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Abstract: This paper presents decision-making risk estimation based on planimetric 
large-scale map data, which are data sets or databases which are useful for creating 
planimetric maps on scales of 1:5,000 or larger. The studies were conducted on four 
data sets of large-scale map data. Errors of map data were used for a risk assessment of 
decision-making about the localization of objects, e.g. for land-use planning in realization 
of investments. An analysis was performed for a large statistical sample set of shift 
vectors of control points, which were identifi ed with the position errors of these points 
(errors of map data).
In this paper, empirical cumulative distribution function models for decision-making 
risk assessment were established. The established models of the empirical cumulative 
distribution functions of shift vectors of control points involve polynomial equations. An 
evaluation of the compatibility degree of the polynomial with empirical data was stated 
by the convergence coeffi cient and by the indicator of the mean relative compatibility 
of model. The application of an empirical cumulative distribution function allows an 
estimation of the probability of the occurrence of position errors of points in a database. 
The estimated decision-making risk assessment is represented by the probability of the 
errors of points stored in the database.

Keywords: models of empirical distribution of errors; accuracy of map data; risk of 
decision-making

1. Introduction

Digital map data are important for many government departments, business research 
and the general public. The most accurate are large-scale map data which are produced 
by geodetic and cartographic procedures. These include, among others: new surveys 
performed by electronic tacheometers or RTN/RTK GNSS equipment, re-calculation 
of previous direct measurements and graphical-and-digital processing of analogue 
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maps. Although these procedures are complex, they also provide continuous updating 
for planimetric data collection. The conducted studies show the position errors of 
points stored in analyzed databases, which are with mean errors from (0.04 m, 0.14 m) 
for new surveys and to (0.14 m, 0.46 m) for graphical-and-digital processing of 
analogue maps (Doskocz, 2013).

However, there are also outliers and gross errors which distort the error 
distributions. This is in accordance with the law of the propagation of distributions 
(ISO, 2004), which is a generalization of the law of the propagation of uncertainties 
(variances).

Therefore, since the application of classical statistical analyses did not produce 
the expected results (Doskocz, 2005), the author proposed a robust assessment of 
the accuracy of large-scale digital maps (Doskocz, 2014b) and the application of 
empirical cumulative distribution functions for a risk assessment of decision-making 
(presented in this paper).

The paper is not related to natural hazards, for example, of landslides (e.g. Pradhan 
et al., 2011) or fl oods (e.g. Hejmanowska, 2006) but refers to an accuracy assessment 
of map data for decision-making, for example, in detailed localization of objects for 
land-use planning.

This paper proposes a geomatic analysis for estimation of risk decision-making 
by data read from the large-scale maps or stored in their databases (using so-called 
“large-scale map data”). This is an important problem because stored large-scale map 
data often have incomplete information about data lineage and accuracy as well as 
erroneous information about position of points and other objects (Doskocz, 2013).

In such situations, a database may mix good data with bad (Siegrist, 2011). In 
conventional statistical and other type of analyses, bad (erroneous) data are ignored 
(outliers and gross errors are rejected). Sometimes all data are analyzed by robust 
methods and by statistical data predictions (e.g. Pita et al., 2011). In the literature was 
proposed the creation of thematic risk maps using geoinformation systems (Shokin et 
al., 2011). Guryev et al. (2014) also proposed the construction of dynamic (digital) 
risk maps whose main goal is to serve as an early diagnostics tool for decision-
makers. Potential territorial risk is an assessment of arbitrary points (x, y) located on 
a metropolitan area map.

In the presented study an analysis was performed for a large statistical sample 
set of shift vectors of control points, where the shift vector of a control point was 
identifi ed with the position error of this point. The established models of the empirical 
cumulative distribution functions of shift vectors of control points involve polynomial 
equations. The established models of the empirical cumulative distribution functions 
of shift vectors of control points involve polynomial equations.

