H. Wolf, Diffusion of alkanethiols in PDMS and its implications on microcontact printing (μCP), Langmuir 21, 622-632 (2005).
[13] M. Hasegawa, Y. Negishi, T. Nakanishi, T. Osaka, Effects of additives on copper electrodeposition in submicrometer trenches, Journal of The Electrochemical Society 152, C221 (2005)
[14] M.H. Schoenfisch, J.E. Pemberton, Air Stability of Alkanethiol Self-Assembled Monolayers on Silver and Gold Surfaces, Journal of the American Chemical Society 120, 4502-4513 (1998).
[15] N.T. Flynn, T.N.T. Tran, M.J. Cima, R. Langer, Long-term stability of self-assembled monolayers in biological media, Langmuir 19, 10909-10915 (2003).
Go to article

Authors and Affiliations

Jinyong Shim
1
ORCID: ORCID
Jinhyun Lee
1
ORCID: ORCID
Bongyoung Yoo
1
ORCID: ORCID

  1. Hanyang University, Department of Material Science & Chemical Engineering, Ansan, Korea
Download PDF Download RIS Download Bibtex

Abstract

A novel process to recover lithium and manganese oxides from a cathode material (LiMn2O4) of spent lithium-ion battery was attempted using thermal reaction with hydrogen gas at elevated temperatures. A hydrogen gas as a reducing agent was used with LiMn2O4 powder and it was found that separation of Li2O and MnO was taken place at 1050°C. The powder after thermal process was washed away with distilled water and only lithium was dissolved in the water and manganese oxide powder left behind. It was noted that manganese oxide powder was found to be 98.20 wt.% and the lithium content in the solution was 1,928 ppm, respectively.
Go to article

Bibliography

[1] M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Lithium insertion into manganese spinels, Elsevier 18, 461-472 (1983).
[2] G . Nazri, G. Pistoia, Lithium batteries: science and Technology; Springer: New York City, United States, (2003).
[3] S .-Y. Sun, X. Song, Q.-H. Zhang, J. Wang, J.G . Yu, Adsorption 17 (5), 81 (2011).
[4] M.J. Ariza, D.J. Jones, J. Rozière, R. Chitrakar, K. Ooi, Chem. Mater. 18 (7), 1885 (2006).
[5] M.M. Thackeray, P.J. Johnson, L.A. de Picciotto, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 19 (2), 179 (1984).
[6] Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, Langmuir 8 (7), 1861-1867 (1992).
[7] Q.-H. Zhang, S.-P. Li, S.-Y. Sun, X.-S. Yin, J.G . Yu, Chem. Eng. Sci. 65 (1), 169-173 (2010).
[8] Q.-H. Zhang, S. Sun, S. Li, H. Jiang, J.-G. Yu, Chem. Eng. Sci. 62 (18-20) 4869-4874 (2007).
[9] Q. Feng, Y. Higashimoto, K. Kajiyoshi, K. Yanagisawa, J. Mater. Sci. Lett. 20 (3), 269-271 (2001).
[10] C . Özgür, Solid State Ionics 181 (31-32), 1425 (2010).
[11] L. Li, W. Qu, F. Liu, T. Zhao, X. Zhang, R. Chen, F. Wu, Appl. Surf. Sci. 315, 59 (2014).
[12] R . Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Chem. Lett. 41 (12), 1647 (2012).
[13] R . Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 40 (9), 2054 (2001).
[14] L. Liu, H. Zhang, Y. Zhang, D. Cao, X. Zhao, Colloids Surf. A: Physiochem. Eng. Aspects 468, 280 (2015).
[15] X. Shi, D. Zhou, Z. Zhang, L. Yu, H. Xu, B. Chen, X. Yang, Hydrometallurgy 110, (1-4), 99 (2011).
[16] R . Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 12 (10), 3151-3157 (2000).
[17] J.-L. Xiao, S.-Y. Sun, J. Wang, P. Li, J.-G. Yu, Ind. Eng. Chem. Res. 52 (34), 11967-11973 (2013).
[18] S .-Y. Sun, J.-L. Xiao, J. Wang, X. Song, J.-G. Yu, Ind. Eng. Chem. Res. 53 (40), 15517 (2014).
[19] R . Chitrakar, K. Sakane, A. Umeno, S. Kasaishi, N. Takagi, K. Ooi, J. Solid State Chem. 169 (1), 66 (2002).
[20] X. Yang, H. Kanoh, W. Tang, K. Ooi, J. Mater. Chem. 10 (8), 1903 (2000).
[21] K . Ooi, Y. Makita, A. Sonoda, R. Chitrakar, Y. Tasaki-Handa, T. Nakazato, Chem. Eng. J. 288, 137 (2016).
[22] H.-J. Hong, I.-S. Park, T. Ryu, J. Ryu, B.-G. Kim, K.-S. Chung, Chem. Eng. J. 234, 16 (2013).
[23] T . Ryu, Y. Haldorai, A. Rengaraj, J. Shin, H.-J. Hong, G.-W. Lee, Y.-K. Han, Y.S. Huh, K.-S. Chung, Ind. Eng. Chem. Res. 55 (26), 7218 (2016).
[24] K .S. Chung, J.C. Lee, E.J. Kim, K.C. Lee, Y.S. Kim, K. Ooi, Mater. Sci. Forum 449452, 277 (2004).
[25] Y . Miyai, K. Ooi, T. Nishimura, J. Kumamoto, Bull. Soc. Sea Water Sci., Jpn. 48 (6), 411 (1994).
[26] J.C. Hunter, J. Solid State Chem. 39, 142 (1981).
[27] X. Zeng, J. Li, N. Singh, Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology 44, 1129-1165 (2014).
[28] P. Zhang, et al., Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47, 259-271 (1998).
[29] J.G. Kang et al. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100, 168-171 (2010).
[30] M.J. Lain, Recycling of lithium ion cells and batteries. Journal of power sources, 97-98, 736-738 (2001).
[31] S .M Shin, et al., Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79, 172-181 (2005).
[32] A. Chagnes, B. Pospiech, A brief review on hydrometallurgical technologies for recycling spent lithium‐ion batteries. Chemical Technology and Biotechnology 88, 1191-1199 (2013).
[33] T .W Gwon, C.M. Yang, Y.G. Park, Y.G. Jho, B.H. Lim, Phase Transitions of LiMn2O4 on CO2 Decomposition, Korea Chemical Society 20, 33-44 (2003).
Go to article

Authors and Affiliations

Jei-Pil Wang
1

  1. Pukyong National University, Department of Metallurgical Engineering, Busan, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Rutile-TiO2 nanorod thin films were formed on Ti disks via alkali treatment in NaOH solutions followed by heat treatment at 700°C. Ag nanoparticles were loaded on nanorods using a photo-reduction method to improve the photocatalytic properties of the prepared specimen. The surface characterization and the photo-electrochemical properties of the Ag-loaded TiO2 nanorods were investigated using a field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and electrochemical impedance spectroscopy (EIS). The TiO2 nanorods obtained after the heat treatment were 80 to 180 nm thick and 1 μm long. The thickness of the nanorods increased with the NaOH concentration. The UV-Vis spectra exhibit a shift in the absorption edge of the Ag-loaded TiO2 to the visible light range and further narrowing of the bandgap. The decrease in the size of the capacitive loops in the EIS spectra showed that the Ag loading effectively improved the photocatalytic activity of the TiO2 nanorods.
Go to article

Bibliography

[1] Z. Sun, J.H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y.M. Kang, S.X. Dou, J. Am. Chem. Soc. 133, 19314 (2011).
[2] Z.P. Tshabalala, D.E. Motaung, H.C. Swart, Phys. B Condens. Matter. 535, 227 (2018).
[3] Y. Chen, X. Li, Z. Bi, X. He, G. Li, X. Xu, X. Gao, Appl. Surf. Sci. 440, 217 (2018).
[4] Z. Yang, B. Wang, H. Cui, H. An, Y. Pan, J. Zhai, J. Phys. Chem. C 119, 16905 (2015).
[5] Y. Ren, W. Li, Z. Cao, Y. Jiao, J. Xu, P. Liu, S. Li, X. Li, Appl. Surf. Sci. 509, 145377 (2020).
[6] B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009).
[7] G . Zhao, H. Kozuka, T. Yoko, Thin Solid Films 277, 147 (1996).
[8] J. Singh, K. Sahu, S. Choudhary, A. Bisht, S. Mohapatra, Ceram. Int. 46, 3275 (2020).
[9] S.L. Smitha, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Acta - Part A Mol. Biomol. Spectrosc. 71, 186 (2008).
[10] C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Langmuir 26, 12841 (2010).
[11] N.V. Long, P. Van Viet, L. Van Hieu, C.M. Thi, Y. Yong, M. Nogami, Adv. Sci. Eng. Med. 6, 214 (2013).
[12] M. Plodinec, A. Gajović, G. Jakša, K. Žagar, M. Čeh, J. Alloys Compd. 591, 147 (2014).
[13] D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007).
Go to article

Authors and Affiliations

Kwangmin Lee
1
ORCID: ORCID
Daeheung Yoo
1 2
Ahmad Zakiyuddin
3
ORCID: ORCID

  1. Chonnam National University, School of Materials Science and Engineering, Gwangju 61186, Republic of Korea
  2. Quality Tech. Dept. Chosun Refractories Co., Ltd, Republic of Korea
  3. Universitas Indonesia, Department of Metallurgical and Materials Engineering, Depok 16425 Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Gadolinium oxide (Gd2O3) is one of the lanthanide rare-earth oxides, which has been extensively studied due to its versatile functionalities, such as a high permittivity, reactivity with moisture, and ionic conductivity, etc. In this work, GdOx thin film was grown by atomic layer deposition using cyclopentadienyl (Cp)-based Gd precursor and water. As-grown GdOx film was amorphous and had a sub-stoichiometric (x ~ 1.2) composition with a uniform elemental depth profile. ~3 nm-thick GdOx thin film could modify the hydrophilic Si substrate into hydrophobic surface with water wetting angle of 70°. Wetting and electrical test revealed that the growth temperature affects the hydrophobicity and electrical strength of the as-grown GdOx film.
Go to article

Bibliography

[1] C. Wiemer, L. Lamagna, M. Fanciulli, Semiconductor Science and Technology 27, 074013 (2012).
[2] A. Karimaghaloo, J. Koo, H. sen Kang, S.A. Song, J.H. Shim, M.H. Lee, International Journal of Precision Engineering and Manufacturing - Green Technology 6, 611 (2019).
[3] G . Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, K.K. Varanasi, Nature Materials 12, 315 (2013).
[4] I .K. Oh, K. Kim, Z. Lee, K.Y. Ko, C.W. Lee, S.J. Lee, J.M. Myung, C. Lansalot-Matras, W. Noh, C. Dussarrat, H. Kim, H.B.R. Lee, Chemistry of Materials 27, 148 (2015).
[5] M. Leskelä, K. Kukli, M. Ritala, Journal of Alloys and Compounds 418, 27 (2006).
[6] J.H. Han, A. Delabie, A. Franquet, T. Conard, S. van Elshocht, C. Adelmann, Chemical Vapor Deposition 21, 352 (2015).
[7] S. Govindarajan, T.S. Böscke, P. Sivasubramani, P.D. Kirsch, B.H. Lee, H.H. Tseng, R. Jammy, U. Schröder, S. Ramanathan, B.E. Gnade, Applied Physics Letters 91, 062906 (2007).
[8] H. Kim, H.J. Yun, B.J. Choi, RSC Advances 8, 42390 (2018).
[9] J.H. Shim, G.D. Han, H.J. Choi, Y. Kim, S. Xu, J. An, Y.B. Kim, T. Graf, T.D. Schladt, T.M. Gür, F.B. Prinz, International Journal of Precision Engineering and Manufacturing - Green Technology 6, 629 (2019).
[10] K. Xu, R. Ranjith, A. Laha, H. Parala, A.P. Milanov, R.A. Fischer, E. Bugiel, J. Feydt, S. Irsen, T. Toader, C. Bock, D. Rogalla, H.J. Osten, U. Kunze, A. Devi, Chemistry of Materials 24, 651 (2012).
[11] C. Adelmann, H. Tielens, D. Dewulf, A. Hardy, D. Pierreux, J. Swerts, E. Rosseel, X. Shi, M.K. van Bael, J.A. Kittl, S. van Elshocht, Journal of The Electrochemical Society 157, G105 (2010).
[12] D. Kim, D. Ha Kim, D.H. Riu, B.J. Choi, Archives of Metallurgy and Materials 63, 1061 (2018).
[13] M. Mishra, P. Kuppusami, S. Ramya, V. Ganesan, A. Singh, R. Thirumurugesan, E. Mohandas, Surface and Coatings Technology 262, 56 (2015).
[14] N.K. Sahoo, M. Senthilkumar, S. Thakur, D. Bhattacharyya, Applied Surface Science 200, 219 (2002).
Go to article

Authors and Affiliations

Sung Yeon Ryu
1
Hee Ju Yun
1
Min Hwan Lee
2
Byung Joon Choi
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul 01811, Korea
  2. University of California Merced, Department of Mechanical Engineering, Merced, California, USA
Download PDF Download RIS Download Bibtex

Abstract

The effects of the sintering holding time and cooling rate on the microstructure and mechanical properties of nanocrystalline Fe-Cr-C alloy were investigated. Nanocrystalline Fe-1.5Cr-1C (wt.%) alloy was fabricated by mechanical alloying and spark plasma sintering. Different process conditions were applied to fabricate the sintered samples. The phase fraction and grain size were measured using X-ray powder diffraction and confirmed by electron backscatter diffraction. The stability and volume fraction of the austenite phase, which could affect the mechanical properties of the Fe-based alloy, were calculated using an empirical equation. The sample names consist of a number and a letter, which correspond to the holding time and cooling method, respectively. For the 0A, 0W, 10A, and 10W samples, the volume fraction was measured at 5.56, 44.95, 6.15, and 61.44 vol.%. To evaluate the mechanical properties, the hardness of 0A, 0W, 10A, and 10W samples were measured as 44.6, 63.1, 42.5, and 53.8 HRC. These results show that there is a difference in carbon diffusion and solubility depending on the sintering holding time and cooling rate.
Go to article

Bibliography

[1] E . Yajima, T. Miyazaki, T. Sugiyama, H. Terajima, Trans. JIM 15, 173 (1974).
[2] E .C. Santos, K. Kida, T. Honda, J. Rozwadowska, K. Houri, Adv. Mater. Res. 217, 982 (2011).
[3] I . Yoshida, K. Yamamoto, K. Domura, K. Mizobe, K. Kida, Mater. Sci. Forum 867, 55 (2016).
[4] O . Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16, 1391 (2000).
[5] G. Frommeyer, U. Brux, P. Neumann, ISIJ Int. 43, 438 (2003).
[6] D.S. Park, S.J. Oh, I.J. Shon, S.J. Lee, Arch. Metall. Mater. 63, 1479 (2018).
[7] S.G. Choi, J.H. Jeon, N.H. Seo, Y.H. Moon, I.J. Shon, S.J. Lee, Arch. Metall. Mater. 65, 1001 (2020).
[8] S.J. Lee, S. Lee, B.C. De Cooman, Scr. Mater. 64, 649 (2011).
[9] Y. Sakuma, O. Matsumura, H. Takechi, Met. Trans. A 22, 489 (1991).
[10] Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 53, 1224 (2013).
[11] K. Sugimoto, M. Misu, M. Kobayashi, H. Shirasawa, ISIJ Int. 33, 775 (1993).
[12] S.J. Lee, S. Lee, B.C. De Cooman, Int. J. Mater. Res. 104, 423 (2013).
[13] J.S. Benjamin, T.E. Volin, Met. Trans. 5, 1929 (1974).
[14] S.I. Cha, S.H. Hong, B.K. Kim, Mater. Sci. Eng. A 351, 31 (2003).
[15] H .W. Zhang, R. Gopalan, T. Mukai, K. Hono, Scr. Mater. 53, 863 (2005).
[16] G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953).
[17] B.L. Averbach, M. Cohen, Trans. AIME 176, 401 (1948).
[18] H . Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, Acta Mater. 59, 4002 (2011).
[19] S.J. Oh, J.H. Jeon, I.J. Shon, S.J. Lee, J. Korean Powder Metall. Inst. 26, 389 (2019).
[20] I . Seki, K. Nagata, ISIJ Int. 45, 1789 (2005).
[21] G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Mater. Sci. Eng. A 527, 2759 (2010).
[22] F. Martin, C. Garcia, Y. Blanco, M.L. Rodriguez-Mendez, Mater. Sci. Eng. A 642, 360 (2015).
Go to article

