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Abstract Inverse boundary problem for cylindrical geometry and un-
steady heat conduction equation was solved in this paper. This solution
was presented in a convolution form. Integration of the convolution was
made assuming the distribution of temperature T on the integration inter-
val 〈ti, ti +∆t〉 in the form T (x, t) = T (x, ti)Θ + T (x, ti +∆t) (1−Θ),
where Θ ∈ (0, 1). The influence of value of the parameter Θ on the sensi-
tivity of the solution to the inverse problem was analysed. The sensitivity
of the solution was examined using the SVD decomposition of the matrix
A of the inverse problem and by analysing its singular values. An influence
of the thermocouple installation error and stochastic error of temperature
measurement as well as the parameter Θ on the error of temperature dis-
tribution on the edge of the cylinder was examined.
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Nomenclature

c – specific heat, J/kg K
C – integration constant
condA – condition number of the matrix A
dp – values calculated using the direct problem
e – Eulerian number
g – distance of the thermocouple from the edge of the cylinder, m
I – identity (square) matrix of size N
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I0, I1, I−n – modified Bessel functions of the first kind
ip – values calculated using the inverse problem
J0, J1, Jn – Bessel functions of the first kind
L, L−1 – Laplace transform, inverse Laplace transform
r – radius, m
random – values calculated with stochastic disturbances of the temperature

measurement
rankA – rank of the matrix A
s – complex variable
t – time, s
T – temperature, oC
U, V ∗ – unitary matrix in the SVD decomposition
+ – values calculated with the thermocouple installation error by δr∗into

the edge of the cylinder
* – convolution of function
< > – closed interval

Greek symbols

β – coefficient in assumed function of temperature on the edge of the
cylinder

δ – absolute error
∆ – difference
ϑ – temperature in nondimensional coordinates
Θ – coefficient used during integration Θ ∈ (0, 1)
λ – heat conduction coefficient of the cylinder, W/m K
ξ – radius in nondimensional coordinates
ρ – density, kg/m3

σ – singular values of the matrix A
Σ – diagonal matrix in the SVD decomposition
τ – time in nondimensional coordinates

Subscripts

0 – initial time, for t = 0
max – maximum while heating
w – at assumed constant temperature on the edge of the cylinder
z – outer surface of the cylinder
+δξ∗ – with inaccurate location of the thermocouple by δξ* closer to the edge
−δξ∗ – with inaccurate location of the thermocouple by δξ* further from the edge
δϑ – with the measurement error equal to δϑ

Superscripts

* – measuring, Hermitian conjugate
T – transpose of a matrix
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1 Introduction

Processes of heating elements of energy machines or processes of heat treat-
ment require providing a thermal field satisfying the assumed criteria. To
control the body heating it is important to know the temperature on the
edge of the region. Not always is it possible to measure the temperature
of the edge, for instance in a combustion chamber or on the inner surface
of the body of a thermal turbine, and particularly it is difficult when the
radiation is a great part of the heating process (process of heat treatment).
In such cases the temperature of the edge could be determined by solv-
ing the inverse problem on the basis of temperature measurements at inner
points in the body located close to its edge, on which the course of tem-
perature is not known. Some methods of solving one-dimensional inverse
problems of thermal fields distribution for a cylinder are presented in [1],
and for a cylindrical layer – in [2]. Solving the inverse problem using the
Laplace transform is presented in [1–3]. Solving the inverse heat conduc-
tion problem employing the sequential method is described in[4,5], and the
analysis of thermal fields during unsteady heat transfer for irregular geom-
etry was described in paper [6]. To stabilize the solution to the inverse
problem different regularization methods are applied; they are described in
papers [7–9]. The method of the inverse problem is used in the thermal
stress analysis of pipelines [10] and the work of the heat exchangers [11].
In paper, employing the Laplace transform, the solution in a convolution
form have been obtained comprising the unknown course of temperature of
the edge which had been searched for on the basis of temperature measure-
ments inside the body. Integration of the convolution was made assuming
the distribution of temperature, T , on the integration interval 〈ti, ti +∆t〉
in the form T (x, t) = T (x, ti)Θ+T (x, ti +∆t) (1−Θ), Θ ∈ (0, 1), and the
choice of parameter Θ was made by examining singular values of the ma-
trix of the inverse problem and the sensitivity of the solution to the inverse
problem to disturbances.