Risk analysis is an accurate technique if it fulfi lls the appropriate criteria. Guidance 
and a review of the literature are available in Pradhan et al. (2011). An evaluation of 
the compatibility degree (R2) of the polynomial with empirical data is presented and 
an assessment of the accuracy of models by the convergence coeffi cient:
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computed for several-element populations of remainders (there were n remainders 
of non-linear model Et determined with a step of 0.05 m within the limits of the 
scattering of elements of a given set) is also given. The compatibility characteristics 
of non-linear models with empirical data was represented by

 22 1=quasiR   (2)

and the indicator of the mean relative compatibility of model
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In the formulas yt is the size of a variable predicted by the model and ȳ is the mean 
value of the real size of a variable (Gładysz and Mercik, 2007).

Research using the classical statistical method of large-scale map data accuracy 
assessment including by an analysis of errors distribution did not produce good 
results.

This paper presents a new approach for accuracy assessment of planimetric large-
scale map data by using empirical cumulative distribution functions of position errors 
of control points.

2. The study data sets

The studied data sets include large-scale map data which may be characterized by 
their main production method (Dąbrowski and Doskocz, 2008). An analysis was 
performed for sets of control points of the 1st accuracy group (the so-called “well-
defi ned” points, which comprise three types of point objects: apex points of building 
contours, boundary points of parcels and points corresponding to above-ground 
technical utilities).

It should not be forgotten, however, that the earlier-created databases are updated 
primarily by new survey methods. The diversity of the situational data acquisition 
methods for large-scale maps is given in Figure 1.
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Fig. 1. Methods of the situational data acquisition for large-scale maps (Doskocz, 2013)

The studies were conducted on four data sets. Large-scale map data set A was 
produced based on a direct survey performed with use of an electronic tacheometer 
and 484 control points were used to assess risk decision-making. Large-scale map 
data set B was produced based on surveys, performed from 1974 to 1999 using the 
orthogonal measurement method and, in recent years, by the polar method using an 
electronic tacheometer. 1,636 control points were used for the risk decision-making 
assessment. Large-scale map data set C was acquired by manual vectorization of 
the raster image of an orthophotomap. 773 control points were used to assess risk 
decision-making. Large-scale map data set D was produced using a graphical-and-
digital processing method (by vectorization) of the analogue base maps on a scale of 
1:500 with the layers of utilities, on scales of 1:500 and 1:1000. 2,287 control points 
were used to assess risk decision-making.
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The analysis was performed for large statistical samples sets of shift vectors (V) 
of control points.

 22 dYdXV  (4)

where dX and dY are their components, i.e. differences of coordinates.
In the case of map data A, produced using a direct survey with an electronic 

tacheometer, the coordinate differences were represented by differences between 
positions of the same control point obtained from two separate tacheometer 
measurement stations. In the case of other methods of large-scale map data 
collection, the coordinate differences were represented by differences of 
coordinates acquired from the investigated data sets and coordinates calculated 
from control direct surveys. The control surveying was realized (Total Station) 
by double measurements of a single-signaled point of the 1st accuracy group, 
which allowed an evaluation of their accuracy (0.01-0.03 m) ± 0.01 m. Thus, the 
shift vector of the control point may be identifi ed with the position error of this 
control point.

3. Results and discussion

3.1. Empirical cumulative distribution functions

The empirical cumulative distribution function for decision-making risk assessment 
presented in this paper was determined using an evaluation of the compatibility 
of the model with empirical data. In Figure 2 was presented on vertical axes 
probability that error not exceed the size, which was presented on horizontal axes 
(in meters).

The main evaluator is the coeffi cient of determination (R2), containing information 
on the percentage variation of the empirical set elements which are explained using 
the formulated analytical model. This coeffi cient takes values from the interval (0, 1). 
A higher R2 indicates a better fi t of the model to the data and, in practice, should aim 
for the highest determination coeffi cient.
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Data set A

y = -133.6x6 + 430.82x5 - 546.41x4 + 344.6x3 - 
112.29x2 + 17.668x - 0.0564

                                              (R 2 = 0.9935 )
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Data set B

y = -0.001x6 + 0.0304x5 - 0.3157x4 + 1.4537x3 - 
3.0851x2 + 2.7409x + 0.2082

                                               (R 2 = 0.8916 )
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Data set C

y = -7.7877x5 + 24.352x4 - 25.377x3 + 8.2133x2 + 
1.649x - 0.0281

                                    (R 2 = 0.999 )
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Data set D

y = 0.029x5 - 0.353x4 + 1.5787x3 - 3.2609x2 + 
3.1186x - 0.123

                                                    (R 2 = 0.9935 )
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Fig. 2. The empirical cumulative distribution functions characteristic for data sets
and matched to them analytical models (polynomials)