Authors and Affiliations

Gwanghun Kim
1
ORCID: ORCID
Junhyub Jeon
1
ORCID: ORCID
Namhyuk Seo
1
ORCID: ORCID
Seunggyu Choi
1
Min-Suk Oh
1
ORCID: ORCID
Seung Bae Son
1
ORCID: ORCID
Seok-Jae Lee
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The four-layer stack accumulative roll bonding (ARB) process using AA1050, AA5052 and AA6061 alloy sheets is performed up to 2 cycles without a lubricant at room temperature. The sample fabricated by the ARB is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 alloys are alternately stacked to each other. The changes of microstructure and mechanical properties with annealing for the-ARBed aluminum sheet are investigated in detail. The as-ARBed sheet shows an ultrafine grained structure, however the grain diameter is some different depending on the kind of aluminum alloys. The complex aluminum alloy still shows ultrafine structure up to annealing temperature of 250℃, but above 275℃ it exhibits a heterogeneous structure containing both the ultrafine grains and the coarse grains due to an occurrence of discontinuous recrystallization. This change in microstructure with annealing also has an effect on the change of the mechanical properties of the sample. Especially, the specimen annealed at 300℃ represents abnormal values for the strength coefficient K and work hardening exponent n value.
Go to article

Bibliography

[1] L. Ding, Y. Weng, S. Wu, R.E. Sansers, Z. Jia, Q. Liu, Mater. Sci. Eng. A651, 991 (2016).
[2] X. Fan, Z. He, W. Zhou, S. Yuan, J. Mater. Process. Tech. 228, 179 (2016).
[3] J.Y. Hwang, S.H. Lee, Korean J. Mater. Res. 29 (6), 392 (2019).
[4] S.H. Jo, S.H. Lee, Korean J. Mater. Res. 30 (5), 246 (2020).
[5] S.S. Na, Y.H. Kim, H.T. Son, S.H. Lee, Korean J. Mater. Res. 30 (10), 542 (2020).
[6] M. Jeong, J. Lee, J.H. Han, Korean J. Mater. Res. 29, 10 (2019).
[7] S.J. Oh, S.H. Lee, Korean J. Mater. Res. 28 (9), 534 (2018).
[8] E .H. Kim, H.H. Cho, K.H. Song, Korean J. Mater. Res. 27, 276 (2017).
[9] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scrip. Mater. 39, 1221 (1998).
[10] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta. Mater. 47, 579 (1999).
[11] S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Mater. Sci. Eng. A325, 228 (2002).
[12] S.H. Lee, H. Utsunomiya, T. Sakai, Mater. Trans. 45, 2177 (2004).
[13] S.H. Lee, J. Kor. Inst. Met. & Mater. 43 (12), 786 (2005).
[14] S.H. Lee, C.H. Lee, S.Z. Han, C.Y. Lim, J. Nanosci. and Nanotech. 6, 3661 (2006).
[15] S.H. Lee, C.H. Lee, S.J. Yoon, S.Z. Han, C.Y. Lim, J. Nanosci. and Nanotech. 7, 3872 (2007).
[16] N. Takata, S.H. Lee, C.Y. Lim, S.S. Kim, N. Tsuji, J. Nanosci. and Nanotech. 7, 3985 (2007).
[17] S.H. Lee, H.W. Kim, C.Y. Lim, J. Nanosci. and Nanotech. 10, 3389 (2010).
[18] M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban, Composites Sci. and Tech. 68, 2003 (2008).
[19] Ming-Che Chen, Chih-Chun Hsieh, Weite Wu, Met. Mater. Int. 13 (3), 201 (2007).
[20] G uanghui Min, J.M. Lee, S.B. Kang, H.W. Kim, Mater. Letters 60, 3255 (2006).
[21] S.H. Lee, C.S. Kang, Korean J. Met. Mater. 49 (11), 893 (2011).
[22] S.H. Lee, J.H. Kim, Korean J. Met. Mater. 51 (4), 251 (2013).
[23] H. Kuhn, D. Medlin, Mechanical Testing and Evaluation, ASM Handbook, ASM International 8, 71 (2000).
[24] G .E. Dieter, Mechanical Metallurgy, SI Metric Edition, McGraw- Hill Book Company, London, 71 (2001).
Go to article

Authors and Affiliations

Sang-Hyeon Jo
1
Seong-Hee Lee
1

  1. Mokpo National University, Advanced Materials Science and Engineering, Muan-Gun, Jeonnam 58554, Korea
Download PDF Download RIS Download Bibtex

Abstract

Iron oxide nanoparticles were incorporated to form composite microspheres of SiO2 and Fe2O3 for magnetic separation of the particles after adsorption or photochemical decomposition. Economic material, sodium silicate, was purified by ion exchange to prepare aqueous silicic acid solution, followed by mixing with iron oxide nanoparticles. Resulting aqueous dispersion was emulsified, and composite microspheres of SiO2 and Fe2O3 was formed from the emulsion droplets as micro-reactors during heating. Removal of methylene blue using the composite microspheres was performed by batch adsorption process. Synthesis of composite microspheres of silica containing Fe2O3 and TiO2 nanoparticles was also possible, the particles could be separated using magnets efficiently after removal of organic dye.
Go to article

Bibliography

[1] L. Zou, Y. Luo, M. Hooper, E. Hu, Chem. Eng. Process. 45 (11), 959-964 (2006).
[2] F.H. Hussein, T.A. Abass, Int. J. Chem. Sci. 8 (3), 1409-1420 (2010).
[3] H .P. Shivaraju, Int. J. Env. Sci. 1 (5), 911-923 (2011).
[4] A.M. Youssef, A.I. Ahmed, M.I. Amin, U.A. El-Banna, Desalin. Water Treat. 54 (6), 1694-1707 (2015).
[5] E . Colombo, M. Ashokkumar, RSC Adv. 7, 48222-48229 (2017).
[6] M. Schneider, T. Ballweg, L. Groß, C. Gellermann, A. Sanchez‐ Sanchez, V. Fierro, A. Celzard, K. Mandel, Part. Part. Syst. Charact. 36 (6) 1800537-, (2019).
[7] M. Farahmandjou, F. Soflaee, Phys. Chem. Res. 3 (3), 193-198 (2015).
Go to article

Authors and Affiliations

Young-Sang Cho
1
ORCID: ORCID
Sohyeon Sung
1
ORCID: ORCID

  1. Korea Polytechnic University, Department of Chemical Engineering and Biotechnology, 237 Sangidaehak-ro, Siheung-si, Gyeonggi 15073, Korea
Download PDF Download RIS Download Bibtex

Abstract

Oxidation and indentation properties of silicon carbide-coated carbon composites were investigated to analyze its durability under atmospheric thermal shock conditions. The silicon carbide-coated samples were prepared either with chemical vapor deposition or chemical vapor reaction/chemical vapor deposition hybrid coating. The remnant weight of uncoated and coated samples was investigated after each thermal shock cycle. The surface and cross-section of coated samples were then analyzed to confirm morphological changes of the coating layers. The spherical indentation test for uncoated and coated samples were also performed. As a result, silicon carbide coating improved the oxidation resistance, elastic modulus, and hardness of carbon composites. Hybrid coating drastically enhanced the durability of samples at high temperature in atmospheric conditions.
Go to article

Bibliography

[1] S.J. Park, M.K. Seo, Interface Science and Composites: Volume 18, Academic Press; 1st Edition (2011).
[2] X. Zhu, Z. Yang, H. Li, M. Kang, Proceedings of ICCM-10, Whistler (1995).
[3] X. Qiang, H. Li, Y. Zhang, D. Yao, L. Guo, J. Wei, Corros. Sci. 59, 343-347 (2012). DOI: https://doi.org/10.1016/j.corsci.2012.01.035 [
4] W. Shi, Y. Tan, J. Hao, J. Li, Ceram. Int. 42 (15), 17666-17672 (2016). DOI: https://doi.org/10.1016/j.ceramint.2016.08.083
[5] S.B. Bae, J.E. Lee, J.G. Paik, N.C. Cho, H.I. Lee, Arch. Metall. Mater. 65 (4), 1371-1375 (2020).
[6] S.D. Choi, H.I. Seo, B.J. Lim, I.C. Sihn, J.M. Lee, J.K. Park, K.S. Lee, Compos. Res. 31 (5), 260-266 (2018).
[7] K .S. Lee, Z. Meng, I.C. Sihn, K. Choi, J.E. Lee, S.B. Bae, H.I. Lee, Ceram. Int. 46 (13), 21233-21242 (2020). DOI: https://doi.org/10.1016/j.ceramint.2020.05.211
[8] D.H. Lee, K.S. Lee, T.W. Kim, C. Kim, Ceram. Int. 45 (17), 21348-21358 (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.07.121
[9] Z. Li, X. Yin, T. Ma, W. Miao, Z. Zhang, Mater. Trans. 52 (12), 2165-2167 (2011). DOI: https://doi.org/10.2320/matertrans.MAW201103
[10] P.J. Jorgensen, M.E. Wardsworths, I.B. Cuter, J. Am. Cer. Soc. 42 (12), 613-616 (1959). DOI: https://doi.org/10.1111/j.1151-2916.1959.tb13582.x
[11] A. Abdollahi, N. Ehsani, Metall. Mater. Trans. A. 48, 265-278 (2017). DOI: https://doi.org/10.1007/s11661-016-3813-z
[12] K .S. Lee, D.K. Kim, S.K. Lee, B.R. Lawn, J. Korean Ceram. 4 (4), 356-362 (1998).
[13] http://www.tanxw.com/news/xgzx/1654.html, accessed: 26.08.2020.
[14] http://www.360doc.com/content/19/1014/10/9122134_866684074.shtml, accessed: 26.08.2020.
[15] http://cn.chinatungsten.com/Si/thgdxz.html, accessed: 26.08.2020.
[16] https://blog.csdn.net/dxuehui/article/details/52497907, accessed: 26.08.2020.
[17] http://cn.chinatungsten.com/Si/thgdxz.html, accessed: 26.08.2020.
[18] A. Tiwari, S. Natarajan, Applied Nanoindentation in Advanced Materials, John Wiley & Sons (2017). DOI: https://doi.org/10.1002/9781119084501
[19] G .C. Shwartz, K.V. Srikrishnan, Handbook of Semiconductor Interconnection Technology, CRC Press (2006). DOI: https://doi.org/10.1201/9781420017656
Go to article

Authors and Affiliations

Ji Eun Lee
1
ORCID: ORCID
Soo Bin Bae
1
ORCID: ORCID
Nam Choon Cho
1
ORCID: ORCID
Hyung Ik Lee
1
ORCID: ORCID
Zicheng Meng
2
ORCID: ORCID
Kee Sung Lee
2
ORCID: ORCID

  1. Agency for Defense Development, Yuseong P.O. Box 35, Daejeon, 34186, Korea
  2. Kookmin University, School of Mechanical Engineering, JEONGNEUNG-RO 77, SEONGBUK-GU, SEOUL, 02707, KOREA
Download PDF Download RIS Download Bibtex

Abstract

This study suggests a new way to modify the size and morphology of Al-Fe phases in modified AA 7075 by using an Fe-Mn solid solution powder as the precursor. When Fe and Mn are added in the form of a solid solution, the diffusion of Fe and Mn toward the Al is delayed, thus altering the chemical composition and morphology of the precipitates. The fine, spherical precipitates are found to provide a good balance between strength and ductility compared to the case where Fe and Mn are separately added.
Go to article

Bibliography

[1] E.A. Starke Jr, J.T. Staley, Prog. Aerospace Sci. 32, 131 (1996).
[2] J.H. Cha, S.H. Kim, Y-S. Lee, H.W. Kim, Y.S. Choi, Met. Mater. Int. 22, 5 (2016)
[3] H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, S.R. Nutt, Mater. Sci. Eng. A 297, 94 (2001).
[4] Z.M. Shi, K. Gao, Y.T. Shi, Y. Wang, Mater. Sci. Eng. A 632, 62 (2015).
[5] S.B. Sun, L.J. Zheng, J.H. Liu, H. Zhang, J. Mater. Sci. Technol. 33, 389 (2017).
[6] S.K. Das, J.A.S. Green, J.G. Kaufman, JOM 59, 47 (2007).
[7] A. Gesing, L. Berry, R. Dalton, R. Wolanski, Proceedings of the TMS 2002 Annual Meeting: Automotive Alloys and Aluminum Sheet and Plate Rolling and Finishing Technology Symposia, Warrendale, PA, USA, 18-21 February (2002) p. 3-15.
[8] S.G. Shabestari, J.E. Gruzleski, Cast Metals 6, 4, 217 (1994)
[9] W. Wang, R.G. Guan, Y. Wang, R.DK. Misra, B.W. Yang, Y.D. Li, T.J. Chen, Mater. Sci. Eng. A 751, 23 (2019)
[10] J. Mathew, G. Remy, M.A. Williams, F. Tang, P. Srirangam, JOM, 71, 12 (2019)
[11] X. Zhu, P. Blake, S. Ji, Crys. Eng, Comm. (2018) https://doi.org/10.1039/C8CE00675J
[12] R.S. Rana, R. Purohit, S. Das, Int. J. Sci. Res. Pub. 2, 6 (2012)
[13] L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, J. Cryst. Growth. 339, 61 (2012).
[14] T. Dorin, N. Stanford, N. Birbilis, R.K. Gupta, Corr. Sci. 100, 396 (2015).
[15] K. Stan, L. Litynska-Dobrzynska, J. L. Labar, A. Goral, J. Alloy Compd. 586 (2014)
[16] L.G. Hou, C. Cui, J.S. Zhang, Mater. Sci. Eng. A 527, 23 (2010)
[17] S.G. Shabestari, Mater. Sci. Eng. A 383, 2, 289 (2004)
[18] D.R. Gaskell, Introduction to the Thermodynamics of materials, 5th edn. (Taylor & Francis Group, New York, 2008)
[19] P.W. Beaver, B.A. Parker, Mater. Sci. Eng. A 82, 217 (1986).
Go to article

Authors and Affiliations

Min Sang Kim
1 2
ORCID: ORCID
Dae Young Kim
3
ORCID: ORCID
Young Do Kim
1
ORCID: ORCID
Hyun Joo Choi
3
ORCID: ORCID
Se Hoon Kim
2
ORCID: ORCID

  1. Hanyang University, Department of Materials Science & Engineering, Seoul, Republic of Korea
  2. Metallic Material R&D Center, Korea Automotive Technology Institute, Cheonan-si, Republic of Korea
  3. Kookmin University, School of Materials Science and Engineering, Seoul, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, the alloying of Ti, Al and Dy powders by high energy ball milling, and the spark plasma sintering (SPS) characteristics of as milled powders have been investigated based on the observation of microstructure. Pure Ti, 6wt% Al and 4wt% Dy powders were mixed and milled with zirconia balls at 600 ~ 1000 rpm for 3h in an Ar gas. The initial sizes of Ti, Al and Dy powders were approximately 20, 40, and 200 μm, respectively. With increasing the milling speed from 600 to 1000 rpm, the size of mixing powders reduced from 120 to 15 μm. On the other hand, from XRD results of powders milled at higher speeds than 700rpm, the peaks of Ti3Al and AlDy phases were identified, indicating the successful alloying. Therefore, the powders milled at 800 rpm have been employed for the SPS under the applied pressure of 50 MPa at 1373K for 15 min. In the SPSed sample, the Al3Dy and two ternary Ti-Al-Dy phases were newly detected, while the peak of AlDy phase disappeared. The SPSed Ti-6Al-4Dy alloy revealed high relative density and micro-hardness of approximately 99% and 950Hv, respectively.
Go to article

