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Abstract

During a 3-year surveillance study for avian influenza virus (AIV) infections at the Jeziorsko
reservoir in central Poland, 549 oropharyngeal or cloacal swabs from 366 birds of 14 species belonging
to 3 orders (Anseriformes, Charadriiformes and Gruiformes) were tested. AIV was detected in 14 birds
(3.8%): Common Teals (12x), Mallard (1x) and Garganey (1x). Three potentially dangerous H5 AIV
were detected in Common Teals (2x) and Garganey (1x) but all of them revealed a low pathogenic
pathotype. A unique cleavage site amino acid motif PQREIR*GLF was found in one H5 isolate from
a Garganey.
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Introduction

Low pathogenic avian influenza viruses (LPAIV)
are widely distributed in wild birds, mostly of the or-
ders Anseriformes and Charadriiformes, and to date
the presence of AIV has been confirmed in at least
105 species (Olsen et al. 2006). Based on the surface
antigens haemagglutinin (HA) and neuraminidase
(NA), 16 HA subtypes and 9 NA subtypes of AIV
have been described that form different combinations,
for example H5N1, H7N7, H3N8 etc. (Alexander
2007). LPAIV infections in wild birds are asympto-
matic but virus transmission to domestic poultry can
lead to a series of adaptation processes and in some
cases poultry-adapted viruses can evolve into highly
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pathogenic (HP) AIV. The unprecedented outbreaks
and spread of H5N1 HPAI in wild birds in recent
years is believed to be a result of a spill-over from
infected poultry (Alexander 2007, Spackman 2009).
So far only AIV of H5 and H7 subtype have had the
potential to become highly pathogenic. Despite the
recent efforts on the expansion of AIV surveillance in
wild bird population all over the world (Gaidet et al.
2007, Munster et al. 2007, Breed et al. 2010, Hansbro
et al. 2010, Bui et al. 2011, Goekjian et al. 2011),
numerous aspects of the ecology and evolutionary dy-
namics of AIV still remain unsolved. For example, the
mechanisms of virus maintenance in breeding and
wintering populations, duration and patterns of virus
shedding and long-distance transmission, virus persist-
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ence in the environment, frequency of virus introduc-
tion into domestic poultry or major mechanisms of
genetic diversity of AIV (reassortment, genetic drift)
have only been partially recognized (Dugan et al.
2008, Latorre-Margalef et al. 2009, Costa et al. 2010,
2011, Henaux and Samuel 2011, Lebarbenchon and
Stallknecht 2011, Smietanka et al. 2011). A better
understanding of these mechanisms can be achieved
through the continuous, high quality and risk-based
surveillance as well as experimental and simulation
studies.

The present study reports on the occurrence of
AIV carried by migratory birds captured at the
Jeziorsko (a lake in central Poland) reservoir over
a 3-year period and molecular characterization of iso-
lates potentially dangerous for poultry.

Materials and Methods

Sample collection. Samples were collected at the
Jeziorsko reservoir in central Poland in three consecu-
tive years (2008-2010) in late summer/early autumn,
with major sampling activity in August-September.
Cloacal and/or oropharyngeal samples were collected
from wild birds captured by funnel traps using com-
mercial swabs (COPAN UTM, Italy) or “dry” cotton
swabs, placed in portable freezers and transported
chilled to our laboratory. In the laboratory, “dry”
swabs were placed in 2 ml phosphate-buffered saline
(PBS) containing penicillin (10 000 IU/mL), strepto-
mycin (10 mg/mL), gentamicin (0,25 mg/mL), and
nystatin (5000 U/mL). A total of 549 samples from
366 birds belonging to 3 orders (Anseriformes, Cha-
radriiformes and Gruiformes) and 14 species were tes-
ted (Table 1).