The polynomial equations models of the empirical cumulative distribution 
functions of shift vectors of control points in studied data sets, with a maximum 
vector value (vmax) and number of set elements (N) were stated, and are given in 
Table 1.

Table 1. Polynomial equations which are models of empirical cumulative distribution functions 
of position errors of points and their assessments

Data set A
y = -133.6x6 + 430.82x5 – 546.41x4 + 344.6x3 – 

112.29x2 + 17.668x – 0.0564
(vmax = 0.91 m, N = 484, R2 = 0.9935)

n = 18, Φ2 = 0.065, quasiR2 = 0.935, Ψ = 0.019

Data set C
y = -7.7877x5 + 24.352x4 – 25.377x3 + 8.2133x2 + 

1.649x – 0.0281
(vmax = 1.26 m, N = 773, R2 = 0.999)

n = 22, Φ2 = 0.009, quasiR2 = 0.991, Ψ = 0.050

Data set B
y = -0.001x6 + 0.0304x5 – 0.3157x4 + 

1.4537x3 – 3.0851x2 + 2.7409x + 0.2082
(vmax = 15.87 m, N = 1636, R2 = 0.8916)

n = 25, Φ2 = 0.130, quasiR2 =  0.870, Ψ = 0.076

Data set D
y = 0.029x5 – 0.353x4 + 1.5787x3 – 3.2609x2 + 

3.1186x – 0.123
(vmax = 4.85 m, N = 2287, R2 = 0.9935)

n = 25, Φ2 = 0.009, quasiR2 = 0.991, Ψ = 0.060

The established models of empirical cumulative distribution functions satisfy 
the accepted correctness criteria (Gładysz and Mercik, 2007): the coeffi cient of 
determination (R2) on a level of not less than 0.6 and an indicator of the mean relative 
compatibility of the model (Ψ) of not more than 0.1. Accordingly, the models may 
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be used to estimate the probability occurrence of position error of a control point in 
digital map data sets.

The high probability of the occurrence of large errors in the data set suggests 
a large risk in decision-making about the localization of objects, e.g. for land-use 
planning and for other purposes (e.g. Andrew et al., 2015).

3.2. Risk assessment of decision-making based 
on values of the position errors of points

In the presented results, the exact size of position errors of points provides a risk 
assessment of decision-making based on stored data sets.

The application of an empirical cumulative distribution function enables the 
calculation of the probability of the position errors of well-defi ned points (with sizes 
depending on the object of interest) in databases. This could be used, for example, 
to meet the accuracy standards required to determine an object’s position (with 
a position error of control point not greater than 0.10 m) or, for the old boundary 
points of parcels, the probability that a position error of point does not exceed 0.60 m.

The decision-making risk assessment based on the occurrence of the position 
errors of points in sets of large-scale map data estimated from empirical cumulative 
distribution functions is given in Table 2.

Risk assessment of decision-making is possible by the assessment of accuracy of 
well-defi ned points, for example, for determining the position of boundary points of 
the parcels in the use and modernization of land records.

Table 2. Risk assessment of decision-making estimated by the probability of the position errors 
of points stated from empirical cumulative distribution functions

Data set
The probability of position errors of points

not exceeding this size in [m]

0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70

A 0.67 0.91 0.99 0.99 0.96 0.98 1.00 1.00 0.98

B 0.36 0.47 0.57 0.66 0.80 0.90 0.98 1.00 1.00

C 0.10 0.22 0.36 0.49 0.72 0.88 0.96 0.98 0.98

D 0.05 0.18 0.30 0.40 0.57 0.71 0.81 0.88 0.93

In the Table 2 was presented information (metadata) on the probability of meeting 
the planimetric accuracy standard for a large-scale map (for maps on the scale 
1:500, the position error of well-defi ned points should not be greater than 0.15 m, 
0.0003 m × 500 = 0.15 m) and a robust evaluated database with an occurrence of 
excessive position error of point (the probability of no occurrence of errors with 
outlier sizes and gross errors).
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For the assessed databases, the reliability of digital map data for the level of 
the planimetric accuracy standard is satisfi ed by the data obtained by new surveys 
performed using an electronic tacheometer (data set A).