Bibliography

[1] M . Selva Kumar, P. Chandrasekar, P. Chandramohan, M. Mohanraj, Mater. Charact. 73, 43-51 (2012).
[2] T. Matsuo, T. Nozaki, T. Asai, S.Y. Chang, M. Takeyama, Intermetallics 6, 695-698 (1998).
[3] K. Kondoh, T. Threrujirapapomg, J. Umeda, B. Fugetsu, Compos. Sci. Tech. 72, 1291-1297 (2012).
[4] F . Petzoldt, V. Friederici, P. Imgrumd, C. Aumund-Kopp, J. Korea Powder Metall. Inst. 21, 1-6 (2014).
[5] Y. Song, D.S. Xu, R. Yang, D. Li, W.T. Wu, Z.X. Guo, Mater. Sci. and Eng. A A260, 269-274 (1999).
[6] T. Kawabata, T. Tamura, O. Izumi, Metall. Trans. 24A, 141-150 (1993).
[7] S.M. Park, S.W. Nam, J.Y. Cho, S.H. Lee, S.G. Hyun, T.S. Kim, Arch. Metall. Mater. 65, 1281-1285 (2020).
[8] S.W. Nam, R.M. Zarar, S.M. Park, S.H. Lee, S.G. D.H. Kim, T.S. Kim Arch. Metall. Mater. 65, 1273-1276 (2020).
[9] S .M. Hong, E.K. Park, K.Y. Kim, J.J. Park, M.K. Lee, C.K. Rhee, J.K. Lee, Y.S. Kwon, J. Kor. Powd. Met. Inst. 19, 32-39 (2012).
[10] H.P. Klug, L.E. Alexander, John Wiley and Sons, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York 1997.
[11] S .J. Park, Y.S. Song, K.S. Nam, S.Y. Chang, J. Kor. Powd. Met. Inst. 19, 122-126 (2012).
[12] S .Y. Chang, B.S. Kim, Y.S. Song, K.S. Nam, J. Nanosci. and Nanotech. 12, 1353-1356 (2012).
[13] B.S. Kim, D.H. Lee, S.Y. Chang, Modern Physics Letters B 23, 3919-3923 (2009).
[14] T. Takeuchi, M. Tabuchi, H. Kageyama, Y. Suyama, J. Am. Ceram. Soc. 82, 939-943 (1999).
[15] Z.J. Shen, M. Johnson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 85, 1921-1927 (2002).
[16] G.D. Zhan, J.D. Kuntz, J.L. Wan, A.K. Mukherjee, Nat. Mat. 2, 38-42 (2003).
[17] J.Y. Suh, Y.S. Song, S. Y. Chang, Arch. Metall. Mater. 64, 567-571 (2019).
[18] S .Y. Chang, S.T. Oh, M.J. Suk, C.S. Hong, J. Kor. Powd. Met. Inst. 21, 97-101 (2014).
[19] L. Gao, H. Miyamoto, J. Inorg. Mater. 12, 129-133 (1997). [20] M . Tokita, J. Soc. Powder Technol. 30, 790-804 (1993).
[21] D.J. Kim et al., Korean Powder Metallurgy Inst, Powder Metallurgy & Particulate Materials Processing, Seoul 2010.
[22] H. Zhou, W. Liu, S. Yuan, J. Yan, J. Alloys and Comp. 336, 218- 221 (2002).
[23] S. Niemann, W. Jeitschko, J. Solid State Chem. 114, 337-341 (1995).
[24] S. Niemann, W. Jeitschko, J. Solid State Chem. 116, 131-135 (1995).
[25] http://asm.matweb.com/search/SpecificMaterial.asp?bassnum =MTP641.
[26] S .Y. Chang, S.J. Cho, S.K. Hong, D.H. Shin, J. Alloys and Comp. 316, 275-279 (2001).
[27] W.H. Lee, J.G. Seong, Y.H. Yoon, C.H. Jeong, C.J. Van Tyne, H.G. Lee, S.Y. Chang, Ceramics Inter. 45, 8108-8114 (2019).
Go to article

Authors and Affiliations

Yuri Kim
1
Hoseong Rhee
1
ORCID: ORCID
Si Young Chang
1
ORCID: ORCID

  1. Korea Aerospace University, Department of Materials Science and Engineering, Goyang 10540, Korea
Download PDF Download RIS Download Bibtex

Abstract

Molybdenum (Mo) is used to form a barrier layer for metal wiring in displays or semiconductor devices. Recently, researches have been continuously attempted to fabricate Mo sputtering targets through additive manufacturing. In this study, spherical Mo powders with an average particle size of about 37 um were manufactured by electrode induction melting gas atomization. Subsequently, Mo layer with a thickness of 0.25 mm was formed by direct energy deposition in which the scan speed was set as a variable. According to the change of the scan speed, pores or cracks were found in the Mo deposition layer. Mo layer deposited with scan speed of 600 mm/min has the hardness value of 324 Hv with a porosity of approximately 2%. We demonstrated that Mo layers with higher relative density and hardness can be formed with less effort through direct energy deposition compared to the conventional powder metallurgy.
Go to article

Bibliography

[1] A. Mancaleoni, A. Sitta, Al. Colombo, R. Villa, G. Mirone, M. Renna, M. Calabretta, Copper wire bonding process characterization and simulation, 11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, VDE Verlag GmbH (2020).
[2] G.H. Oh, S. Kim, T. Kim, J. Alloys Compd., (2020). DOI: https://doi.org/10.1016/j.jallcom.2020.157901 (in press).
[3] T.K. Chee, K.S. Theen, T.M. Sin, Cu-Cu wire bonding challenges on MOSFET wafer technology, 15th Electronics Packaging Technology Conference, Singapore, Singapore, VDE Verlag GmbH (2013).
[4] K . Mukai, T. Magaya, L. Brandt, Z. Liu, H. Fu, S. Hunegnaw, Adhesive enabling technology for directly plating copper onto glass, 9th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, IEEE (2014).
[5] B. He, J. Petzing, P. Webb, R. Leach, Opt. Lasers Eng. 75, 39-47 (2015).
[6] A.R.M. Yusoff, M.N. Syahrul, K. Henkel, Bull. Mater. Sci. 30, 329-331 (2007).
[7] L. Guo, W.Y. Zhang, Z.N. Xin, C.S. Yao, Int. J. Refract. Met. Hard Mater. 78, 45-50 (2019).
[8] X. Gao, L. Li, J. Liu, X. Wang, H. Yu, Int. J. Refract. Met. Hard Mater. 88, 105186 (2020).
[9] P. Alén, M. Ritala, K. Arstila, J. Keinonen, M. Leskelä, J. Electrochem. Soc. 152, G361 (2005).
[10] W. Li, X. Yan, A.G. Aberle, S. Venkataraj, Int. J. Photoenergy 2016, 1-10 (2016).
[11] P.S. Suryavanshi, C.J. Panchal, A.L. Patel, Mater. Today: Proc., (2020). DOI: https://doi.org/10.1016/j.matpr.2020.07.706 (in press).
[12] C. Wongwanitwatta1, M. Horprathum, C. Chananonnawathorn, AIP Conf. Proc. 2279, 120007 (2020).
[13] G. An, J. Sun, Y. Sun, W. Cao, Mater. Sci. Forum 913, 853-861 (2018).
[14] B. Bax, R. Rajput, R. Kellet, M. Reisacher, Addit. Manuf. 21, 487-494 (2018).
[15] D.R. Feenstra, A. Molotnikov, N. Birbilis, Mater. Des. 198, 109342 (2021).
[16] R. Ohser-Wiedemann, U. Martin, H. J. Seifert, A, Müller, Int. J. Refract. Met. Hard Mater. 28 (4), 550-557 (2010)
Go to article

Authors and Affiliations

Goo-Won Roh
1 2
ORCID: ORCID
Eun-Soo Park
2
ORCID: ORCID
Jaeyun Moon
3
ORCID: ORCID
Hojun Lee
4
ORCID: ORCID
Jongmin Byun
4
ORCID: ORCID

  1. University, Department of Materials Science and Engineering, Seoul 04763, Republic of Korea
  2. Research and Development Center, Eloi Materials Lab (EML) Co. Ltd., Suwon 16229, Republic of Korea
  3. University of Nevada, Department of Mechanical Engineering, Las Vegas, 4505 S. Maryland PKWY Las Vegas, NV 89154, United States
  4. Seoul National University of Science and Technology, Department of Materials Science and Engineering Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The nano-sized Y2O3 dispersed W composite powder is prepared by ultrasonic spray pyrolysis of a tungsten precursor using ammonium metatungstate hydrate and a polymer addition solution method using Y-nitrate. XRD analysis for calcined powder showed the formation of WO2 phase by partial oxidation of W powder during calcination in air. The TEM and phase analysis for further hydrogen reduction of calcined powder mixture exhibited that the W powder with a uniform distribution of Y2O3 nanoparticles can be successfully produced. These results indicate that the wet chemical method combined with spray pyrolysis and polymer solution is a promising way to synthesis the W-based composites with homogeneous dispersion of fine oxide particles.
Go to article

Bibliography

[1] W.D. Klopp, J. Less-Common Met. 42, 261 (1975).
[2] V. Philipps, J. Nucl. Mater. 415, S2 (2011).
[3] L. Veleva, Z. Oksiuta, U. Vogt, N. Baluc, Fusion Eng. Des. 84, 1920 (2009).
[4] Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu, J. Alloys Compd. 695, 2969 (2017).
[5] C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, S. Middlemas, Int. J. Refract. Met. Hard Mater. 75, 170 (2018).
[6] M.H. Nguyen, S.-J. Lee, W.M. Kriven, J. Mater. Res. 14, 3417 (1999).
[7] S. Yan, J. Yin, E. Zhou, J. Alloys Compd. 450, 417 (2008).
[8] T.R. Wilken, W.R. Morcom, C.A. Wert, J.B. Woodhouse, Met. Trans. B 7, 589 (1976).
[9] S.C. Cifuentes, M.A. Monge, P. Pérez, Corros. Sci. 57, 114 (2012).
Go to article

Authors and Affiliations

Hyeonhui Jo
1
Young-In Lee
1 2
ORCID: ORCID
Myung-Jin Suk
3
Young-Keun Jeong
4
ORCID: ORCID
Sung-Tag Oh
1 2
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
  2. Seoul National University of Science and Technology, The Institute of Powder Technology, Seoul 01811, Republic of Korea
  3. Kangwon National University, Department of Materials Science and Engineering, Samcheok 25913, Republic of Korea
  4. Pusan National University, Graduate School of Convergence Science, Busan 46241, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The influence of nano dispersion on the thermoelectric properties of Bi2Te3 was actively investigating to wide-spread thermoelectric applications. Herein this report, we have systematically controlled the microstructure of Bi0.5Sb1.5Te3 (BST) alloys through the incorporation of carbon nanofiber (CNF), and studied their effect on thermoelectric properties, and mechanical properties. The BST/x-CNF (x-0, 0.05, 0.1, 0.2 wt.%) composites powder was fabricated using high energy ball milling, and subsequently consolidated the powder using spark plasma sintering. The identification of CNF in bulk composites was analyzed in Raman spectroscopy and corresponding CNF peaks were recognized. The BST matrix grain size was greatly reduced with CNF dispersion and consistently decreased along CNF percentage. The electrical conductivity was reduced and Seebeck coefficient varied in small-scale by embedding CNF. The thermal conductivity was progressively diminished, obtained lattice thermal conductivity was lowest compared to bare sample due to induced phonon scattering at interfaces of secondary phases as well as highly dense fine grain boundaries. The peak ZT of 0.95 achieved for 0.1 wt.% dispersed BST/CNF composites. The Vickers hardness value of 101.8 Hv was obtained for the BST/CNF composites.
Go to article

Bibliography

[1] J.R. Szczech, J.M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, J. Mater. Chem. 21 (12), 4037-4055 (2011).
[2] Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, G.J. Synder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473, 66-69 (2011).
[3] R . Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xoe, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe, Energy Environ. Sci. 11, 1520-1535 (2018).
[4] H . Mamur, M.R.A Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications, Renew. Sust. Energ. Rev. 82, 4159-4169 (2018).
[5] I . Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nat. Nanotechnol. 4 (4), 235-238 (2009).
[6] Z. Xiao, X. Zhu, On-Chip Sensing of Thermoelectric Thin Film’s Merit, Sensors 15 (7), 17232-17240 (2015).
[7] X. Hu, X. Fan, B. Feng, D. Kong, P. Liu, R. Li, Y. Zhang, G. Li, Y. Li, Microstructural refinement, and performance improvement of cast n-type Bi2Te2.79Se0.21 ingot by equal channel angular extrusion, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00699-5
[8] M. Sabarinathan, M. Omprakash, S. Harish, M. Navaneethan, J. Archana, S. Ponnusamy, Y. Hayakawa, Enhancement of power factor by energy filtering effect in hierarchical BiSbTe3 nanostructures for thermoelectric applications, Appl. Surf. Sci. 418, 246-251 (2017).
[9] B . Madavali, H.S. Kim, K.H. Lee, S.J. Hong, Enhanced Seebeck coefficient by energy filtering in Bi-Sb-Te based composites with dispersed Y2O3 nanoparticles, Intermetallics 82, 68-75 (2017).
[10] J. Hu, B. Liu, H. Subramanyan, B. Li, J. Zhou, J. Liu, Enhanced thermoelectric properties through minority carriers blocking in nanocomposites, J. Appl. Phys. 126 (9), 095107 (2019).
[11] S. Foster, N. Neophytou, Effectiveness of nano inclusions for reducing bipolar effects in thermoelectric materials, Comput. Mater. Sci. 164, 91-98 (2019).
[12] L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 53 (16), R10493-R10496 (1996).
[13] I .V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: Sensor properties, A review, Mod. Electron. Mater. 2 (4), 95-105 (2016).
[14] P.A. Tran, L. Zhang, T.J. Webster, Carbon nanofibers and carbon nanotubes in regenerative medicine, Adv. Drug Deliv. Rev. 61 (12), 1097-1114 (2009).
[15] M. Gurbuz, T. Mutuk, P. Uyan, Mechanical, Wear and Thermal behaviors of graphene reinforced titanium composites, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00673-1
[16] D.W. Jung, J.H. Jeong, B.C. Cha, J.B. Kim, B.S. Kong, J.K. Lee, E.S. Oh, Effects of ball-milled graphite in the synthesis of SnO2/graphite as an active material in lithium-ion batteries, Met. Mater. Int. 17 (6), 1021-1026 (2011).
[17] A comparison of Carbon Nanotubes and Carbon Nanofibers, Pyrograf products, Inc, An affiliate of Applied surface sciences, Inc.
[18] K.M. Nam, K. Mees, H.S. Park, M. Willert-Porada, C.S. Lee, Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles, Bull. Korean Chem. Soc. 35 (8), 2431- 2437 (2014).
[19] S .J. Jung, S.Y. Park, B.K. Kim, B. Kwon, S.K. Kim, H.H. Park, S.H. Baek, Hardening of Bi-Te based alloys by dispersing B4C nanoparticles, Acta Mater. 97, 68-74 (2015).
[20] C. Marquez, N. Rodriguez, R. Ruiz, F. Gamiz, Electrical characterization and conductivity optimization of laser reduced graphene oxide on insulator using point-contact methods, RSC Adv. 6 (52), 46231-46237 (2016).
[21] P. Sharief, B. Madavali, J.M. Koo, H.J. Kim, S. Hong, S.J. Hong, Effect of milling time parameter on the microstructure and the thermoelectric properties of N-type Bi2Te2.7Se0.3 alloys, Arch. Metall. Mater. 2, 585-590 (2019).
[22] P . Slobodian, P. Riha, R. Olejnik, M. Kovar, P. Svoboda, Thermoelectric properties of carbon nanotube and nanofiber based ethylene-octene copolymer composites for thermoelectric devices, J. Nanomater 2013, 1-7 (2013).
[23] Q. Lognoné, F. Gascoin, On the effect of carbon nanotubes on the thermoelectric properties of n-Bi2Te2. 4Se0. 6 made by mechanical alloying, J. Alloys Compd. 635, 107-111 (2015).
[24] B. Feng, G. Li, X. Hu, P. Liu, R. Li, Y. Zhang, Z. He, Improvement of thermoelectric and mechanical properties of BiCuSeO-based materials by SiC nanodispersion, J. Alloys Compd. 818, 152899 (2020).
Go to article

Authors and Affiliations

P. Sharief
1
B. Madavali
1
Y. Sohn
2
J.H. Han
2
G. Song
1
S.H. Song
1
S.J. Song
1

  1. Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea
  2. Chungnam National University, Department of Materials Science & Engineering, Daejeon, 34134, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Copper slag is usually a mixture of iron oxide and silicon dioxide, which exist in the form of fayalite (2FeO·SiO2), and contains ceramic components as the SiO2, Al2O3 and CaO depending on the initial ore quality and the furnace type. Our present study was focused on manufacture of foundry pig iron with Cu content from copper slag using high-temperature reduction smelting and investigate utilization of by-products as a reformed slag, which is giving additional value to the recycling in a replacement of raw material of Portland cement. Changes of the chemical and mineralogical composition of the reformed slag are highly dependent on the CaO concentration in the slag. The chemical and mineralogical properties and microstructural analysis of the reformed slag samples were determined through X-ray Fluorescence spectroscopy, X-Ray diffractometer and Scanning Electron Microscopy connected to the dispersive spectrometer studies.
Go to article