2 Direct problem

A basis for solving the inverse problem is obtaining a solution to the di-
rect problem with the unknown boundary condition in a parametric form.
The linear heat conduction equation for the symmetric thermal field in the
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cylinder may be written in the following form [12]:

ρc
∂T

∂t
= λ

(

∂2T

∂r2
+

1

r

∂T

∂r

)

, r ∈ (0, rz) , t > 0 (1)

where rz is the radius of the outer surface of the cylinder, with the following
conditions
– initial condition

T (r, t = 0) = T0 = const , (2)

– boundary condition

T (r = rz, t) = Tz (t) , (3)

– condition of the infinite limit of the solution at point r = 0

|T (r = 0, t)| <∞ . (4)

Dependences (1)–(6) were reduced to the nondimensional form by the fol-
lowing substitutions:

ξ =
r

rz
, ϑ =

T − T0
Tmax

, τ =
λ

ρc

t

r2z
, (5)

where Tmax is the maximum temperature while heating, and λ, ρ, c are the
heat conduction coefficient of the cylinder, the density of the cylinder and
the specific heat of the cylinder, respectively:
– differential equation (1)

∂ϑ

∂τ
=
∂2ϑ

∂ξ2
+

1

ξ

∂ϑ

∂ξ
, ξ ∈ (0, 1) , τ > 0 , (6)

– initial condition (4)
ϑ (ξ, τ = 0) = 0 , (7)

– boundary condition (5)

ϑ (ξ = 1, τ ) = ϑz (τ) τ > 0 , (8)

– condition of the infinite limit of the solution (6) at point ξ = 0 ,

|ϑ (ξ = 0, τ )| <∞ . (9)
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To solve the problem (8)–(11) the Laplace transformation expressed by the
dependence [12,13] was applied:

L
[

ϑ (ξ, τ)
]

= ϑ̄ (ξ, τ) =

∞
∫

0

ϑ (ξ, τ) e−sτdτ , (10)

where s is a complex number. Having applied the Laplace transformation
to the Eq. (8) and then employed the condition (10) it was obtained

d2ϑ̄

dξ2
+

1

ξ

dϑ̄

dξ
= sϑ̄− ϑ (ξ, 0) (11)

and the general integral, assuming that ϑ (ξ, 0) = const, and taking the
condition of infinite limit of the solution (11) into consideration is as follows
[12–14]:

ϑ̄ (ξ, s)
∣

∣

ξ=1
=

1

s

(

sϑ̄z (s)
)

= C I0
(√
sξ
)∣

∣

ξ=1
− 1

s
ϑ0 . (12)

Therefore,

C =
1

s

sϑ̄z (s) + ϑ0
I0 (

√
s)

. (13)

Then substituting the dependence (13) into the equation ϑ̄ (ξ, s) = CI0×
(
√
sξ)− 1

sϑ0 we have

ϑ̄ (ξ, s) =
I0 (

√
sξ)

sI0 (
√
s)

(

sϑ̄z (s)
)

. (14)

Therefore, employing the inverse Laplace transform and the Borel’s convo-
lution theorem [13] we obtain

ϑ (ξ, τ) = L−1

[

I0 (
√
sξ)

sI0 (
√
s)

(

sϑ̄ (ξ = 1, s)
)

]

= (15)

=L−1

[

I0 (
√
sξ)

sI0 (
√
s)

]

∗ L−1
[

sϑ̄ (ξ=1, s)
]

=L−1ϑ̄w (ξ, s) ∗ L−1
[

sϑ̄ (ξ=1, s)
]

,

where L−1
[

sϑ̄z (s)
]

= δ (τ)ϑz (0) + ϑ′z (τ) = ϑ′z (τ), and δ, the prime (’)
symbol, ∗ denote the Dirac delta function, differentation, convolution of
functions, respectively. Employing the residue theorem [12] we determine
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the solution ϑw (ξ, τ) being the solution to the problem with a constant
temperature on the edge

ϑw (ξ, τ) = L−1

[

I0 (
√
sξ)

sI0 (
√
s)

]

=

∞
∑

n=0

res
s=sn

[

I0 (
√
sξ)

sI0 (
√
s)
esτ
]