The accuracy of large-scale map data produced based on surveys (data set B), 
performed over 30 years using the orthogonal method of measurements and updated, 
in recent years, by the polar method using an electronic tacheometer, are also quite 
satisfactory. More than half of the details of the 1st accuracy group meet the planimetric 
map accuracy standard.

For the data acquired by manual vectorization of the orthophotomap raster image 
(data set C), more than one-third of the objects meet the planimetric database accuracy 
standard on a scale of 1:500.

In the case of data produced using the graphical-and-digital processing method 
for analogue base maps on a scale of 1:500 (data set D, vectorization preceded by 
scanning maps), less than one-third of the objects are compatible with the planimetric 
database accuracy standard.

A credibility evaluation of the analyzed large-scale map data by estimating 
the probability of no errors with outlier sizes is also interesting (which may be 
a “confi dence index” for database users). The level of errors classifi ed as outliers was 
established for values greater than 0.68 m (Doskocz, 2013).

Therefore, the position errors of control points at the 0.70 m level reduces the 
confi dence index for the database (Table 2). For data sets A, B or C, verifi cation at the 
position error of point at the 0.60 m level provides a 100% level for the “confi dence 
index” for these databases. In contrast, the use of data set D lowers the data credibility 
to the level of about 90% and increases the decision-making risk based on this data 
set.

For example, the American standard for spatial data accuracy contains the risk of 
the unknown accuracy of used data sets (NSSDA, 1999).

4. Conclusion

Large-scale digital maps are an important part of the spatial data infrastructure (SDI), 
and the registers of land and buildings are especially relevant for the European 
Community (Directive, 2007) and provide reference data to other SDI resources. In 
addition, cadastral databases play a key role in the structure of government information 
(Lewandowicz, 2002; Act, 2010). The accuracy of data stored in cadastral and other 
government registers determines the quality and credibility of decisions based on 
geomatics – defi ned as “computer-assisted decision-making tools” (e.g. LGA, 2014).

In addition, geomatics can be viewed as bridging the gap between the producers 
of digital map data and the data users (Burkholder, 2005). This topic should be 
considered for aspects of typical tasks of a large-scale map (Doskocz, 2014a) or land 
information system (Bielecka and Całka, 2012).
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In this paper, it was demonstrated that the established analytical models allow 
a risk assessment of decision-making based on planimetric large-scale map data. 
Empirical cumulative distribution functions were used to estimate the probability of 
the occurrence of position errors of points in data sets and to indicate the risk of 
decision-making about the localization of objects, e.g. for land-use planning.

The estimated empirical cumulative distribution functions have high correctness 
(Table 1). However, in the model there may be some deviations from the cumulative 
distribution function (shown in Figure 2). In the studied error sizes (up to about 4.5σ), 
this is particularly evident in the case of databases with a high level of planimetric 
accuracy, e.g. data acquired from fi eld measurements.

Confi rmation was obtained for data set A, where the complete credibility of 
the data was found at a position error of points of approx. 0.5 m (Table 2) and the 
confi dence index of the database decreased slightly to approx. 98%. This situation is 
acceptable because the indicator of the mean relative compatibility of the model was 
Ψ = 0.019 – according to the assessment of the model compatibility with empirical 
data (Table 1).

The use of databases to support decision-making is associated with problems 
because decisions are based on data combined from different sources (Harding, 
2013). The current state of the creation and modernization of national geodetic and 
cartographic resources should be revised (Doskocz, 2015) because the metadata of 
these databases are important for the creation of the European and Global Spatial 
Data Infrastructure (Bank, 2004).
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