Bibliography

[1] LS-Nikko copper inc., Private Communication. 2012 Ulsan, Korea.
[2] Korea Zinc Co., Ltd., Onsan Refinery, Private Communication. 2012 Ulsan, Korea.
[3] S .W. Ji, C.H. Seo, J. of Korean Inst. of Resources Institute. 2, 68-72 (2006).
[4] J.P. Wang, K.M. Hwang, H.M. Choi. Indian J. Appl. Res. 2, 977-982 (2018).
[5] J.P. Wang, K.M. Hwang, H.M. Choi. Indian J. Appl. Res. 2, 973-976 (2018).
[6] A.A. Lykasov, G.M. Ryss, Steel Trans. 46 (9), 609-613 (2016).
[7] M.K. Dash, S.K. Patro and etc., Int. J. Sustain. Built. Environ. 5, 484-516 (2016).
[8] B. Gorai, R.K. Jana and etc., Resour. Converv. Recy. 39, 299-313 (2003).
[9] I . Alp, H. Deveci, H. Sungun. J. Hzard. Mater. 159, 390-395 (2008).
[10] P. Sarfo, G. Wyss and etc., J. Min. Eng. 107, 8-19 (2017).
[11] U. Yuksel, I. Tegin. J. Environ. Sci. Eng. Eng. Technol. 6, 388-394 (2017).
[12] Z.X. Lin, Z.D. Qing and etc. ISI J Int. 55, 1347-1352 (2015).
[13] Z. Guo, D. Zhu and etc., J. Met. 86 (6), 1-17 (2016).
[14] A.A. Lykasov, G.M. Ryss and etc., Steel Transl. 46 (9), 609-613 (2016).
[15] Z. Cao, T. Sun and etc., Minerals. 6 (119), 1-11 (2016).
[16] A.Es. Nassef. A. Abo Ei-Nasr, Influence of Copper Additions and Cooling Rate on Mechanical and Tribological Behavior of Grey Cast Iron, 7th Int. Saudi Engineering Conference (SEC7), KSA, Riyadh 2-5, 2-5 Dec 2007, p. 307
[17] G . Gumienny, B. Kacprzyk, Arch. Foundry Eng. 17, 51-56 (2017).
[18] Z. Slovic, K.T. Raic, L. Nedeljkovic, etc., Mater. Technol. 46 (6), 683-688 (2012).
[19] U. Erdenebold, H.M. Choi. J.P. Wang. Arch. Metal. Mater. 63 (4), 1793-1798 (2018).
[20] Ye.A. Kazachkov, Calculations on the theories of metallurgical processes. Metallurgy, Moscow (1988).
[21] G .I. Silman, V.V. Kamynin and etc., Met. Sci. Heat. Treat. 45 (2003), 254-258.
[22] A.A. Razumakov, N.V. Stepanova and etc., Proceedings of MEACS2015. IOP conference series: materials science and engineering, Tomsk Polytechnic University, Tomsk, 1-4 December 2015, 124, 012136 (2016).
[23] E. Konca, K. Tur and etc., Metals 7 (320), 1-9 (2017).
[24] J.O. Agunsoye, S.A. Bello and etc., J. Miner. Mater. Character. Eng. 2, 470-483 (2014).
[25] A.A. Rahman, S.A. Abo-El-Enein and etc., Arab. J. Chem. 9, 8138-8143 (2016).
[26] D .E. Angulo-Ramirez, R.M. de Gutierrez and etc., Constr. Build. Mater. 140, 119-128 (2017).
[27] Y. Maeda. Nippo steel and Sumitomo metal technical report. 109, 114-118 (2015).
[28] Y. Ueki. Nippo steel and Sumitomo metal technical report. 109, 109-113 (2015).
[29] https://www.snmnews.com/news/articleView.html?idxno= 447525, accessed: 05.06.2019.
[30] M. Fleischer. Geological survey professional paper 440-L, 6th edition. Washington, 1964, p. 21-23.
[31] V erlag Stahleisen GmbH. Slag atlas. 2nd edition, Germany, 1995, p. 127.
Go to article

Authors and Affiliations

Urtnasan Erdenebold
1
ORCID: ORCID
Jei-Pil Wang Wang
1
ORCID: ORCID

  1. Pukyong National University, Department of Metallurgical Engineering, Busan, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

To comprehensively investigate the diversity of a chamfer technology and a convex roll technology under the same soft reduction process (i.e., section size, reduction amount, casting speed and solid fraction), a three-dimensional mechanical model was developed to investigate the effect of the chamfer profile and roll surface profile on the deformation behavior, cracking risk, stress concentration and reduction force of as-cast bloom during the soft reduction process. It was found that a chamfer bloom and a convex roll can both avoid the thicker corner of the as-cast bloom solidified shell, and significantly reduce reduction force of the withdrawal and straightening units. The convex profile of roll limits lateral spread along bloom width direction, therefore it forms a greater deformation to the mushy zone of as-cast bloom along the casting direction, the tensile strain in the brittleness temperature range (BTR) can obviously increase to form internal cracks. The chamfer bloom is much more effective in compensating the solidification shrinkage of mushy zone. In addition, chamfer bloom has a significant decrease of tensile strain in the brittleness temperature range (BTR) areas, which is expected to greatly reduce the risk of internal cracks.
Go to article

Bibliography

[1] H. Bhadeshia, Prog. Mater. Sci. 57, 304 (2012).
[2] Q . Dong, J. Zhang, B. Wang, X. Zhao, J. Mater. Process. Technol. 81, 238 (2016).
[3] K. Liu, Q. Sun, J. Zhang, C. Wang, Metall. Res. Technol. 113, 504 (2016).
[4] S. Luo, M. Zhu, C. Ji, Ironmak. Steelmak. 41, 233 (2014).
[5] N. Zong, H. Zhang, Y. Liu, Z. Lu, Ironmak. Steelmak. 46, 872 (2019).
[6] S. Ogibayashi, M. Uchimura, K. Isobe, H. Maede, Y. Nishihara, S. Sato, Proc. of 6th Int. Iron and Steel Cong, ISIJ, Tokyo, 271 (1990).
[7] H.M. Chang, S.O. Kyung, D.L. Joo, J.L. Sung, L. Youngseog, ISIJ Int. 52, 1266 (2012).
[8] J. Zhao, L. Liu, W. Wang, H. Lu, Ironmak. Steelmak. 46, 227 (2017).
[9] N. Zong, H. Zhang, Y. Liu, Z. Lu, Metall. Res. Technol. 116, 310 (2019).
[10] N. Zong, H. Zhang, L. Wang, Z. Lu, Metall. Res. Technol. 116, 608 (2019).
[11] C. Li, B. Thomas, Metall. Mater. Trans. B. 35B, 1151 (2004). [12] B. Li, H. Ding, Z. Tang, Int. J. Miner. Metall. Mater. 19, 21 (2012).
[13] K.O. Lee, S.K. Hong, Y.K. Kang, Int. J. Automot. Technol. 10, 697 (2009).
[14] K. Demons, G.C. Lorraine, S.A. Taylor, Mater. Eng. Perform. 16, 592 (2007).
Go to article

Authors and Affiliations

Nanfu Zong
1
ORCID: ORCID
Tao Jing
1
ORCID: ORCID
Yang Liu
2
ORCID: ORCID

  1. Tsinghua University, School of Materials Science and Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
  2. Jiangsu Changqiang Iron and Steel Corp., Ltd., Jiangsu 214500, China
Download PDF Download RIS Download Bibtex

Abstract

Spark Plasma Sintering (SPS) is identified as a suitable technique to prepare the alumina titanium carbide composite to overcome the difficulty in fabricating it through other consolidation method. The present work focuses on the fabrication and characterization of a series of titanium carbide reinforced alumina ceramic composites using a spark plasma sintering process. The titanium carbide reinforcement on the alumina matrix is varied between 20 and 35 wt.%, in order to improve the electrical conductivity and fracture toughness of the composites. The particle size of the starting powders at received and ball milled conditions was analysed through Particle size analyser and Scanning Electron Microscope (SEM). Microstructural analysis revealed that the TiC reinforcement is uniformly dispersed in the sintered composite. XRD report showed that α-alumina and titanium carbide were the two dominant phases without the formation of any reaction phases. Further, the correlation between mechanical and physical properties of the prepared composite was investigated as a function of TiC. Various fracture toughening indicators like crack deflection, bridging and branching were analysed by Vicker’s indentation method. Electrical resistivity of the sintered compact decreases proportionally with the increase in titanium carbide constituents. Maximum density (98.80%) and hardness (20.56 GPa) was obtained for 30 wt. % reinforced composite. Almost 40% improvement in fracture toughness is noted for 25 wt. % reinforced composite. This work demonstrates the synthesis and fabrication of alumina titanium carbide composites at low temperature via SPS resulted in obtaining an intact compact with improved mechanical and electrical properties.
Go to article

Bibliography

[1] Y. Tamura, B.M. Moshtaghioun, D.G. Garcia, A.D. Rodriguez, Ceram. Int. 43, 658-663 (2017).
[2] Y. Wang, F. Luo, W. Zhou, D. Zhu, J. Electron. Mater. 46 (8), 5225-5231 (2017).
[3] G.M. Asmelash, O. Mamat, F. Ahmad, A.K.P. Rao, J. Adv. Ceram. 4 (3), 190-198 (2015).
[4] S. Ghanizadeh, S. Grasso, P. Ramanujam, B. Vaidhyanathan, J. Binner, P. Brown, J. Goldwasser, Ceram. Int. 43, 275-281 (2017).
[5] E .S. Gevorkyan, M. Rucki, A.A. Kagramanyan, V.P. Nerubatskiy, Int. J. Refract. Met. H. 89, 336-339 (2019).
[6] C. Sun, Y. Li, Y. Wang, L. Zhu, Q. Jiang, Y. Miao, X. Chen, Ceram. Int. 40, 12723-12728 (2014).
[7] U .S. Radloff, F. Kern, R. Gadow, J. Eur. Ceram. Soc. 38, 4003- 4013 (2018).
[8] C. Tuzemen, B. Yavas, I. Akin, O. Yucel, F. Sahin, G. Goller, J. Alloy. Compd. 781, 433-439 (2019).
[9] I. Farias, L. Olmos, O. Jimenez, M. Flores, A. Braem, J. Vleugels, Trans. Nonferrous Met. Soc. China 29, 1653-1664 (2019).
[10] L.M. Luo, J.B. Chen, H.Y. Chen, G.N. Luo, X.Y. Zhu, J.G. Cheng, X. Zan, Y.C. Wu, Fusion Eng. Des. 90, 62-66 (2015).
[11] J . Zhang, L. Wang, W. Jiang, L. Chen, Mat. Sci. Eng. A. 487, 137-143 (2008).
[12] H . Istgaldi, M.S. Asl, P. Shahi, B. Nayebi, Z. Ahmadi, Ceram. Int. (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.09.287
[13] A.S. Namini, Z. Ahmadi, A. Babapoor, M. Shokouhimehr, M.S. Asl, Ceram. Int. 45, 2153-2160 (2019).
[14] D. Chakravarthy, S. Roy, P.K. Das, Bull. Mater. Sci. 28, 3, 227-231 (2005).
[15] L. Wang, X. Shu, X. Lu, Y. Wu, Y. Ding, S. Zhang, Mater. Lett. 196, 403-405 (2017).
[16] L. Cheng, Z. Xie, G. Liu, W. Liu, W. Xue, J. Eur. Ceram. Soc. 32, 3399-3406 (2012).
[17] N. Shanbhog, K. Vasanthakumar, N. Arunachalam, S.R. Bakshi, Int. J. Refract. Met. H. 84, 104979-104988 (2019).
[18] B.L. Madej, D. Garbiec, M. Madej, Vacuum. 164, 250-255 (2019).
[19] Y.F. Zhou, Z.Y. Zhao, X.Y. Tan, L.M. Luo, Y. Xu, X. Zan, Q. Xu, K. Tokunaga, X.Y. Zhu, Y.C. Wu, Int. J. Refract. Met. H. 79, 95- 101 (2019).
[20] P. Zhanga, C. Chena, Z. Chena, C. Shena, P. Fenga, Vacuum 164, 286-292 (2019).
[21] C. Luo, Y. Wang, J. Xu, G. Xu, Z. Yan, J. Li, H. Li, H. Lu, J. Suo, Int. J. Refract. Met. H. 81, 27-35 (2019).
[22] B.B. Bokhonov, M.A. Korchagin, A.V. Ukhina, D.V. Dudinaa, Vacuum, 157, 210-215 (2018).
[23] A. Teber, F. Schoenstein, F. Tetard, M. Abdellaoui, N. Jouini, Int. J. Refract. Met. H. 30, 64-70 (2012).
[24] M . Demuynck, J.P. Erauw, O.V. Biest, F. Delannay, F. Cambier, J. Eur. Ceram. Soc. 32, 1957-1964 (2012).
[25] Y.W. Kim, J.G. Lee, J. Am. Ceram. Soc. 12, 1333-37 (1989).
[26] R .A. Cutler, A.C. Hurford, Mat. Sci. Eng. A., 105/106, 183-192 (1988).
[27] J .H. Zhang, T.C. Lee, W.S. Lau, J. Mater. Process. Tech. 63, 908- 912 (1997).
[28] Z. Fu, R. Koc, Ceram. Int. 43, 17233-17237 (2017).
[29] R . Kumar, A.K. Chaubey, S. Bathula, K.G. Prashanth, A. Dhar, J. Mater. Eng. Perform. 27, 997-1004 (2018).
[30] O . Guillon, J.G. Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann. Adv. Eng. Mater. 16, 830-849 (2014).
[31] D. Zhang, L. Ye, D. Wang, Y. Tang, S. Mustapha, Y. Chen, Composites: Part A. 43, 1587-1598 (2012).
[32] T. Fujii, K. Tohgo, P.B. Putra, Y. Shimamura, J. Mech. Behav. Biomed. 19, 45-53 (2019).
[33] T. Thomas, C. Zhang, A. Sahu, P. Nautiyal, A. Loganathan, T. Laha, B. Boel, A. Agarwal, Mat. Sci. Eng. A. 728, 45-53 (2018).
[34] L.K. Singh, A. Bhadauria, T. Laha, J. Mater. Res. Technol. 8, 503-512 (2019).
[35] T. Fujii, K. Tohgo, M. Iwao, Y. Shimamura, J. Alloy. Compd. 744, 759-768 (2018).
[36] S. Xiang, S. Ren, Y. Liang, X. Zhang, Mat. Sci. Eng. A. 768, 138459 (2019).
[37] M .R. Akbarpour, S. Alipour, Ceram. Int. 43, 13364-13370 (2017).
[38] W.R. Ilaham, L.K. Singh, T. Laha, Fusion Eng. Des. 138, 303-312 (2019).
[39] U . Sabu, B. Majumdar, Bhaskar P. Saha & D. Das, Trans. Ind. Ceram. Soc. 77, 1-7 (2018)
[40] L. Zhang, R.V. Koka, Mater. Chem. Phys. 57, 23-32 (1998).
[41] J . Langer, M.J. Hoffmann, O. Guillon, Acta. Mater. 57, 5454-5465 (2009).
[42] A. Babapoor, M.S. Asl, Z. Ahmadi, A.S. Namini, Ceram. Int. 44, 14541-14546 (2018).
[43] F. Balima, A. Largeteau, Scr. Mater. 158, 20-23 (2019).
[44] W.H. Lee, J.G. Seong, Y.H. Yoon, C.H. Jeong, C.J.V. Tyne, H.G. Lee, S.Y. Chang, Ceram. Int. 45, 8108-8114 (2019).
Go to article

Authors and Affiliations

G. Selvakumar
1
S. Prakash
1
K. Rajkumar
1

  1. Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

Welding of AISI H13 tool steel which is mainly used in mold making is difficult due to the some alloying elements and it high hardenability. The effect filler metal composition on the microstructural changes, phase evolutions, and hardness during gas tungsten arc welding of AISI H13 hot work tool steel was investigated. Corrosion resistance of each weld was studied. For this purpose, four filler metals i.e. ER 312, ER NiCrMo-3, ER 80S, and 18Ni maraging steel were supplied. Potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of weldments. It was found the ER 80S weld showed the highest hardness owing to fully martensitic microstructure. The hardness in ER 312 and ER NiCrMo3 weld metals was noticeably lower than that of the other weld metals in which the microstructures mainly consisted of austenite phase. The results showed that the corrosion rate of ER 312 weld metal was lower than that other weld metals which is due to the high chromium content in this weld metal. The corrosion rate of ER NiCrMo-3 was lower than that of 18Ni maraging weld. The obtained results from EIS tests confirm the findings of potentiodynamic polarization tests.
Go to article