, (16)

where sn are poles of the function
I0(

√
sξ)

sI0(
√
s)
esτ , i.e., numbers for whom the

dominator sI0 (
√
s) is equal to zero. They are s0 = 0 and roots of the

equation I0 (
√
s) = 0. For s0 = 0 we have

res
s0=0

[

I0 (
√
sξ)

sI0 (
√
s)
esτ
]

= lim
s→0

[

s
I0 (

√
sξ)

sI0 (
√
s)
esτ
]

= lim
s→0

[

s
I0 (

√
sξ)

sI0 (
√
s)
esτ
]

= 1 ,

(17)
while for the remaining poles

ϑw (ξ, τ ) = 1+
∞
∑

n=1

res
s=sn

[

I0 (
√
sξ)

sI0 (
√
s)
esτ
]

= 1+
∞
∑

n=1

lim
s→sn

[

(s− sn)
I0 (

√
sξ)

sI0 (
√
s)
esτ
]

.

(18)
Having employed l’Hôpital’s rule and the properties for the modified Bessel
functions, the dependence (18) takes the following form:

ϑw (ξ, τ ) =

1+
∞
∑

n=1

lim
s→sn

[

I1 (
√
sξ) (s−sn) esτ 1

2
√
sξ
+I0 (

√
sξ) (esτ+esτ (s−sn) τ)

I0 (
√
s) + sI1 (

√
s) 1

2
√
s

]

.

(19)

Since

lim
s→sn

I1
(√
sξ
)

(s− sn) e
sτ 1

2
√
sξ

= 0 (20)

and
lim
s→sn

I0
(√
sξ
)

(s− sn) e
sτ = 0 , (21)

therefore

ϑw (ξ, τ) = 1 +
∞
∑

n=1

lim
s→sn

[

2I0 (
√
sξ) esτ

2I0 (
√
s) +

√
sI1 (

√
s)

]

. (22)

Numbers sn are poles of the function
I0(

√
sξ)

sI0(
√
s)
esτ hence lim

s→sn
I0 (

√
s) = 0 and

ϑw (ξ, τ ) = 1 +

∞
∑

n=1

lim
s→sn

[

2
I0 (

√
sξ) esτ√

sI1 (
√
s)

]

= 1 + 2

∞
∑

n=1

I0
(√
snξ
)

esnτ
√
snI1

(√
sn
) . (23)
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The function I0 of the real argument is positive, and for the imaginary
argument is a function oscillating relative to the axis of abscissas, thus√
sn = pni, where i is the imaginary unit, then sn = −p2n. Hence, the

expression (19) takes the following form:

ϑw (ξ, τ ) = 1 + 2

∞
∑

n=1

I0 (pniξ) e
−p2nτ

pniI1 (pni)
. (24)

Since I−n (s) = i−nJn (si) then I0 (pniξ) = J0 (pnξ) and I1 (pni) = iJ1 (pn)
[12] hence

ϑw (ξ, τ) = 1 + 2

∞
∑

n=1

J0 (pnξ) e
−p2nτ

pniiJ1 (pn)
=

= 1 + 2
∞
∑

n=1

J0 (pnξ) e
−p2nτ

−pnJ1 (pn)
= 1− 2

∞
∑

n=1

J0 (pnξ) e
−p2nτ

pnJ1 (pn)
. (25)

Numbers sn are roots of the equation I0 (
√
s) = 0 ⇔ I0 (pi) = J0 (p) = 0.

Hence, pn are roots of the equation J0 (p) = 0. Therefore, the symmetric
thermal field in the cylinder is expressed by the formula

ϑ (ξ, τ) =
∂ϑ (ξ=1, τ )

∂τ
∗
[

1−2

∞
∑

n=1

J0 (pnξ) e
−p2nτ

pnJ1 (pn)

]

=
∂ϑ (ξ=1, τ )

∂τ
∗ϑw (ξ, τ) .

(26)
The function ϑw (ξ, τ ) is the solution to the Eq. (8) with the initial condition
(9) and constant temperature on the edge ϑw (ξ = 1, τ ) = 1 (condition (10),
ϑz = 1).