AIV detection, isolation and subtyping. Viral
RNA was extracted from viral transport medium or
PBS according to manufacturers’ instructions by using
RNeasy Mini kit (QIAGEN, Germany). AIVs were
detected by real-time reverse transcription-PCR
(rRT-PCR) with primers and probe targeting the con-
served matrix (M) gene (Spackman et al. 2002) using
the Quantitect Probe PCR kit (Qiagen Hilden, Ger-
many) in a 25-μl reaction volume on an ABI 7500
(Applied Biosystems, USA). The RT and PCR condi-
tions were as follows: RT step: 30 min at 50oC and 15
min at 95oC, PCR: 40 cycles of 95oC for 10 s and 60oC
for 20 s. rRT-PCR/M-positive samples were subse-
quently tested in rRT-PCR and conventional
RT-PCR targeting H5 and H7 genes (Slomka et al.
2007a, 2007, 2009) as well as by virus isolation in 9-11
day-old SPF embryonated hens’ eggs (OIE 2008).
Haemagglutinating isolates were identified by means
of the haemagglutination inhibition (HI) assay ac-

cording to standard procedure (OIE 2008) using spe-
cific hyperimmune chicken antisera to all 16 HA sub-
types (x-oVo, UK).

Another RT-PCR (primer sequences and PCR
conditions available on request) was performed to
amplify selected regions of all internal genes of two
H4N6 AIV found in Common Teals: PB2 (465 bp),
PB1 (660 bp), PA (610 bp), NP (460 bp), M (450 bp),
NS (780 bp).

Sequencing, molecular characterization and
phylogenetic analysis. PCR products were purified
and sequences were generated using BigDye Ter-
minator v3.1 Cycle Sequencing kit (Applied Biosys-
tems, USA) and sequenced in the 3730xl DNA ana-
lyzer (Applied Biosystems, USA) in Genomed, War-
saw. Sequences were assembled and edited with Se-
qMan, Lasergene (DNASTAR, USA), aligned and
compared with 21 sequences of H5 available on Gen-
Bank and from our own collection. Translation of
DNA sequence into amino acid sequence and
phylogenetic analysis of the 280 bp fragment of H5
gene (from nucleotide 813 to 1092) using neigh-
bor-joining method were performed in MEGA5 sof-
tware (Tamura et al. 2011).

Sequences obtained in this study have been sub-
mitted to the EpiFlu databank (accessible at
www.gisaid.org) with the following isolate IDs:
EPI–ISL–81323, EPI–ISL–93618, EPI–ISL–93619,
EPI–ISL–93620.

Results

Fourteen AIVs were detected by rRT-PCR, rep-
resenting a total PCR-positive detection rate of 3.8%.
Three species of birds were found positive: Common
Teal (12 birds), Garganey (1 bird) and Mallard (1
bird). Three viruses belonging to subtype H5 (Table
1) were only detected by RT-PCR (virus isolation
negative). Two viruses from Common Teals, detected
by PCR and virus isolation, were classified into sub-
type H4N6. Nine rRT-PCR/M positive samples were
negative in rRT-PCR/H5&H7 and failed to grow in
embryonated chicken eggs and therefore their subtype
could not be determined. Only cloacal swabs were
found positive. Two different cleavage site amino acid
sequences were found in H5 viruses: PQRETR*GLF
(Common Teals) and PQREIR*GLF (Garganey) and
both were consistent with a low pathogenicity.
Phylogenetic analysis (Fig. 1) showed that two H5
AIV from Common Teals were located closely to each
other and were substantially different from H5 virus
detected from a Garganey. The internal genes of two
H4N6 AIV found in Teals shared identical sequences
over the regions examined.
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Table 1. Species of birds captured at the Jeziorsko reservoir in 2008-2010 and detected avian influenza viruses.