Bibliography

[1] B. Uddeholm, Bohler-Uddeholm H13 tool steel, 2013.
[2] J . Wang, Z. Xu, and X. Lu, J. Mater. Eng. Perform. 29 (3), 1849- 1859 (2020).
[3] G .A. Roberts, R. Kennedy, G. Krauss, Tool steels, 1998 ASM international.
[4] S. Jhavar, C.P. Paul, N.K. Jain, Eng. Fail. Anal. 34, 519-535 (2013).
[5] R .A. Meaquita, C.A. Barbosa, Proceedings of Machining, 2004 Sao Paulo.
[6] R .A. Mesquita, R. Schneider, Exacta. 8 (3), 307-318 (2010).
[7] W.T. Preciado, C.E.N. Bohorquez, Mater. Process. Technol. 179 (1-3), 244-250 (2006).
[8] A. Skumavc, J. Tušek, M. Mulc, D. Klobčar, Metalurgija. 53 (4), 517-520 (2014).
[9] J . Chen, S.-H. Wang, L. Xue, Mater. Sci. 47 (2), 779-792 (2012).
[10] A. Košnik, J. Tušek, L. Kosec, T. Muhič, Metalurgija. 50 (4), 231-234 (2011).
[11] S. Thompson, Handbook of mould: Tool and die repair welding, 1999 Elsevier.
[12] T. Branza, A. Duchosal, G. Fras, F. Deschaux-Beaume, P. Lours, Mater. Process.
[13] P. Peças, E. Henriques, B. Pereira, M. Lino, M. Silva, Build Futur. Innov. (2006).
[14] L.E.E. Jae-Ho, J. Jeong-Hwan, J.O.O. Byeong-Don, Y.I.M. Hong- Sup, M. Young-Hoon, Trans. Nonferrous Met. Soc. China. 19, 284-287 (2009).
[15] S.U.N. Yahong, S. Hanaki, H. Uchida, H. Sunada, N. Tsujii, Mater. Sci. Technol. 19, 91-93 (2009).
[16] R .H.G. e Silva, L.E. dos Santos Paes, C. Marques, K.C. Riffel, M.B. Schwedersky, J. Brazilian Soc. Mech. Sci. Eng. 41 (1), 38 (2019).
[17] K . Somlo, G. Sziebig, Ifac-papersonline. 52 (22), 101-107 (2019). [18] J .-L. Desir, Eng. Fail. Anal. 8 (5), 423-437 (2001).
[19] J .C. Lippold, Welding metallurgy and weldability, 2015 Wiley Online Library.
[20] J .R. Davis, Corrosion of weldments, 2006 ASM international.
[21] R .G. Buchheit Jr, J.P. Moran, G.E. Stoner, Corrosion. 46 (8), 610- 617 (1990).
[22] K .A. Chiang, Y.C. Chen, Mater. Lett. 59 (14-15), 1919-1923 (2005).
[23] C.F.G. Baxter, J. Irwin, R. Francis, The Third International Offshore and Polar Engineering Conference, 1993.
[24] M . Liljas, Glas. Scotland, Keynote Pap. V. 2, 13-16 (1994).
[25] J . Lippol, J.K. Damian, Welding metallurgy and weldability of stainless steels, 2005 John Wiley & Sons, New York.
[26] J .C. Lippold, S.D. Kiser, J.N. DuPont, Welding metallurgy and weldability of nickel-base alloys, 2011 John Wiley & Sons.
[27] R .M. Rasouli I, Metall. Eng. 21 (1), 54-71 (2018). [28] S. Kou, Welding metallurgy, 2003 John Wiley & Sons, New Jersey.
[29] M . Stern, A.L. Geary, Electrochem. Soc. 104 (1), 56-63 (1957).
[30] Y. Zhang, J. You, J. Lu, C. Cui, Y. Jiang, X. Ren, Surf. Coatings Technol. 204 (24), 3947-3953 (2010).
[31] E .E. Stansbury, R.A. Buchanan, Fundamentals of electrochemical corrosion, 2000 ASM international.
[32] M . Yeganeh, M. Saremi, Prog. Org. Coatings. 79, 25-30 (2015).
[33] P. Langford, J. Broomfield, Constr. Repair. 1 (2), (1987).
[34] A. Aguilar, A.A. Sagüés, R.G. Powers, Corrosion Rates of Steel in Concrete, 1990 ASTM International.
Go to article

Authors and Affiliations

Sadegh Varmaziar
1
ORCID: ORCID
Hossein Mostaan
1
ORCID: ORCID
Mahdi Rafiei
2
ORCID: ORCID
Mahdi Yeganeh
3
ORCID: ORCID

  1. Faculty of Engineering, Department of Materials and Metallurgical Engineering, Arak University, Arak 38156-8-8349, Iran
  2. Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  3. Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Download PDF Download RIS Download Bibtex

Abstract

In this study, the surface roughness of galvannealed low carbon Al-killed and Ti-Nb stabilized interstitial free steels was investigated using the industrial galvannealing process parameters. The iron content of the coatings was also analysed to establish a relationship with the surface roughness and coating composition. The surface roughness displayed an exponential behaviour with increasing of annealing time at each annealing temperature in both steel coatings, which was in an increasing order in the galvannealed low carbon Al-killed steel coating, whereas it was a reverse order in the galvannealed Ti-Nb stabilized interstitial free steel coating. The craters were observed on the galvannealed coatings resulting in high surface roughness. Increasing the iron content of the coatings leads to a reduction in the surface roughness with δ1k phase.
Go to article

Bibliography

[1] T. Irie, Developments of zinc-based coatings for automotive sheet steel in Japan, in: G. Krauss, D. Matlock (Eds.), Zinc-Based Steel Coating Systems: Metallurgy and Performance, TMS/AIME, Warrendale, PA, USA (1990).
[2] Y. Hisamatsu, Proc. 1st Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet (Galvatech’89), ISIJ, Tokyo, Japan (1989).
[3] A.R. Marder, Prog. Mater. Sci. 45, 191-271 (2000).
[4] N. Bandyopadhyay, G. Jha, A.K. Singh, T.K. Rout, N. Rani, Surf. Coat. Tech. 200, 4312-4319 (2006).
[5] M .A. Ghoniem, K. Lohberg, Metall. 26 (10), 1026-1030 (1972).
[6] O . Kubaschewski, Iron-Binary Phase Diagrams, Springer-Verlag Berlin Heidelberg GmbH, Aachen, Germany (1982).
[7] J. Nakano, D.V. Malakhov, G.R. Purdy, Calphad, 29 (4), 276-288 (2005).
[8] R . Kainuma, K. Ishida, Tetsu To Hagane 91, 349-355 (2005).
[9] G. Beranger, G. Henry, G. Sanz, The Book of Steel, Lavoisier Publishing with the participation of SOLLAC-Usinor Group, Paris, France (1996).
[10] T. Nakamori, Y. Adachi, T. Toki, A. Shibuya, ISIJ Int. 36 (2), 179-186 (1996).
[11] I . Hertveldt, B.C. De Cooman, J. Dilewijns, 39th MWSP Conference Proceedings, ISS-AIME, ISS, Indianapolis, IN, USA (1997).
[12] M . Chida, H. Irie, U.S. Patent Number 10,597,764 B2 (2020).
[13] S. Sriram, V. Krishnardula, H. Hahn, IOP Conf. Ser-Mat. Sci. 418 (1), 012094 (2018).
[14] M . Sakurai, J.I. Inagaki, M. Yamashita, Tetsu-to-Hagane, 89 (1), 18-22 (2003).
[15] S. Sepper, P. Peetsalu, M. Saarna, Agron. Res., Special Issue 1, 229-236 (2011).
[16] K .I.V. Vandana, M. Rajya Lakshmi, Int. J. Innov. Eng. Tech. 5 (2), 359-363 (2015).
[17] M . Urai, M. Arimura, M. Terada, M. Yamaguchi, H. Sakai, S. Nomura, Tetsu To Hagane 43 (19), 27-30 (1996).
[18] C.S. Lin. M. Meshii, C.C. Cheng, ISIJ Int. 35 (5), 503-511 (1995).
[19] F.E. Goodwin, T. Indian I. Metals 66, 5-6 (2013).
[20] G. Moréas, Y. Hardy, Rev. Met. Paris 98 (6), 599-606 (2001).
[21] A. van der Heiden, A.J.C. Burghardt, W. van Koesveld, E.B. van Perlstein, M.G.J. Spanjers, Galvanneal Microstructure and Anti- Powdering Process Windows, in: A.R. Marder (Ed.), The Physical Metallurgy of Zinc Coated Steel, TMS/AIME Conf. Proc., San Francisco, CA, USA (1994).
[22] P .M. Hale, R.N. Wright, F.E. Goodwin, SAE Technical Paper 2001-01-0084, 2001.
[23] J. Inagaki, M. Sakurai, T. Watanabe, ISIJ Int. 35 (11), 1388-1393 (1995).
[24] S.P. Carless, G.A. Jenkins, V. Randle, Ironmak. Steelmak. 27 (1), 69-74 (2000).
Go to article

Authors and Affiliations

Candan Sen Elkoca
1
ORCID: ORCID
Bulent Ekmekci
2
ORCID: ORCID
Oktay Elkoca
3
ORCID: ORCID

  1. Bulent Ecevit University, Alapli Vocational High School, Zonguldak 67850, Turkey
  2. Bulent Ecevit University, Department of Mechanical Engineering, Zonguldak 67100, Turkey
  3. Duzce University, Department of Mechanical Engineering, Duzce 81620, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this study, Ni20Cr coatings were obtained by cold spraying on an aluminum alloy 7075 substrate. The obtained coatings were characterized by a uniform microstructure and low porosity. The sprayed coating has the same phase composition as the powder used. Next, the cold sprayed coatings were heat treated using a TRUMPF TLF 6000 TURBO (4 kW) CO2 laser. The laser surface melting of the coatings resulted in the formation of a columnar structure and an improvement in their mechanical properties. The Ni20Cr cold sprayed coatings after additional laser melting showed lower porosity and an increase in microhardness and Young`s modulus.
Go to article

Bibliography

[1] L. Pawlowski, The science and engineering of thermal spray coatings, J. Willey & Sons Ltd, Chichester, II ed. (2008).
[2] D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, J. Therm. Spray Technol. 28 (4), 598-644 (2019).
[3] G. Di Girolamo, E. Serra, Thermally Sprayed Nanostructured Coatings for Anti-wear and TBC Applications: State-of-the-art and Future Perspectives, Anti-Abrasive Nanocoatings, Ed., Woodhead Publishing Limited, 513-541 (2015). DOI: https://doi.org/10.1016/B978-0-85709-211-3.00020-0
[4] A . Góral, L. Lityńska-Dobrzyńska, W. Żórawski, K. Berent, J. Wojewoda-Budka, Arch. Metall. Mater. 58 (2), 335-339 (2013).
[5] C.M. Kay, J. Karthikeyan, High Pressure Cold Spray, ASM International 2016.
[6] H. Assadi, H. Kreye, F. Gartner, T. Klassen, Acta Materialia 116, 382-407 (2016).
[7] M.R. Rokni, S.R. Nutt, C.A. Widener, G.A. Crawford, V.K. Champagne, Springer. 5, 143-192 (2018).
[8] A . Góral, W. Żórawski, P. Czaja, L. Lityńska-Dobrzyńska, M. Makrenek, S. Kowalski, J. Mater. Res. 110, 49-59 (2019), DOI: 10.3139/146.111698
[9] Q. Wang, N. Birbilis, X. Zahang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 1395-1399 (2012),
[10] C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissly, T. Eden, Mater. Des. 54, 212-221(2014)
[11] L. Ajdelsztajn, B. Jodoin, J.M. Schoenung, Surf. Coat. Tech. 201, 1166-1172 (2006).
[12] M. Scendo, W. Żórawski, A. Góral, Metals 9, 890-910 (2019). DOI: 103390/met9080890
[13] E. Qin, B. Wang, W. Li, Ma, H. Lu, S. Wu, J. Therm. Spray Technol. 28, 1072-1080 (2019).
[14] D. Kong, B. Zhao, J. Alloys Compd. 705, 700-707 (2017).
[15] T . Otmianowski, B. Antoszewski, W. Żórawski, Proceesing of 15th International Thermal Spray Conference, 25-29 May, Nice, France, 1333-1336 (1998).
[16] B . Antoszewski, P. Sęk, Proc. SPIE 8703, 8703-8743 (2012). DOI: https://doi.org/10.1117/12.2015240
[17] P. Sęk, Open Eng. 10, 454-461 (2020).
[18] M. Tlotleng, M. Shukla, E. Akinlabi, S. Pityana, Surface Engineering Techniques and Application: Research Advancements 177- 221 (2014). DOI: https://doi.org/10.4018/978-1-4666-5141-8.ch006
[19] D.K. Christoulis, M. Jeandin, E. Irissou, J.G. Legoux, W. Knapp, Laser-Assisted Cold Spray (LACS) InTech. 59-96 (2012). DOI: https://doi.org/10.5772/36104
[20] S.B. Mishra, K. Chandra, S. Prakash, J. Tribol. 128, 469-475 (2006) DOI: 10.1115/1.2197843
[21] A. Mangla, V. Chawla, G. Singh, Int. J. Eng. Sci. Res. Technol. 6, 674-686 (2017).
[22] N. Abu-Warda, A.J. López, M.D. López, M.V. Utrilla, Surf. Coat. Tech. 381, 125133 (2020).
[23] EN ISO 6507-1: 2018.
[24] https://www.scribd.com/document/423195204/DSMTS-0109-2- Ni20Cr-Powders
Go to article

Authors and Affiliations

D. Soboń
1
ORCID: ORCID

  1. Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work the conical Ni structures were obtained from an electrolyte containing NH4Cl as a crystal modifier. This process is called one-step method and allows to cover large areas with micro- and nanostructures during a single electrodeposition. Presence of NH4Cl promotes a vertical direction of structure growth in order to block a horizontal one. Additionally, this method does not require using chromic acid solution, which is dangerous for the environment. Due to the ferromagnetic properties of Ni, obtained coatings could be applied as magnetic devices. The influence of the parameters such as a preparation of copper substrate, a composition of electrolyte and electrodeposition conditions (time, the electrolyte temperature and current density) was investigated in this work.
Go to article

Bibliography

[1] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36, 307-326 (2010). DOI: https://doi.org/10.1016/j.pecs.2009.11.002
[2] L . Huang, M. Wei, S. Zaman, A. Ali, B.Y. Xia, Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting, Chem. Eng. J. 398, 125669 (2020). DOI: https://doi.org/10.1016/j.cej.2020.125669
[3] Z . He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diam. Relat. Mater. 13, 1764-1770 (2004). DOI: https://doi.org/10.1016/j.diamond.2004.03.004
[4] M.N. Krstajić Pajić, S.I. Stevanović, V. V. Radmilović, A. Gavrilović- Wohlmuther, P. Zabinski, N.R. Elezović, V.R. Radmilović, S.L. Gojković, V.M. Jovanović, Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method, Appl. Catal. B Environ. 243, 585-593 (2019). DOI: https://doi.org/10.1016/j.apcatb.2018.10.064
[5] D. Kutyła, K. Kołczyk-Siedlecka, A. Kwiecińska, K. Skibińska, R. Kowalik, P. Żabiński, Preparation and characterization of electrodeposited Ni-Ru alloys: morphological and catalytic study, J. Solid State Electrochem. 23, 3089-3097 (2019). DOI: https://doi.org/10.1007/s10008-019-04374-7
[6] M . Gong, H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res. 8, 23-39 (2015). DOI: https://doi.org/10.1007/s12274-014-0591-z
[7] V .D. Jović, B.M. Jović, U. Lačnjevac, N.V. Krstajić, P. Zabinski, N.R. Elezović, Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions, J. Electroanal. Chem. 819, 16-25 (2018). DOI: https://doi.org/10.1016/j.jelechem.2017.06.011
[8] P.R. Zabinski, S. Meguro, K. Asami, K. Hashimoto, Electrodeposited Co-Ni-Fe-C alloys for hydrogen evolution in a hot 8 kmol·m-3 NaOH, Mater. Trans. 47, 2860-2866 (2006). DOI: https://doi.org/10.2320/matertrans.47.2860
[9] L. Sun, P.C. Searson, C.L. Chien, Magnetic anisotropy in prismatic nickel nanowires, Appl. Phys. Lett. 79, 4429-4431 (2001). DOI: https://doi.org/10.1063/1.1428113
[10] F. Tian, A. Hu, M. Li, D. Mao, Superhydrophobic nickel films fabricated by electro and electroless deposition, Appl. Surf. Sci. 258, 3643-3646 (2012). DOI: https://doi.org/10.1016/j.apsusc.2011.11.130
[11] Z . Chen, F. Tian, A. Hu, M. Li, A facile process for preparing superhydrophobic nickel films with stearic acid, Surf. Coatings Technol. 231, 88-92 (2013). DOI: https://doi.org/10.1016/j.surfcoat.2012.01.053
[12] S. Rahimi, S. Shahrokhian, H. Hosseini, Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays‑nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors, J. Electroanal. Chem. 810, 78-85 (2018). DOI: https://doi.org/10.1016/j.jelechem.2018.01.004
[13] T. Hang, M. Li, Q. Fei, D. Mao, Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19, 035201 (2008). DOI: https://doi.org/10.1088/0957-4484/19/03/035201
[14] T. Hang, A. Hu, H. Ling, M. Li, D. Mao, Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition, Appl. Surf. Sci. 256, 2400-2404 (2010). DOI: https://doi.org/10.1016/j.apsusc.2009.10.074
[15] N . Wang, T. Hang, S. Shanmugam, M. Li, Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition, CrystEngComm. 16, 6937-6943 (2014). DOI: https://doi.org/10.1039/c4ce00565a
[16] M. Hashemzadeh, K. Raeissi, F. Ashrafizadeh, S. Khorsand, Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings, Surf. Coatings Technol. 283, 318-328 (2015). DOI: https://doi.org/10.1016/j.surfcoat.2015.11.008
Go to article

Authors and Affiliations

K. Skibińska
1
ORCID: ORCID
S. Semeniuk
1
D. Kutyła
1
ORCID: ORCID
K. Kołczyk-Siedlecka
1
ORCID: ORCID
A. Jędraczka
1
ORCID: ORCID
P. Żabiński
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work investigates the distribution and the effect of synthesized nano TiO2, micro SiC and B4C particle on the aluminium (A356) metal matrix composites (AMMC). The consequences of this reinforcement on the mechanical, tribology and corrosion behaviour of the AMMC matrix are analyzed. The nano TiO2 is synthesized by wet chemistry sol-gel process, and the reinforcements are added with A-356 by stir casting method. The ASTM standard test specimens are characterized through mechanical, tribology, and corrosion tests for identifying their properties. The metallurgical characterization has been deliberated through XRD and SEM with EDS. In the tensile test results, the percentage of elongation is dropped drastically by 73% due to the enhanced volume % of nano TiO2, micro SiC, and B4C particles. The particle addition of the wear rate and weight loss are reduced at different volume percentages of the A356 matrix. The time plays a significant role in the corrosion rate. The test results also confirm that the corrosion rate is comparatively minimum in 24 hrs (592.35 mm/yr) duration than the 48 hrs (646.368 mm/yr) in both the solutions.
Go to article