3 Inverse problem

Since it is not always possible to determine temperature on the boundary
of the region, such determination can be done by solving the inverse prob-
lem. In order to do that one should measure temperature at inner points
of the region, Fig. 1. In the next step, the value of the function ϑ (ξ = 1, τ )
from the minimization of the distance between the temperature expressed
by the formula (26) and the value measured for subsequent moments of
time is searched for (for the case of a single measurement point, the dis-
tance between the temperature (26) and temperature measured becomes
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Figure 1: Figure of a cylinder cross-section with the outer radius (rz), the point of ther-
mocouple installation (r*,g) and the accuracy of the thermocouple location (r*
+ δ r*, r* – δr*).

the equality). The thermocouple is located at the distance of g = rz − r∗

from the edge of the cylinder, hence ξ∗ = r∗

rz
= rz−g

rz
.

Convolution solution for the point of the temperature measurement r =
r∗ (ξ = ξ∗) is equal to the measured value, therefore, for two subsequent
moments of time τi, τi+1we have:















ϑ (ξ∗, τi) =
τi
∫

0

ϑ′ (ξ = 1, u)ϑw (ξ∗, τi − u) du ,

ϑ (ξ∗, τi+1) =
τi+1
∫

0

ϑ′ (ξ = 1, u)ϑw (ξ∗, τi+1 − u) du .
(27)

Having subtracted from both sides we obtain

I2 = ϑ (ξ∗, τi+1)− ϑ (ξ∗, τi) =

τi+1
∫

0

ϑ′ (ξ=1, u)ϑw (ξ∗, τi+1−u) du

−
τi
∫

0

ϑ′ (ξ=1, u)ϑw (ξ∗, τi−u) du . (28)

Hence, substituting the integral on the interval 〈0, τi+1〉 by a sum of integrals
over subsequent intervals 〈τn, τn+1〉, n = 0, 1, . . . , i

I2 =
i
∑

n=0

τn+1
∫

τn

ϑ′ (ξ = 1, u)ϑw (ξ∗, τi+1 − u) du

−
i−1
∑

n=0

τn+1
∫

τn

ϑ′ (ξ = 1, u)ϑw (ξ∗, τi − u) du . (29)
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Since the function ϑw (ξ∗, τi − u) > 0 thus to simplify the convolution in-
tegration we approximate it by the staircase function ϑw (ξ∗, τi − τn)Θ +
ϑw (ξ∗, τi − τn+1) (1−Θ), Θ ∈ (0, 1) [15], Fig. 2. Hence, approximating the

Figure 2: Approximation of the function ϑw by the staircase function.

functions ϑw (ξ∗, τi − u) and ϑw (ξ∗, τi+1 − u), u ∈ 〈τn, τn+1〉 by the stair-
case function (Fig. 2) with the parameter Θ ∈ (0, 1) the dependence (29) is
expressed by the formula

I2=
i
∑

n=0

τn+1
∫

τn

ϑ′ (ξ=1, u) [ϑw (ξ∗, τi+1−τn)Θ+ϑw (ξ∗, τi+1−τn+1) (1−Θ)] du

−
i−1
∑

n=0

τn+1
∫

τn

ϑ′ (ξ = 1, u) [ϑw (ξ∗, τi − τn)Θ + ϑw (ξ∗, τi − τn+1) (1−Θ)] du,

0 < Θ < 1
(30)

As a result of the approximation of the function ϑw (ξ, τ) by the staircase
function, integrands in the expression (30) are constant. Therefore

I2=
i
∑

n=0

[

ϑw (ξ∗, τi+1−τn)Θ+ϑw (ξ∗, τi+1−τn+1) (1−Θ)
]

τn+1
∫

τn

ϑ′ (ξ=1, u) du

−
i−1
∑

n=0

[

ϑw (ξ∗, τi − τn)Θ + ϑw (ξ∗, τi − τn+1) (1−Θ)
]

τn+1
∫

τn

ϑ′ (ξ = 1, u) du .

