Applied sciences

Archives of Environmental Protection


Archives of Environmental Protection | 2005 | vol. 31 | No 3 |

Download PDF Download RIS Download Bibtex


The processes occurring at the marine water - atmosphere boundary layer and involving selected important components of our environment arc discussed. Special attention is focused on the specific role of the marine water surface microlayer in transfer of those components, properties of aerosols, fundamental question of CO2 absorption/desorption balance and environmental conditions enabling re-emission of mercury from marine water into the atmosphere. Simple laboratory experiments on CO2 absorption from atmosphere and desorption of CO2 from marine water arc shown as an initial point for any wider discussion on the global carbon budget. The emission of mercury to the atmosphere is considered to be promoted by the solar radiation. Under strong solar radiation the ability of organic matter to reduce these ions is enhanced thus making the emission more effective. The phenomenon observed seems to be confirmed by the analysis of the data for months of low and high radiation intensity. A sign i fi cant role of atmospheric iron in cutophication of southern Baltic is emphasized. Concentration of this clement in dry and wet deposition is, however, too low to prevent limitation of phytoplankton growth in marine water.
Go to article

Authors and Affiliations

Lucyna Falkowska
Anita Lewandowska
Jozef Magoński
Download PDF Download RIS Download Bibtex


HTAC (High Temperature Air Combustion) technology is one of the most important achievements in combustion engineering of recent years. The main idea of the technology is to organize combustion in such a way that reaction takes place in almost whole volume of combustion chamber with very uniform gas and temperature field. It can be done by preheating air above the ignition temperature of fuel, separation of air and fuel nozzles and by high recirculation inside the combustion chamber. Uniform and moderated temperatures result in very low thermal NO emission, and on the other hand, long enough rcsiclcncc time in the chamber results in low CO and incomplete products emission. In this paper authors present simple mathematical model which allows for estimation of influence of air temperature and flue gas recirculation rate on final emission on NO and CO.
Go to article

Authors and Affiliations

Kamil Malczyk
Andrzej Szlęk
Download PDF Download RIS Download Bibtex


This article describes monitoring results of raw wastewater from one Polish municipal wastewater treatment plant (WWTP). The residues of 30 pharmaceutics belonging to particular drugs classes such as contrast media. antibiotics, lipids regulators, antiphologisties, psychiatric and anticpilcptic agents, drug's metabolites and 2 musk compounds have been investigated. The investigation showed occurrence of 20 out of 32 selected compounds above their limit of detection. Iopromide, a compound belonging to contrast media, was noticed at the highest concentration. The concentration of this compound in WWTP-influent was equaled to 27.0 μg/dm3• Other drugs, such as, like iopamidol, iomeprol, diatrizoat, iohexol, sulfomethoxazole, carbamazepine, ibuprofen, ibuprofen-OH, naproxen, diclofenac, bczafibrate, ketoprofen, and musk compound - galaxolide were detected at maximum concentration between I .O μg/dm3 (bezafibratc) and 13.0 μg/dm3 (iomcprol). The acidic compounds such as gemfibrozil and indomethacin were determined above their limit of detection, with concentration up to 0.22 μg/dm3 and 0.42 ug/dm', respectively. Based on the literature data, the above-mentioned drugs arc not completely removed from sewage during treatment processes and with effluent from WWTP they are introduced to receiving waters. Due to their chemical properties, residues of pharmaceutics may persist in the environment and the present knowledge about their ccotoxicological effects is insufficient.
Go to article

Authors and Affiliations

Ewa Felis
Korneliusz Miksch
Joanna Surmacz-Górska
Thomas Ternes
Download PDF Download RIS Download Bibtex


The development of economic and efficient processes for the removal of toxic metals from water bodies has become a priority task for environmentalists. Biosorption processes are tangible alternatives to traditional methodologies, particularly if low metal concentration, large volume and cost are considered. The present communication reports the unexploited sorption properties of the Saraca indica leaf powder (SILP) for the removal of Cd(II) and Ni(II) from aqueous media. Sorption studies using standard practices were carried out in batch experiments as a function of biomass dosage, metal concentration, contact time, particle size and pH. Sorption studies result into the standardization of optimum conditions for the removal of Cd(II) - 92.60% and Ni(II) - 46.20% as follows: biomass dosage (4.0 g), metal concentration (Cd(II) 10 μg/cm3, Ni(ll) 10 μg/cm3) and volume of the test solution (200 cm') at pH 6.5 for Cd(II) and Ni(II). The present study explores for the first time, the efficacy of Saraca indica leaf powder as a novel and environment friendly possibility to remediate heavy metal contaminated water in a cost efficient manner.
Go to article

Authors and Affiliations

M.M. Srivastava
Aditya Chauhan
Pushpa Kumari
Parul Sharma
Shalini Srivastava
Download PDF Download RIS Download Bibtex