Bibliography

[1] S .N.A. Safri, M.T.H. Sultan, M. Jawaid, K. Jayakrishna, Impact behavior of hybrid composites for structural applications: a review, Comp. Part B Eng. 133, 112-21 (2017). DOI: https://doi.org/10.1016/j.Comp Part B.2017.09.008
[2] R amanathan Arunachalam, Pradeep Kumar Krishnan, Rajaraman Muraliraja. A review on the production of metal matrix composites through stir casting-Furnace design, properties, challenges, and research opportunities, J. Manuf. Proc. 42, 213-245 (2019).
[3] M . Kok, Production and mechanical properties of Al2O3 particlereinforced 2024 aluminium alloy composites, J. Mater. Process. Tech. 161, 381-7 (2005).
[4] A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites, Mater. Sci. Eng. A. 508 (1), 167-73 (2009).
[5] I . Sridhar, K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites, J. Mater. Sci. 44 (7), 1750-6 (2009).
[6] L. Wang, H. Choi, J.M. Myoung, W. Lee, Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites, Carbon. 47 15), 3427-33 (2009).
[7] D.J. Woo, F.C. Heer, L.N. Brewer, J.P. Hooper, S. Osswald, Synthesis of nanodiamond-reinforced aluminum metal matrix composites using cold-spray deposition, Carbon. 86, 15-25 (2015).
[8] S . Balasivanandha Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite, J. Mater. Proc. Tech, 171, 268-273 (2006).
[9] R . Mishra Sheok, R.K. Srivastava. Tribological behaviour of Al- 6061/SiC metal matrix composite by Taguchi’s techniques, Int. Jour. Scic. Res. Pub. 2 (10), 1-8 (2012).
[10] J igar Suthar, K.M. Patel. Processing issues, machining, and applications of aluminum metal matrix composites, Mat. Manuf. Proc. 33 (5), 499-527 (2018).
[11] A.S. Vencl, F. Vučetić, B. Bobić, J. Pitel, I. Bobić, Tribological characterization in dry sliding conditions of compocasted hybrid A356/SiCp/Grp composites with graphite macroparticles. Int Jour Adv Manuf Tech. part of Springer Nature, (2018).
[12] B.K. Prasad, O.P. Modi, Sliding wear response of zinc based alloy as affected by suspended solid lubricant particles in oil lubricant, Tribology - Materials, Surf. & Interf. 2 (2), 84-91 (2008).
[13] H . Mazahery, H. Abdizadeh, R. Baharvandi, Development of high-performance A356/nano-Al2O3 composites, Mat. Sci. Engg. A. 518, 61-64 (2009).
[14] Ali Mazahery, Mohsen Ostad Shabani. Influence of the hardcoated B4C particulates on wear resistance of Al-Cu alloys, Comp: Part B. 43, 1302-1308 (2012).
[15] M . Karbalaei Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced, Mat. Desn. 66, 150-161 (2015).
[16] R . Senthil Kumar, K. Prabu, G. Rajamurugan, P. Ponnusamy, Comparative analysis of particle size on the mechanical and metallurgical characteristics of Al2O3 reinforced sintered and extruded AA2014 nano hybrid composite, Jour. Comp. Mat. 53 (28-29), 4369-4384 (2019). DOI: https://doi.org/10.1177/0021998319856676
[17] B.K. Prasad, Effects of some solid lubricant particles and their concentration in oil towards controlling wear performance of leaded tin bronze bush, Can. Metal Quar. 51 (2), 210-220 (2012). DOI: https://doi.org/10.1179/1879139511Y.0000000030
[18] P. Sangaravadivel, G. Rajamurugan, P. Krishnasamy, Significance of tungsten disulfide on the mechanical and machining characteristics of phosphor bronze metal matrix composite, Advanced Composites Letters 29, 1-13 (2020). DOI: https://doi.org/10.1177/2633366X20962496
[19] A. Vencl, I. Bobic, S. Arostegui, B. Bobic, A. Marinković, M. Babić, Structural, mechanical and tribological properties of A356 aluminum alloy reinforced with Al2O3, SiC, and SiC + graphite particles. J. All and Comp. 506, 631-639 (2010).
[20] A. Singh, G. Rajamurugan, K. Prabu, D. Dinesh, Surface modification of aluminium alloy 5083 reinforced with Cr2O3/TiO2 by friction stir process, SAE Tech. paper, 2019-28-0179, 1-7 (2019). DOI: https://doi.org/10.4271/2019-28-0179
[21] S . Jaiswal, G. Rajamurugan, P. Krishnasamy, Y. Shaswat, M. Kaushik, Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles, SAE Tech. Paper, 2019-28-0094 (2019). DOI: https://doi.org/10.4271/2019-28-0094
Go to article

Authors and Affiliations

D. Paulraj
1
ORCID: ORCID
P.D. Jeyakumar
1
ORCID: ORCID
G. Rajamurugan
2
ORCID: ORCID
P. Krishnasamy
2
ORCID: ORCID

  1. B.S. Abdur Rahman Crescent Institute of Science and Technology, Department of Mechanical Engineering, Chennai-600 048, Tamilnadu, India
  2. Vellore Institute of Technology, School of Mechanical Engineering, Vellore-632014, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

This study is to find the extent of variation in mechanical properties between plate and pipe welds fabricated out of the same FSW process parameters. Common thickness of 3 mm along with similar tool specifications is used to fabricate the weld. Process parameters of tool rotational speed 2000 rpm and weld speed 94 mm/min that was defined as optimal for pipe weld is used as common process parameters. Welds are analyzed for hardness and tensile properties. Yield strength and ultimate tensile strength varied about 8.1% and 11.2% respectively between plate and pipe welds. The hardness of the stir zones varied about 11.6% between plate and pipe welds.
Go to article

Bibliography

[1] G . Mathers, The welding of aluminium and its alloys. Woodhead publishing (2002).
[2] T.H. Tra, ASEAN Engineering Journal 4, 73-81 (2011).
[3] A. Ismail, M. Awang, M.A. Rojan, S.H. Samsudin, ARPN J. Eng. Appl. Sci. 11 (1), 277-280 (2006).
[4] P. Manikkavasagan, G. Rajamurugan, K.S. Kumar, D. Yuvaraj, In: Mater. Sci. Forum. 302-305 (2015).
[5] K.A. Prabha, P.K. Putha, B.S. Prasad, Mater. Today-Proc 5 (9), 18535-18543 (2018). https://doi.org/10.1016/j.matpr.2018.06.196
[6] K. Elangovan, V. Balasubramanian, J. Mater. Process Tech. 200 (1), 163-175 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.09.019
[7] D. Maneiah, K.P. Rao, K.B. Raju, Int. J. Adv. Res. Technol. 4 (12), 53-57 (2017). DOI: https://doi.org/10.22161/ijaers.4.12.10
[8] S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao, Def. Technol. 11 (3), 308-317 (2015). DOI: https://doi.org/10.1016/j.dt.2015.06.001
[9] A. Ismail, M. Awang, H. Fawad, K. Ahmad, in: Proceedings of the 7th Asia Pacific IIW International Congress, Singapore, 78-81 (2013).
[10] I . Sabry, A. Khourshid, H. Hindawy, A. Elkassas, Engineering and Technology in India, 2 (1), 1-14 (2017). DOI: https://doi.org/10.15740/HAS/ETI/8.1&2/1-14
[11] M. Akbari, P. Asadi, Mater. Res. Express 6 (6), 066545 (2019). DOI: https://doi.org/10.1088/2053-1591/ab0d72
[12] S.M. Senthil, R. Parameshwaran, S. Ragu Nathan, M. Bhuvanesh Kumar, K. Deepandurai, Struct. Multidiscip. O. 62 (4), 1117-1133 (2020). DOI: https://doi.org/10.1007/s00158-020-02542-2
[13] S.M. Senthil, R. Parameshwaran, S.R. Nathan, S. Karthi, Russ. J. Nondestruct. 55 (12), 957-966 (2019). DOI: https://doi.org/10.1134/S1061830919120106
[14] I . Mumvenge, S.A. Akinlabi, P.M. Mashinini, O.S. Fatoba, J. Okeniyi, E.T. Akinlabi, in: IOP Conf. Ser- Mat. Sci., 012035 (2018). DOI: https://doi.org/10.1088/1757-899X/413/1/012035
[15] A. Ismail, M. Awang, F. Ab Rahman, B.A. Baharudin, P.Z.M. Khalid, D.A. Hamid, in: Engineering Applications for New Materials and Technologies, 439-444 (2018). DOI: https://doi.org/10.1007/978-3-319-72697-7_35
[16] J.S. Sashank, P. Sampath, P.S. Krishna, R. Sagar, S. Venukumar, S. Muthukumaran, Mater. Today-Proc, 5 (2), 8348-8353 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.527
[17] J. Tang, Y.J. Shen, Manuf. Process 29, 29-40 (2017). DOI: https://doi.org/10.1016/j.jmapro.2017.07.005
Go to article

Authors and Affiliations

S.M. Senthil
1
ORCID: ORCID
S. Ragu Nathan
2
R. Parameshwaran
1
ORCID: ORCID
M. Bhuvanesh Kumar
3

  1. Kongu Engineering College, Erode, India
  2. Sree Vidyan Ikethan Engineering College, Tirupati, India
  3. National Institute of Technology, Tiruchirappalli, India
Download PDF Download RIS Download Bibtex

Abstract

Nowadays the automotive industry mostly prefers innovative solid-state welding technologies that would enable to welding of lightweight and high-performance materials. In this work, 3105-H18 Aluminium alloy (Al) and pure Copper (Cu) specimens with 0.5 mm thickness have been ultrasonically welded in a dissimilar (Al-Cu) manner. Optimization of process parameters of ultrasonic welding has been carried out through full factorial method, three levels of variables considered for this experimental studies namely, weld pressure, amplitude, and time, also each variable interaction with welding strength has been studied. Additionally, micro-hardness and microstructure investigation in welded joints has been studied. The result shows that the weld strength greatly influenced weld amplitude at a medium and higher level of weld pressure. The interface micro-hardness of the welded joint has lower compared to the base metal.
Go to article

Bibliography

[1] H . Peng, X. Jiang, X. Bai, D. Li, D. Chen, Metals 8 (4), 2075-4701 (2018). DOI: https://doi.org/10.3390/met8040229
[2] A.B. Pereira, A. Cabrinha, F. Rocha, P. Marques, F.A. Fernandes, R.J. Alves de Sousa, Metals 9 (1), 102 (2019). DOI: https://doi.org/10.3390/met9010102
[3] N. Eslami, Y. Hischer, A. Harms, D. Lauterbach, S. Böhm, Metals 9 (2), 179 (2019). DOI: https://doi.org/10.3390/met9020179
[4] N. Eslami, Y. Hischer, A. Harms, D. Lauterbach, S. Böhm, Metals 9 (1), 63 (2019). DOI: https://doi.org/10.3390/met9010063
[5] Z. Ni, F. Ye, Mater. Lett. 182 (19-22), (2016). DOI: https://doi.org/10.1016/j.matlet.2016.06.071
[6] S . Salifu, D. Desai, O. Ogunbiyi, R. Sadiku, O. Adesina, O. Adesina, Mater. Today:. Proc., (2020). DOI: https://doi.org/10.1016/j.matpr.2020.03.828
[7] J . Wang, W. Wei, X. Huang, L. Li, F. Pan, Mater. Sci. Eng. A, 529, 497 (2011). DOI: https://doi.org/10.1016/j.msea.2011.09.058
[8] D.-M. Iordache, C.-M. Ducu, E.-L. Niţu, D. Iacomi, A.-G. Plăiaşu, MATEC Web of Conferences. 112: p. 04005, (2017). DOI: https://doi.org/10.1051/matecconf/201711204005
[9] J . Lee, D. Bae, W. Chung, K. Kim, J. Lee, Y. Cho, J. Mater. Process. Technol. 187, 546-549 (2007). DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.121
[10] S . Elangovan, K. Prakasan, V. Jaiganesh, Int. J. Adv. Manuf. Technol. 51 (1-4), 163-171 (2010). DOI: https://doi.org/10.1007/s00170-010-2627-1
[11] M.P. Satpathy, B.R. Moharana, S. Dewangan, S.K. Sahoo, Eng. Sci. Technol. Int. J. 18 (4), 634-647 (2015). DOI: https://doi.org/10.1016/j.jestch.2015.04.007
[12] E . Sooriyamoorthy, S.P.J. Henry, P. Kalakkath, Int. J. Adv. Manuf. Technol. 55 (5-8), 631-640 (2011). DOI: https://doi.org/10.1007/s00170-010-3059-7
[13] M.P. Satpathy, S.K. Sahoo, S. Datta, Appl. Mech. Mater. 592, 652-657 (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMM.592- 594.652
[14] U . Khan, N.Z. Khan, J. Gulati, Procedia. Eng. 173, 1447-1454 (2017). DOI: https://doi.org/10.1016/j.proeng.2016.12.210
[15] J . Liu, B. Cao, J. Yang, J. Manuf. Process. 35, 595-603, (2018). DOI: https://doi.org/10.1016/j.jmapro.2018.09.008
Go to article

Authors and Affiliations

A. Mohan Kumar
1
ORCID: ORCID
R. Rajasekar
1
ORCID: ORCID
V. Karthik
2
ORCID: ORCID
S. Kheawhom
3
ORCID: ORCID

  1. School of Building and Mechanical Sciences, Kongu Engineering College, Erode, Tamilnadu, India - 6380602
  2. NIT, Tiruchirappalli, Department of Metallurgical and Materials Engineering, Tamilnadu, India – 620015
  3. Chulalongkorn University, Faculty of Engineering, Department of Chemical Engineering, Bangkok, Thailand – 10330
Download PDF Download RIS Download Bibtex

Abstract

A huge amount of carbon black (40-60 phr) was commonly used as a reinforcing material in manufacturing of tires to improve the technical properties of pure rubber. Carbon black causes severe health hazard like skin cancer, respiratory problem due to its fly loss property. This study focusses on reducing the usage of carbon black by replacing it with minimal quantity of nanoclay to compensate the technical properties of rubber. Natural Rubber nanocomposite are fabricated using solution and mechanical mixing method in presence and absence of compatibilizer. Cure characteristics, wear test and mechanical properties were examined. NR nanocomposite with dual filler in presence of compatibilizer showed enhancement in torque values, mechanical and wear resistant property. Wear resistance, tensile strength and modulus of dual filler nanocomposite was increased by 66.7%, 91% and 85% when compared to pure NR. Hence NR nanocomposite with dual filler in presence of compatibilizer was found as a proving and possible nanocomposite for tire application.
Go to article