Number Number
of birds tested of swabs tested

Order Species AIV detected

Anseriformes Common teal
Anas crecca

208 371 2xH5 LPAI
2xH4N6
8xAIV

(subtype
unidentified)

Garganey
Anas querquedula

15 21 1x H5LPAI

Mallard
Anas platyrhynchos

12 14 1xAIV
(subtype

unidentified)

Mute Swan
Cygnus olor

12 17 –

Eurasian Wigeon
Anas penelope

1 1 –

Charadriiformes Common Snipe
Gallinago gallinago

92 98 –

Wood Sandpiper
Tringa glareola

17 17 –

Dunlin
Calidris alpina

1 1 –

Spotted Redshank
Tringa erythropus

1 1 –

Ringed Plover
Charadrius hiaticula

1 1 –

Black Tern
Chlidonias niger

1 1 –

Whiskered Tern
Chlidonias hybridus

1 1 –

Gruiformes Spotted Crake
Porzana porzana

3 4 –

Water Rail
Rallus aquaticus

1 1 –

Total 366 549 14

Discussion

The Jeziorsko reservoir is one of the largest
man-made reservoirs in Poland, located in central
part of the country with a maximum surface area of 43
km2. Jeziorsko is home to more than 250 species of
birds, including 150 breeding in this area. It is also an
important stop-over site for waterfowl and waders,
and during the autumn migrations the total popula-
tion size exceeds 10 000 individuals (Janiszewski et al.
1998). Before 2008, avian influenza surveillance was
not performed in this reservoir on a large scale. How-
ever, H5N1 HPAIV was found in a Mute swan found
in this area during the epidemic in 2006 (Minta et al.
2007).

In the present study, the vast majority of tested birds
(67.7%) belonged to Anseriformes, order and Com-
mon Teals Anas crecca constituted almost 57% of all
birds sampled. An overall detection rate in wild birds
during the 3-year period was 3.8% and in relation to
Teals 5.7%. In other studies, the average prevalence
in this species was 3.6% (Lebarbenchon et al. 2007),
6.4% (Munster et al. 2007) and 14.8% (Terregino et
al. 2007). With such a relatively high prevalence it
seems likely that Common Teals may play an import-
ant role in the AIV dispersal. Lebarbenchon et al.
(2009) investigated the role of Common Teals in the
spread of AIV by building a simulation model based
on bird-ring recoveries, population size, average
prevalence of AIV infections, duration of viral shed-
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A/duck/Jiang Xi/1850/2005(H5N2)

A/duck/Jiang Xi/197820/2003(H5N3)

A/R(duck/Mongolia/54/01-duck/Mongolia/47/01) (H5N1)

A/duck/Mongolia/500/01(H5N3)

A/swan/Mangystau/3/2006(H5N1)

A/whistling swan/Shimane/580/2002(H5N3)

A/mallard/Sweden/64/02(H5N2)

A/mute swan/Poland/120/08 (H5N2)

A/mallard/Sweden/80/02(H5N9)

A/garganey/Poland/225/09 (H5)

A/mallard/Switzerland/WV1070728/2007(H5N2)

A/mallard/Switzerland/WV1070752/2007(H5N2)

A/mallard/PT/4228/2007(H5N3)

A/mallard/Bavaria/1/2007(H5N2)

A/teal/Poland/305/08 (H5)

A/teal/Poland/180/10 (H5)

A/spur-winged goose/Nigeria/2/2008(H5N2)

A/mallard/Bavaria/35/2006(H5)

A/garganey/Crimea/97/2008(H5N2)

A/teal/Italy/3931/2005(H5N2)

A/duck/Italy/775/2004(H5N3)

A/teal/Egypt/9885-NAMRU3/2005(H5)

A/mallard/Poland/266/10 (H5)

A/duck/Tulcea/RO-AI-LPAI/2009(H5N3)72
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Fig. 1. Phylogenetic characterization based on the neighbor-joining analysis of 280 bp fragment of the HA gene of 3 viruses
isolated from Common Teals and Garganey.

ding and persistence of AIV in the environment and
concluded that efficient AIV dispersal by Teals is
only possible for birds excreting virus for more than
7 days. The median infectious period for LPAI-infec-
ted wild ducks was found to be 10-11.5 days as op-
posed to HPAI-infected ducks in which the mean
shedding period was only 5 days (Henaux and Sam-
uel 2011). Therefore, it seems plausible to conclude
that Common Teals may play a role in the long-dis-
tance dispersal of LPAIV but highly pathogenic vi-
ruses are unlikely to be efficiently spread by birds of
this species.