The research was conducted in a relatively small (26.8 ha) but quite deep (17.3 m) Lake Długie in Olsztyn, Poland. For over 20 years the lake was collecting sewage which eventually caused its complete degradation. In 1987-2000 the lake was restored using the artificial aeration method with destratification of water. The results showed that the artificial aeration effectively limited the internal loading. Application of this restoration method resulted in reduction of phosphorus compounds concentrations in the analyzed water strata. The decrease of TP in bottom sediments (to the level of 3-4 mg P g·' DW) was probably associated with the fact that a new layer of sediments was created, reflecting a change in the aquatic conditions caused by the restoration. The investigations conducted in the reference years showed that the changes were not permanent. A high concentration of phosphorus compounds in bottom sediments, low sorptivc capacity and a tendency to oxygen deficiency, indicate that further possibility to decrease the amount of phosphorus compounds in the lake by this restoration method is limited.
Go to article

Authors and Affiliations

Renata Brzozowska
Helena Gawrońska
Download PDF Download RIS Download Bibtex


TCE artificially contaminated soil was cleaned under anaerobic, reductive conditions. A laboratory scale treatability studies were carried out to determine optimal physico-chcmical and microbiological parameters for biorcmcdiation process. Upon treatability studies results a sewage sludge mixture was chosen as a microorganism's source. The chlorinated solvents contaminated soil bioreactor (CSCS bioreactor) was designed and built. It consists of a 6 m3 reactor vessel, a gas recirculation system, a leachate recirculation system and a data acquisition system. The bioreactor vessel was designed as a continuous gas flow packed bed reactor. During 210 days 4 Mg of soil containing approximately 350 mg TCE/kg of soil has been completely remediated under anaerobic conditions. The obtained results indicate that the stepwise dechlorination of TCE to ETH occurs in the bioreactor. Increasing amounts of chloride in the leachate were correlated with dechlorination.
Go to article

Authors and Affiliations

Adam Worsztynowicz
Dorota Rzychoń
Tomasz Siobowicz
Sebastian lwaszenko
Grażyna Płaza
Krzysztof Ulfig
Download PDF Download RIS Download Bibtex


The article presents the investigations of fluidized combustion of oily wastes derived from cold rollingmill process on a zeolite bed. Oily wastes generated in the rolling-mill process arc one of the most hazardous residues from metallurgical works because the toxic additives content. The experiments were carried out using a small laboratory combustor with full measurement equipment. The measurement apparatus associated with the combustion chamber made it possible to measure the basic parameters of the process including the composition of exhaust gasses. It has been shown that the combustion of oily wastes from cold rolling-mill process can be conducted efficiently and friendly for the environment.
Go to article

Authors and Affiliations

Sławomir Leszczyński
Download PDF Download RIS Download Bibtex


During the process of ,,enhanced coagulation" except for colloids and suspensions removal, the removal of associated organic compounds including DPD (Disinfection By-Products) precursors is crucial. It is often necessary to decrease color and turbidity of treated water to values which arc significantly lower than accepted for drinking water. On the basis of presented results of the research it was found out that under strict technological conditions coagulation of low mineralization waters ensures effective treatment, including significant THMs precursors removal, even when water is of low temperature. However, it is necessary to apply two different methods of coagulation (volumetric coagulation and direct filtration) dependently of water temperature with the usage of the same equipment (a flocculation chamber, a vertical sedimentation tank and a pressure rapid filter) including the same point of a coagulant dosing. During the periods of ,,high temperature" the treatment should be based on volumetric coagulation and during the periods of ,,low temperature" of water direct filtration should be applied.
Go to article

Authors and Affiliations

Jolanta Gumińska

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to:

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, ( (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.

Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution and reproduction in any medium provided the article is properly cited, is not used for commercial purposes and no modification or adaptation are made.

© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made

The manuscripts should be submitted on-line using the Editorial System available at Authors are asked to propose at least 4 potential reviewers, including 2 from Poland, together with their e-mail addresses. The journal does not have article processing charges (APCs) nor article submission charges.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges
The publication fee of an article in the Journal is:
25 EUR/100 zł per page (black and white or in gray scale),
35 EUR/130 zł per page (color).

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice.

Additional info

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)



Baidu Scholar


CABI (over 50 subsections)

Chemical Abstracts Service (CAS) - CAplus

Chemical Abstracts Service (CAS) - SciFinder

CNKI Scholar (China National Knowledge Infrastructure)



DOAJ (Directory of Open Access Journals)

EBSCO (relevant databases)

EBSCO Discovery Service

Engineering Village

FSTA - Food Science & Technology Abstracts

Genamics JournalSeek



Google Scholar

Index Copernicus


Japan Science and Technology Agency (JST)


Journal Citation Reports/Science Edition


KESLI-NDSL (Korean National Discovery for Science Leaders)

Microsoft Academic

Naviga (Softweco)

Primo Central (ExLibris)

ProQuest (relevant databases)






Summon (Serials Solutions/ProQuest)


TEMA Technik und Management

Ulrich's Periodicals Directory/ulrichsweb

WanFang Data

Web of Science - Biological Abstracts

Web of Science - BIOSIS Previews

Web of Science - Science Citation Index Expanded

WorldCat (OCLC)

This page uses 'cookies'. Learn more