Bibliography

[1] K . Pal, R. Rajasekar, D.J. Kang, Z.X. Zhang, S.K. Pal, C.K. Das, J.K. Kim, Mater. Des. 31 (2), 677-686 (2010). DOI : https://doi.org/10.1016/j.matdes.2009.08.014
[2] K . Pal, R. Rajasekar, T. Das, D. Kang, S. Pal, J. Kim, C. Das, Plast., Rubber Compos. 38 (7), 302-308 (2009). DOI : https://doi.org/10.1179/174328909X435393
[3] K . Pal, R. Rajasekar, D.J. Kang, Z.X. Zhang, J.K. Kim, C. Das, Mater. Des. 30 (10), 4035-4042 (2009). DOI : https://doi.org/10.1016/j.matdes.2009.05.021
[4] K . Roy, S.C. Debnath, P. Potiyaraj, J. Elastomers Plast., (2019).
[5] S .J. He, Y.Q. Wang, J. Lin, L.Q. Zhang, Adv. Mater. Res. 28-31 (2012).
[6] S . Ahmadi Shooli, M. Tavakoli, J. Macromol. Sci., Part B, 55 (10), 969-983 (2016). DOI : https://doi.org/10.1080/00222348.2016.1230464
[7] R . Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, K. Auddy, A. Deuri, Polym. Eng. Sci. 47 (11), 1956-1974 (2007). DOI: https://doi.org/10.1002/pen.20921
[8] A. Malas, C.K. Das, J. Mater. Sci. 47 (4), 2016-2024 (2012). DOI : https://doi.org/10.1007/s10853-011-6000-z
[9] Q.-X. Jia, Y.-P. Wu, P. Xiang, Y. Xin, Y.-Q. Wang, L.-Q. Zhang, Polym. Polym. Compos. 13 (7), 709-719 (2005).
[10] H. Nabil, H. Ismail, Int. J. Polym. Anal. Charact. 19 (2), 159-174 (2014). DOI: https://doi.org/10.1080/1023666X.2014.873597
[11] R . Rajasekar, G. Heinrich, A. Das, C.K. Das, J. Nanotechnol. 2009, 1-5 (2009). DOI: https://doi.org/10.1155/2009/405153
[12] Y.-W. Mai, Z.-Z. Yu, Polym. Nanocompos., Woodhead publishing, (2006).
[13] R . Rajasekar, G. Nayak, C. Das, Plast., Rubber Compos. 40 (3), 146-150 (2011). DOI : https://doi.org/10.1179/1743289810Y.0000000010
[14] Y. Liang, Y. Wang, Y. Wu, Y. Lu, H. Zhang, L. Zhang, Polym. Test. 24 (1), 12-17 (2005). DOI : https://doi.org/10.1016/j.polymertesting.2004.08.004
[15] K . Pal, R. Rajasekar, S.K. Pal, J.K. Kim, C.K. Das, J. Nanosci. Nanotechnol. 10 (5), 3022-3033 (2010). DOI: https://doi.org/10.1166/ jnn.2010.2170
[16] R . Iyer, S. Suin, N.K. Shrivastava, S. Maiti, B. Khatua, Polym.- Plast. Technol. Eng. 52 (5), 514-524 (2013). DOI : https://doi.org/10.1080/03602559.2012.762024
[17] P. Saramolee, K. Sahakaro, N. Lopattananon, W.K. Dierkes, J.W. Noordermeer, J. Elastomers Plast. 48 (2), 145-163 (2016). DOI: https://doi.org/10.1177/0095244314568469
[18] N. Hayeemasae, I. Surya, H. Ismail, Int. J. Polym. Anal. Charact. 21 (5), 396-407 (2016). DOI : https://doi.org/10.1080/1023666X.2016.1160970
[19] R . Rajasekar, C. Das, Plast., Rubber Compos. 40 (8), 407-412 (2011). DOI: https://doi.org/10.1179/1743289810Y.0000000039
[20] A. Malas, C.K. Das, Mater. Des. 49, 857-865 (2013). DOI : https://doi.org/10.1016/j.matdes.2013.02.040
[21] R . Rajasekar, G. Nayak, A. Malas, C. Das, Mater. Des. 35 (1), 878-885 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.10.018
[22] R . Mahaling, S. Kumar, T. Rath, C. Das, J. Elastomers Plast. 39 (3), 253-268 (2007). DOI: https://doi.org/10.1177/00952443070 76495
[23] P. Teh, Z.M. Ishak, A. Hashim, J. Karger-Kocsis, U. Ishiaku, Eur. Polym. J. 40 (11), 2513-2521 (2004). DOI : https://doi.org/10.1016/j.eurpolymj.2004.06.025
[24] H. Ismail, H. Chia, Eur. Polym. J. 34 (12), 1857-1863 (1998). DOI: https://doi.org/10.1016/S0014-3057(98)00029-9
[25] T. Mohan, J. Kuriakose, K. Kanny, J. Ind. Eng. Chem. 17 (2), 264-270 (2011). DOI: https://doi.org/10.1016/j.jiec.2011.02.019
[26] M.S. Kim, G.H. Kim, S.R. Chowdhury, Polym. Eng. Sci. 47 (3), 308-313 (2007). DOI: https://doi.org/10.1002/pen.20709
[27] A. Khalil, S.N. Shaikh, Z.R. Nudrat, S. Khaula, Adv. Mater. Phys. Chem. 2012, (2012).
[28] G .C.N. R. Rajasekar, C.K. Das, Materials Science & Technologies, 575-590, (2011).
[29] B.P. Kapgate, C. Das, D. Basu, A. Das, G. Heinrich, J. Ela-stomers Plast. 47 (3), 248-261 (2015). DOI: https://doi.org/10.1177/0095244313507807
[30] K . Pal, T. Das, R. Rajasekar, S.K. Pal, C.K. Das, J. Appl. Polym. Sci. 111 (1), 348-357 (2009). DOI: https://doi.org/10.1002/app.29128
[31] M. Balachandran, S. Bhagawan, J. Polym. Res. 19 (2), 9809 (2012). DOI: https://doi.org/10.1007/s10965-011-9809-x
[32] Y. Liu, L. Li, Q. Wang, Plast., Rubber Compos. 39 (8), 370-376 (2010). DOI: https://doi.org/10.1179/174328910X12691245469871
Go to article

Authors and Affiliations

M. Harikrishna Kumar
1
ORCID: ORCID
Shankar Subramaniam
1
Rajasekar Rathanasamy
1
ORCID: ORCID
Samir Kumar Pal
2
ORCID: ORCID
Sathish Kumar Palaniappan
2

  1. School of Building and Mechanical Sciences, Kongu Engineering College, Perundurai – 638060, Tamil Nadu State, India
  2. Department of Mining Engineering, Indian Institute of Technology, Kharagpur – 721302, West Bengal State, India
Download PDF Download RIS Download Bibtex

Abstract

This research study intends to develop an online tool condition monitoring system and to examine scientifically the effect of machining parameters on quality measures during machining SAE 1015 steel. It is accomplished by adopting a novel microflown sound sensor which is capable of acquiring sound signals. The dry turning experiments were performed by employing uncoated, TiAlN, TiAlN/WC-C coated inserts. The optimal cutting conditions and their influence on flank wear were determined and predicted value has been validated through confirmation experiment. During machining, sound signals were acquired using NI DAQ card and statistical analysis of raw data has been performed. Kurtosis and I-Kaz coefficient was determined systematically. The correlation between flank wear and I-Kaz coefficient was established, which fits into power-law curve. The neural network model was trained and developed with least error (3.7603e-5). It reveals that the developed neural network can be effectively utilized with minimal error for online monitoring.
Go to article

Bibliography

[1] M. Noordin, V. Venkatesh, S. Sharif, J. Mater. Process. Tech. 185 (1-3), 83-90 (2007). DOI: https://doi.org/10.1016/j.jmatprotec.2006.03.137
[2] C. Moganapriya, M. Vigneshwaran, G. Abbas, A. Ragavendran, V.C. Harissh Ragavendra, R. Rajasekar, Mater. Today, Proceeding (2020).
[3] A.M. Ravi, S.M. Murigendrappa, P.G. Mukunda, T. Indian I. Metals 67 (4), 485-502 (2014). DOI: https://doi.org/10.1007/s12666-013-0369-0
[4] A.P. Kulkarni, V.G. Sargade, Mater. Manuf. Process 30 (6), 748- 755 (2015). DOI: https://doi.org/10.1080/10426914.2014.984217
[5] C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, S. Jerome, Mater. Today. Proceeding 5 (2), 8532-8538 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.550
[6] G .C. Rosa, A.J. Souza, E.V. Possamai, H.J. Amorim, P.D. Neis, Wear 376, 172-177 (2017). DOI: https://doi.org/10.1016/j.wear.2017.01.088
[7] A. Alok, M. Das, Measurement 133, 288-302 (2019). DOI: https://doi.org/10.1016/j.measurement.2018.10.009
[8] R . Yigit, E. Celik, F. Findik, S. Koksal, Int. J. Refract. Hard. Met. 26 (6), 514-524 (2008). DOI: https://doi.org/10.1016/j.ijrmhm.2007.12.003
[9] R . Horváth, Á. Drégelyi-Kiss, G. Mátyási, Acta Polytech. Hung. 11 (2), 137-147 (2014).
[10] R . Kumar, P.S. Bilga, S. Singh, J. Clean Prod. 164, 45-57 (2017). DOI: https://doi.org/10.1016/j.jclepro.2017.06.077
[11] M.K. Gupta, P. Sood, V.S. Sharma, J. Clean Prod. 135, 1276-1288 (2016). DOI: https://doi.org/10.1016/j.jclepro.2016.06.184
[12] S . Pai, T. Nagabhushana, Handbook of Research on Emerging Trends and Applications of Machine Learning, 2020 IGI Global.
[13] A.K. Jain, B.K. Lad, J. Intell. Manuf. 30 (3), 1423-1436 (2019). DOI: https://doi.org/10.1007/s10845-017-1334-2
[14] R . Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld, CIRP Ann. 59 (2), 717-739 (2010). DOI: https://doi.org/10.1016/j.cirp.2010.05.010
[15] C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, R. Karthick, Arch. Metall. Mater. 62 (3), 1827-1832 (2017). DOI: https://doi.org/10.1515/amm-2017-0276
[16] H .B. Ulas,T. Indian I. Metals 67 (6), 869-879 (2014). DOI: https://doi.org/10.1007/s12666-014-0410-y
[17] S . Thangarasu, S. Shankar, T. Mohanraj, K. Devendran, P. I. Mech. Eng. C.-J. Mec. 234 (1), 329-342 (2019).
[18] J .A. Ghani, M. Rizal, M.Z. Nuawi, C.H. Che Haron, M.J. Ghazali, M.N.A. Rahman. Trans. Tech. Publ. 2010.
[19] S . Oraby, D. Hayhurst, Int. J. Mach. Tools Manuf. 44 (12-13), 1261-1269 (2004). DOI: https://doi.org/10.1016/j.ijmachtools.2004.04.018
Go to article

Authors and Affiliations

Moganapriya Chinnasamy
1
ORCID: ORCID
Rajasekar Rathanasamy
1
ORCID: ORCID
Gobinath Velu Kaliyannan
2
ORCID: ORCID
Prabhakaran Paramasivam
1
ORCID: ORCID
Saravana Kumar Jaganathan
3 4 5
ORCID: ORCID

  1. Kongu Engineering College, Department of Mechanical Engineering, Perundurai – 638060, Tamil Nadu State, India
  2. Kongu Engineering College, Department of Mechatronics Engineering, Perundurai – 638060, Tamil Nadu State, India
  3. Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  4. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  5. Department of Engineering, Faculty of Science and Engineering, University of Hull, HU6 7RX, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

In this study, a new chemically modified cellulose polymer-capped ZnO nanopowder prepared by hydrothermal method using chemically modified cellulose polymer as capping agent was successfully reported. The structural characteristics of CMC-capped ZnO nanopowder was reported by FTIR, XRD, SEM and EDX studies. XRD results revealed crystallographic properties like crystal composition, phase purity and crystallite size of the prepared CMC-capped ZnO nanopowder and average size calculated by Debye Scherrer formula as 14.66 nm. EDX studies revealed that the presence of elemental compositions of capping agent in the nanopowder samples. The optical characterization of the CMC-capped ZnO nanopowder was studied using UV absorption (λmax = 303 nm) and PL spectroscopy (λex = 295 nm). The average crystal diameter and grain size were calculated by effective mass approximation formula and compared with XRD findings that agreed well and verified CMC capped ZnO with particle size of 193 nm. Thus, the promising optical characteristics shown by the synthesized CMC capped ZnO nanopowders exposes its potential usage in bio-medical fields.
Go to article

Bibliography

[1] M. Abbas, M. Buntinx, W. Deferme, R. Peeters, Nanomaterials 9 (10), 1494 (2019). DOI: https://doi.org/10.3390/nano9101494
[2] J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, Z. Guo, J. Mater. Chem. C 7 (38), 11710-11730 (2019). DOI: https://doi.org/10.1039/c9tc03655e
[3] S. Huda, M.A. Alam, P.K. Sharma, J. Drug Deliv. Sci. Technol. 102018 (2020). DOI: https://doi.org/10.1016/j.jddst.2020.102018
[4] F. Farjadian, A.R. Akbarizadeh, L. Tayebi, Heliyon 6 (8), e04747 (2020). DOI: https://doi.org/10.1016/j.heliyon.2020.e04747
[5] M.M. Abutalib, A. Rajeh, Polym. Test. 106803 (2020). DOI: https://doi.org/10.1016/j.polymertesting.2020.106803
[6] L. Cen, K.G. Neoh, E T. Kang, Langmuir 19 (24), 10295-10303 (2003). DOI: https://doi.org/10.1021/la035104c
[7] L. Muthulakshmi, A. Varada Rajalu, G.S. Kaliaraj, S. Siengchin, J. Parameswaranpillai, R. Saraswathi, Composites Part B: Engineering, 175, 107177 (2019). DOI: https://doi.org/10.1016/j.compositesb. 2019.107177
[8] M.V. Lungu, E. Vasile, M. Lucaci, D. Pătroi, N. Mihăilescu, F. Grigore, V. Marinescu, A. Brătulescu, S. Mitrea, A. Sobetkii, A.A. Sobetkii, M. Popa, M.C. Chifiriuc, Materials Characterization 120, 69-81 (2016). DOI: https://doi.org/10.1016/j.matchar.2016.08.022
[9] Zhao, Si-Wei, Guo, Chong-Rui, Hu, Ying-Zhu, Guo, Yuan-Ru, Pan, Qing-Jiang. Open Chemistry 16 (1), 9-20 (2018). DOI: https://doi.org/10.1515/chem-2018-0006
[10] R. Saravanan, L. Ravikumar, Water Environ. Res. 89 (7), 629-640 (2017). DOI: https://doi.org/10.2175/106143016X14733681696329
[11] J. Wang, S. Yu, H. Zhang, Optik 180, 20-26 (2019). DOI: https://doi.org/10.1016/j.ijleo.2018.11.062
[12] R. Saravanan, L. Ravikumar, J. Water Resour. Prot. 7 (6), 530 (2015). DOI: https://doi.org/10.4236/jwarp.2015.76042
[13] S. Krishnaswamy, P. Panigrahi, S. Kumaar, G.S. Nagarajan, Nano- Struct. Nano-Objects 22, 100446 (2020). DOI: https://doi.org/10.1016/j.nanoso.2020.100446
[14] C. Miao, W.Y. Hamad, Curr. Opin. Solid State Mater. Sci. 23 (4), 100761 (2019). DOI: https://doi.org/10.1016/j.cossms.2019.06.005
[15] K.I. Aly, O. Younis, M.H. Mahross, O. Tsutsumi, M.G. Mohamed, M.M. Sayed, Polym. J. 51 (1), 77-90 (2019). DOI: https://doi.org/10.1038/s41428-018-0119-6
[16] K. Rojas, D. Canales, N. Amigo, L. Montoille, A. Cament, L.M. Rivas, O. Gil-Castell, P. Reyes, M.T. Ulloa, A. Ribes-Greus, Compos. Part B Eng. 172, 173-178 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.05.054
[17] S. Amjadi, S. Emaminia, S.H. Davudian, S. Pourmohammad, H. Hamishehkar, L. Roufegarinejad, Carbohydr. Polym. 216, 376- 384 (2019). DOI: https://doi.org/10.1016/j.carbpol.2019.03.062
[18] D. Bharathi, R. Ranjithkumar, B. Chandarshekar, V. Bhuvaneshwari, Int. J. Biol. Macromol. 129, 989-996 (2019). DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.061
[19] K. Rajesh, V. Crasta, N.R. Kumar, G. Shetty, P.D. Rekha, J. Polym. Res. 26 (4), 99 (2019). DOI: https://doi.org/10.1007/s10965-019-1762-0
[20] Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, Y. Zhang, Nano letters, 12 (4), 1919-1922 (2012). DOI: https://doi.org/10.1021/nl204353t
[21] Z. R. Khan, M. Arif , A. Singh, International Nano Letters, 2, 22 (2012). DOI: https://doi.org/10.1186/2228-5326-2-22
[22] F. Rodríguez-Mas, J.C. Ferrer, J.L. Alonso, D. Valiente, S. Fernández de Ávila, Crystals 10 (3), 226 (2020). DOI: https://doi.org/10.3390/cryst10030226
[23] S.K. Ali, H. Wani, C. Upadhyay, K.S. Madhur, I. Khan, S. Gul, N. Jahan, F. Ali, S. Hussain, K. Azmi, Indones. Phys. Rev. 3 (3), 100-110 (2020). DOI: https://doi.org/10.29303/ipr.v3i3.64
[24] D. Ponnamma, J.-J. Cabibihan, M. Rajan, S.S. Pethaiah, K. Deshmukh, J.P. Gogoi, S.K. Pasha, M.B. Ahamed, J. Krishnegowda, B.N. Chandrashekar, Mater. Sci. Eng. C 98, 1210-1240 (2019). DOI: https://doi.org/10.1016/j.msec.2019.01.081
[25] J. Loste, J.-M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, Prog. Polym. Sci. 89, 133-158 (2019). DOI: https://doi.org/10.1016/j.progpolymsci.2018.10.003
Go to article

Authors and Affiliations

R. Jagadeeswari
1
P. Selvakumar
2
ORCID: ORCID
V. Jeevanantham
2
ORCID: ORCID
R. Saravanan
1

  1. Department of Chemistry, KPR Institute of Engineering And Technology, Coimbatore-641407, Tamilnadu, India
  2. Department of Chemistry, Vivekanandha College of Arts And Sciences for Women, Tiruchengode-637205, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