Out of 14 positive results in rRT-PCR specific for
influenza A type, only 5 could be subtyped. The rea-
son for failures in virus isolation attempts can be
either a very high sensitivity of rRT-PCR method
(higher than in case of virus isolation method) or in-
sufficient storage and transport conditions (high tem-
perature, duration of transport etc.) that led to the
virus decline. In other studies an overall virus

isolation rate was also low and ranged from 15% to
33.5% (Munster et al. 2007, Terregino et al. 2007).
Three isolates belonged to potentially dangerous
subtype H5 but all of them exhibited low pathogenic
amino acid profile. Interestingly, the isolate from
a Garganey had a unique amino acid sequence at
the cleavage site of HA: “PQREIR*GLF” that dif-
fered slightly from a much more prevalent motif
“PQRETR*GLF” found in numerous H5 LPAIV,
including two H5 found in Common Teals. The
database search (Influenza virus resource, NCBI,
available at http://www.ncbi.nlm.nih.gov/ genomes/
FLU/FLU.html) did not reveal isolates with a simi-
lar sequence so we decided to perform additional
sequencing which also confirmed our initial finding.
The cause of the substitution was a nucleotide point
mutation that changed the triplet codon to “ATA”
and contributed to the replacement of Threonione
(T) with Isoleucine (I) (Fig. 2).
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Fig. 2. Cleavage site of Polish H5 LPAIV: a) A/garganey/Po-
land/225/09; b) A/teal/Poland/305/08; c) A/teal/Poland/180/10.
The unique cleavage site motif: “PQREIRGLF” (a) was
caused by a nucleotide point mutation in the triplet codon
“ATA” leading to the amino acid substitution (T --> I)

Although not as dangerous as H5N1, low
pathogenic H5 AIV pose a threat to poultry industry
and in 2006-2009 the outbreaks occurred in at least 10
countries, with significant spread of H5N3 LPAI in
Germany, where 35 premises containing turkeys were
affected (Brown 2010). However, none of the H5 vi-
ruses detected at Jeziorsko could grow in embry-
onated chicken eggs and subtyping was only possible
by means of H5-specific real time RT-PCR with con-
firmation in conventional RT-PCR. The virus isola-
tion failure made a thorough characterization of these
viruses impossible. Therefore, the phylogenetic analy-
sis could only be performed over a short region (280
bp) and not the whole gene. Thus, the results are ap-
proximate and only provide a rough insight into gen-
etic relationship between H5 LP viruses. The H5 AIV
from Common Teals, detected 2 years apart, belonged
to the same major group, possibly sharing a recent
common ancestor, while the isolate from a Garganey
was clearly different. All 3 isolates revealed a genetic
similarity to H5 LPAIV isolated from wild birds in
Europe and Africa (Fig. 1).

Another interesting finding was the detection of
4 viruses from 3 females of Common Teals foraging
together and captured at the same time (on 26 August
2010 at 6.00 a.m.). The birds with ring numbers PA
12906 and PA 12907 were infected with H4N6 AIV
while the Teal with the ring number PA 12905 was
positive for H5 AIV and additionally for avian para-
myxovirus type 4. Due to the fact that the presence of
different AI viruses in birds found at the same place

creates a perfect condition for reassortment event
(mixing of the genetic material of viruses with seg-
mented genome into new combinations), an addi-
tional study was undertaken to compare sequences of
internal gene fragments from H4N6 isolates. We
found a 100% homology between partial sequences of
6 internal genes which suggests that in that case reas-
sortment did not take place. Unfortunately, the same
study was not possible for H5 virus due to the paucity
of original specimen to perform enough sequencing
reactions. On the other hand, Dugan et al. (2008)
found five H4N6 AIV in Mallards sampled at the
same location and time in Ohio, USA, and sequencing
of internal genes revealed the existence of 4 different
genome constellations with only 2 viruses sharing
identical gene segments.

The results confirm that avian influenza viruses,
including potentially dangerous subtypes for domestic
birds, are circulating in the population of wild birds,
mainly waterfowl. The Jeziorsko reservoir should be
taken into consideration when planning AI surveil-
lance activity in the future.
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