In this study, NiCrBSi-B4C (wt. %5, %10 ve %15 B4C) powder mixtures are coated on the stainless steel surface of AISI304 by tungsten inert gas (TIG) method. We use optic microscope and scanning electron microscope (SEM) for the coating layer analysis, energy dispersive spectrometry (EDS) for element distribution analysis and X-ray diffractogram (XRD) for the analysis of phase components. The measurements of hardness are determined by the microhardness tester. Based on the results obtained by the examination of microstructure and phases, it has been observed that while B and C elemets are more intense in the middle and upper parts of the coating layer, the parts close to the interface have a higher intensity of Ni and Fe. Moreover, there are phases such as Cr7C3, γ – Ni, CrFeB, Ni3B, CrB ve Fe2B are formed in the coating layer. The increasing ratio of B4C results in increasing on the measurement values of microhardness. The maximum hardness value (430,8 HV0.2) is obtained from the coating layer of S4 sample while the minimum value (366,9 HV0.2) is observed from the NiCrBSi coated sample.
Go to article

Bibliography

[1] R. Rachidi, B. El Kihel, F. Delaunois, Mater. Sci. Eng. B-Adv. 241, 13-21 (2019).
[2] H. Zhao, J. Li, Z. Zheng, A. Wang, D. Zeng, Y. Miao, Surf. Coat. Tech. 286, 303-312 (2016).
[3] C.K. Sahoo, M. Masanta, J. Mater Process Tech. 240, 126-137 (2017).
[4] Q. An, L. Huang, S. Jiang, X. Li, Y. Gao, Y. Liu, L. Geng, Vacuum. 145, 312-319 (2017).
[5] J.-S. Meng, G. Jin, X.-P. Shi, Appl. Surf. Sci. 431, 135-142 (2018).
[6] S . Buytoz, M. Ulutan, M.M. Yildirim, Appl. Surf. Sci. 252, 1313- 1323 (2005).
[7] J. Yin, D. Wang, L. Meng, L. Ke, Q. Hu, X. Zeng, Surf. Coat. Tech. 325, 120-126 (2017).
[8] J. Rodriguez, A. Martı́n, R. Fernández, J.E. Fernández, Wear. 255, 950-955 (2003).
[9] N.L. Parthasarathi, M. Duraiselvam, J. Alloy Compd. 505, 824- 831 (2010).
[10] S . Abdi, S. Lebaili, Phys. Procedia. 2, 1005-1014 (2009).
[11] M.J. Tobar, C. Álvarez, J.M. Amado, G. Rodríguez, A. Yáñez, Surf. Coat. Tech. 200, 6313-6317 (2006).
[12] N.Y. Sari, M. Yilmaz, Surf. Coat. Tech. 202, 3136-3141 (2008).
[13] E. Fernández, M. Cadenas, R. González, C. Navas, R. Fernández, J. de Damborenea, Wear 259, 870-875 (2005).
[14] S . Buytoz, GU J. Sci., Part C. 8, 51-63 (2020).
[15] X.-N. Wang, X.-M. Chen, Q. Sun, H.-S. Di, Mater. Lett. 206, 143-145 (2017).
[16] K.A. Habib, D.L. Cano, José Antonio Heredia, J.S. Mira, Surf. Coat. Tech. 358, 824-832 (2019).
[17] L.-Y. Chen, T. Xu, H. Wang, P. Sang, L.-C. Zhang, Surf Coat Tech. 358, 467-480(2019).
[18] Q.W. Meng, T.L. Geng, B.Y. Zhang, Surf. Coat. Tech. 200, 4923- 4928 (2006).
[19] Y.-X. Zhou, J. Zhang, Z.-G. Xing, H.-D.Wang, Z.-L. Lv, Surf. Coat. Tech. 361, 270-279 (2019).
[20] M. Kilic, A. Imak, I Kirik, JMEPEG. 30, 1411-1419 (2021).
[21] K. Kılıçay, S. Buytoz, M. Ulutan, Surf. Coat. Tech. 397, 125974 (2020).
[22] M.-J.Chao, X. Niu, B. Yuan, E.-J. Liang, D.-S. Wang, Surf. Coat. Tech. 201, 1102-1108 (2006).
[23] Y. Z., T. Yu, L. Chen, Y. Chen, C. Guan, J. Sun, Ceram. Int. 46, 25136-25148 (2020).
[24] L. Guo-lu, L. Ya-long, D. Tian-shun, F. Bin-Guo, Wang Hai-dou, Zheng Xiao-dong, Zhou Xiu-kai, Vacuum. 156, 440-448 (2018).
[25] S. Buytoz, M. Ulutan, M.M. Yıldırım, Eng. & Arch. Fac .Osmangazi University XVIII, 93-107 ( 2005).
[26] M. Kilic, European Journal of Technique (EJT) 10, 106-118 (2020).
[27] Guo-lu Li, Ya-long Li, Tian-shun Dong, Hai-dou Wang, Xiao-dong Zheng, Xiu-kai Zhou, Hindawi Advances in Materials Science and Engineering 2018, Article ID 8979678, 1-10 (2018).
[28] M. Storozhenko, O. Umanskyi, V. Krasovskyy, M. Antonov, O. Terentjev, J. Alloy Compd. 778, 15-22 (2019).
[29] A. Zabihi, R. Soltani, Surf. Coat. Tech. 349, 707-718 (2018).
Go to article

Authors and Affiliations

Musa Kiliҫ
1
ORCID: ORCID

  1. Batman University, Faculty of Technology, Department of Manufacturing Engineering, Batman, Turkey

Instructions for authors

Instructions for Authors


Archives of Metallurgy and Materials is a quarterly journal of Polish Academy of Sciences and Institute of Metallurgy and Materials Science PAS which publishes original scientific papers and reviews in the fields of metallurgy and materials science, foundry, mechanical working of metals, thermal engineering in metallurgy, thermodynamic and physical properties of materials, phase equilibria in the broad context and diffusion. In addition to the regular, original scientific papers and conference proceedings, invited reviews presenting the up-to-date knowledge and monothematic issues devoted to preferred areas of research will be published. Submission of a paper implies that it has not been published previously, that it is not under consideration for publication elsewhere, and that if accepted it will not be published elsewhere in the same form.


When preparing the manuscript, please pay attention to the following rules:


1. Manuscript submission

1.1. Manuscripts to be considered for publication should be submitted to the Editorial Office via www.editorialsystem.com/amm/. Authors should designate corresponding author, whose responsibility is to represent the Authors in contacts with the Editorial Office. The corresponding author receives an e-mail notification confirming the submission of the manuscript to the Editorial Office and is informed about the progress of the review process.


1.2. Manuscript should not exceed 15 pages of full-size paper (A4), must be double spaced (please use 12 point font), with generous margins, and the pages must be numbered. Authors should submit an electronic file of their manuscript in Microsoft Word (minimum : version 2000).


1.3. All manuscripts must be written in good English. Both British and U.S. English are acceptable but Authors should be consistent in their usage. It is sole responsibility of the Authors to make sure that the manuscript is grammatically correct and spell checked. Authors are strongly encouraged to have the manuscript proofread by a native speaker of English or a language professional, before it is submitted to the editorial office. Papers written in poor English will be automatically rejected without being subjected to review.


1.4. Authors should submit an electronic copy of final version of their paper in Microsoft Word Format, shemes (sketches) and figures saved as .eps, .jpeg, or .tiff.


1.5. Articles submitted for publication should include abstract and maximum 5 keywords.


1.6. Please adhere to the following order of presentation:


Author(s) with first names in full and ORCID.

Affiliation(s): in a short form (Institution, City, Country). Use the superscripts (*, **, . . .) after the Authors’ names in case of different affiliations.

Title: All words in lower case (first letter of first word capitalized).


Abstract: maximum 10 lines, including primary objective, research design, methods and procedures, main outcomes and results. Do not use abbreviations in the abstract.

Keywords: 5 maximum.

Main text: Begin on the second page with Introduction, followed by Experimental (Materials and Methods) and/or Theory section, Results, Discussion, and end with Conclusion section and Acknowledgement. When appropriate the Authors may choose to combine Results section and Discussion section into one Results and Discussion section. Make sure the text in sections is divided logically into paragraphs.
Use the decimal system for sections, subsections and (at the most) sub-subsections, as exemplified in the headings of these instructions.
All abbreviations should be spelled out the first time they are introduced in text or references. Thereafter the abbreviation can be used.


Appendices

References

Correspondence address: title, name, postal address, telephone and e-mail address of the corresponding Author, number ORCID.

Figure captions

Tables

2. Manuscript preparation


The editorial system includes:


1. Manuscript, which should contain the full text with figures, tables and signatures to them where they are placed.


2. Figures, tables and signatures to them as separate files.


2.1. Formulae, equations and units
The formulas should be written in Microsoft Equation and MathType with the possibility of editing (not as graphics).
Formulae and equations should be typed on separate lines and numbered consecutively in parentheses on the right side (1) . . . (n). Vectors must be indicated as such. Size of symbols should be kept uniform for all equations in the manuscript. Formulae and equations should be referred to in the text as follows: Eq. (1).
Numbers and units must be separated by a space, e.g. 5.5 wt.%, 273.15 K, 1013 MPa, etc. The only exception are angle degrees, e.g. 90°.

2.2. Figures

Figures should be complete without corrections and additions in the word. Figures are usually printed in reduced size (fitting column width of 85 mm) and this should be taken into account when preparing them. For the best results, make sure that lettering on figures and micrographs is at least 2 mm high after reduction, and the style of labeling must be uniform for all figures. Each figure should have its own caption explaining the content without reference to the text. Figure captions should be typed on a separate page at the end of manuscript. The appropriate place of in the text should be indicated by <Fig. 3 > written in separate line. Figures should be referred to in text as follows: Fig. 1. The magnification must be indicated by a labeled scale marker on the micrograph itself, not drawn below it. For optimum printing quality micrographs should be saved as .eps or .tiff at a resolution of at least 300 dpi while line drawings at a resolution of at least 600 dpi.

2.3. Move file
The authors can make movie files up to 100 MB in MP4 format.
The author at the first reference (Movie 1. Click here) should with the Click here command connect the web address with the place of uploading the movie (hyperlink) and at the end of the article provide a list of hyperlinks (samples: Movie 1, hyperlink, movie no 2, hyperlink ......).

The files will be removed from the edytorial system when rejected or published article (moved to Rejected or Published manuscripts).


2.4. Tables

Tables together with captions should be typed on separate page at the end of manuscript. Tables are to be numbered consecutively using Arabic numbers in the text (TABLE 1 . . . n). A caption must be placed above respective table and should explain the symbols used in the heading and in the left hand column. Tables should be referred to in the text as follows: TABLE 1.


2.5. References

References should be typed on separate pages and numbered consecutively applying the system accepted by the Quarterly (initials and names all authors, journal title [abbreviated according to the Journal Title Abbreviations of Web of Science: http://library.caltech.edu/reference/abbreviations/, everyone abbreviation should be end with a dot - example. Arch.Metall.Mater.] or book title; journal volume or book publisher; page spread; publication year in bracket).

The use of DOI numbers (full notation and linked) is mandatory for each paper and should be formatted as shown in the examples below:

Journals:

[1] L.B. Magalas, Development of High-Resolution Mechanical Spectroscopy, HRMS: Status and Perspectives. HRMS Coupled with a Laser Dilatometer. Arch. Metall. Mater. 60 (3), 2069-2076 (2015). DOI: https://doi.org/10.1515/AMM-2015-0350

[2] E. Pagounis, M.J. Szczerba, R. Chulist, M. Laufenberg, Large Magnetic Field-Induced Work output in a NiMgGa Seven-Lavered Modulated Martensite. Appl. Phys. Lett. 107, 152407 (2015). DOI: https://doi.org/10.1063/1.4933303

[3] H. Etschmaier, H. Torwesten, H. Eder, P. Hadley, Suppression of Interdiffusion in Copper/Tin thin Films. J. Mater. Eng. Perform. (2012).DOI: https://doi.org/10.1007/s11665-011-0090-2 (in press).

Books:

[2] M. H. Kamdar, A.M.C. Westwood, Environment-Sensitive Mechanical Behaviour, New York 1981.

Proceedings:

[3] F. Erdogan, in: H. Liebowitz (Ed.), Fracture 2, Academic Press 684, New York (1968).

Internet resource:

[4] http://www.twi.co.uk/content/fswqual.html

PhD Thesis:

[6] F.M. LIang. World Hyphenation by Computer. PhD thesis, Stanford University, Stanford, CA 94305, June.

Chapter in books:

[7] R. Major, P. Lacki, R. Kustosz, J. M. Lackner, Modelling of nanoindentation to simulate thin layer behavior, in: K. J. Kurzydłowski, B. Major,

P. Zięba (Ed.), Foundation of Materials Design 2006, Research Signpost (2006).

Articles in press:

[8] H. EtschmaIer, H. Torwesten, H. Eder, P. Hadley, J. Mater. Eng. Perform. (2012), DOI: 10.1007/s11665-011-0090-2 (in press).

3. Fees

No honorarium will be paid. The journal does not have article processing charges (APCs) nor article submission charges.

4. Review and proofread process

4.1. Peer review process All submitted manuscripts undergo review by renowned specialists appointed by the Editor-in-Chief and members of the Editorial Board. Reviewers receive guidance to help them perform the review, and submit written opinion on the manuscript together with recommendation to accept as is, or reject, or accept after revision. In the latter case i.e. when revision is requested, the authors are obliged to respond to Editor and Reviewers’ comments in detail and make revisions to the manuscript. A rebuttal to Reviewers’ comments can also be sent via the Editorial System in writing. Decision to reject the article is taken by the Editorial Board with the final decision belonging to the Editor, who may appoint another reviewer if necessary. Reviewers remain anonymous to Authors and their identity cannot be revealed by the Editorial Office.

In a separate file, the authors are requested to suggest names and contact details (affiliations and valid e-mail addresses) of at least three experts who could serve as reviewers.

Brief explanation (2-3 sentence-long) why each person is suitable as a reviewer should also be provided. The suggested reviewers cannot be from the same country as affiliation of the corresponding author. The decision to appoint a reviewer belongs solely to the editor.

4.2. Revised manuscript submission

When revision of a manuscript is requested, Authors should return the revised version of their manuscript as soon as possible. Prompt action may ensure fast publication if a paper is finally accepted for publication in Arch. Metall. Mater. If it is the first revision of an article Authors are requested to return their revised manuscript within 7 days.

If it is the second revision Authors are requested to return their revised manuscript within 1 day.

4.3. Final proofreading

Authors will receive a pdf file with the edited version of their manuscript for final proofreading. This is the last opportunity to view an article before its publication on the journal web site. No changes or modifications can be introduced once it is published. Thus authors are requested to check their proof pages carefully against manuscript within 3 working days and prepare a separate document containing all changes that should be introduced. Authors are sometimes asked to provide additional comments and explanations in response to remarks and queries from the language or technical editors.

5. Original version

Starting from issue 1/ 2018, Volume 63, Archives of Metallurgy and Materials is published in electronic via www.journals.pan.pl. The printed version is printed only for designated libraries (legal basis: Regulation of the Minister of Culture and Art of March 6, 1997).

6. Prevent cases of plagiarism

Readers should be sure that the authors present the results of their work transparently, fair and honest, regardless of whether they are the direct authors, or used the help of a specialized entity (natural or legal person). To prevent cases of plagiarism, "ghostwriting" and "guest Authorship", the Editorial Office will require that the Authors disclosed the contribution of individual Authors in the creation of manuscript (with their affiliations and contributions, i.e. the information who is responsible for: research concept and design, collection and/or assembly of data, data analysis and interpretation, writing the manuscript). Funding sources (together with grant number) must also be revealed. The corresponding Author will bear the main responsibility for the manuscript. Detected cases will be exposed, including notifying the appropriate entities (institutions employing the Authors, scientific societies, associations of editors of scientific journals, etc.).

7. License type

Articles are printed in an open access and distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0/). This license allows authors to copy and redistribute the material in any medium or format, remix, transform, and build upon the material. Authors may not use the material for commercial purposes. However, this condition does not include dependent works (they may be covered by another license).

Submission of an article to the journal is unequivocal to expressing consent to the publication in both paper and electronic form.

Additional info

Archives of Metallurgy and Materials is covered by the following services:


Arianta, Baidu Scholar, BazTech, Celdes, Chemical Abstracts Service (CAS) - CAplus, Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Engineering, Computing, and Technology, Clarivate Analytics (formerly Thomson Reuters) - Journal Citation Reports/Science Edition, Clarivate Analytics (formerly Thomson Reuters) - Materials Science Citation Index, Clarivate Analytics (formerly Thomson Reuters) - Science Citation Index Expanded, CNKI Scholar (China National Knowledge Infrastructure), CNPIEC, DOAJ (Directory of Open Access Journals), EBSCO (relevant databases), EBSCO Discovery Service, Elsevier - SCOPUS, Genamics JournalSeek, Google Scholar, Index Copernicus, J-Gate, JournalTOCs, KESLI-NDSL (Korean National Discovery for Science Leaders), Microsoft Academic, Naviga (Softweco), Primo Central (ExLibris), ProQuest (relevant databases), ReadCube, ResearchGate, SCImago (SJR), Sherpa/RoMEO, Summon (Serials Solutions/ProQuest), TDNet, TEMA Technik und Management, Ulrich's Periodicals Directory/ulrichsweb, WanFang Data, WorldCat (OCLC)

This page uses 'cookies'. Learn more