(31)
After integrating the derivative ϑ′z (ξ = 1, τ) of the function of temperature



274 M. Joachimiak and M. Ciałkowski

distribution on the edge of the cylinder we obtained:

I2 =
i
∑

n=0

[

ϑw (ξ∗, τi+1 − τn)Θ + ϑw (ξ∗, τi+1 − τn+1) (1−Θ)
]

×
[

ϑ (ξ = 1, τn+1)− ϑ (ξ = 1, τn)
]

(τn+1 − τn)−

−
i−1
∑

n=0

[

ϑw (ξ∗, τi − τn)Θ + ϑw (ξ∗, τi − τn+1) (1−Θ)
]

×
[

ϑ (ξ = 1, τn+1)− ϑ (ξ = 1, τn)
]

(τn+1 − τn)

(32)

Excluding the last term (n = i) from the first sum on the right side, we
obtain

I2 =
[

ϑw (ξ∗, τi+1 − τi)Θ + ϑw (ξ∗, τi+1 − τi+1) (1−Θ)
]

×
[

ϑ (ξ = 1, τi+1)− ϑ (ξ = 1, τi)
]

(τi+1 − τi)+

+
i−1
∑

n=0

{

ϑw (ξ∗, τi+1 − τn)Θ + ϑw (ξ∗, τi+1 − τn+1) (1−Θ)−
−
[

ϑw (ξ∗, τi − τn)Θ + ϑw (ξ∗, τi − τn+1) (1−Θ)
]}

×
[

ϑ (ξ = 1, τn+1)− ϑ (ξ = 1, τn)
]

(τn+1 − τn)

(33)

and introducing notations

ai+1,i+1=
[

ϑw (ξ∗, τi+1−τi)Θ+ϑw (ξ∗, τi+1−τi+1) (1−Θ)
]

(τi+1−τi) (34)

χi+1 = ϑ (ξ = 1, τi+1)− ϑ (ξ = 1, τi) , i = 0, 1, 2, . . . , (35)

ai,n =
{

ϑw (ξ∗, τi+1 − τn)Θ + ϑw (ξ∗, τi+1 − τn+1) (1−Θ)−
−
[

ϑw (ξ∗, τi − τn)Θ + ϑw (ξ∗, τi − τn+1) (1−Θ)
]}

(τn+1 − τn) ,

i ≥ 1, n = 0, 1, . . . , i− 1 .
(36)

we obtain for i > 1 a system of equations with a triangular matrix


















a11 0 . . . . . . 0

a21 a22
. . .

...

a31 a32 a33
. . .

...
...

...
...

. . . 0
ai1 ai2 ai3 . . . aii













































χ1

χ2

χ3
...
χi



























=



























B1

B2

B3
...
Bi



























, (37)

where

Bj =
ϑ (ξ∗, τj+1)− ϑ (ξ∗, τj)

τj+1 − τj
, j = 0, 1, . . . , i− 1 , (38)
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or in a compact form (for the constant time step ∆τ = τi+1 − τi)

[

A (Θ, ϑw (ξ∗) ,∆τ)
]

{χ} = {B (ϑ (ξ∗) ,∆τ)} (39)

therefore

{χ} =
[

A (Θ, ϑw (ξ∗) ,∆τ )
]−1{

B (ϑ (ξ∗) ,∆τ )
}

. (40)

4 Sensitivity of solution

Each matrix equation in a form Aχ = B may be characterized by its sen-
sitivity. The sensitivity of the solution describes how the disturbance of
data defining the problem, i.e., the matrix A and the vector B, influences
the value of the solution χ. In case of the problem under consideration
the sensitivity should be understood as the influence of the accuracy of
the thermocouple location and of the temperature measurement on the
error in calculated temperature distribution on the edge of the cylinder
[16]. In calculations the accuracy of the thermocouple location was taken
into account (the matrix A is treated as nondisturbed). It was assumed
that the thermocouple may be located at points ξ = ξ∗ ± δξ∗, where
δξ∗ = δr∗

rz
. The temperature measurement is subject to a random error,

being the time function and noted as δϑ (ξ∗, τi). This function takes the

values δϑ (ξ∗, τi) ∈
〈

− δT ∗

Tmax
, δT ∗

Tmax

〉

, where δT ∗ and Tmax are the absolute er-

ror of temperature at the measuring point and the maximum temperature
while heating, respectively. On the basis of the formulae (37)–(40) the dis-
tribution of temperature on the edge of cylinder was determined with the
presence of the installation error and the stochastic error of temperature
measurement:

[

A (Θ, ϑw (ξ∗) ,∆τ)
]{

χ+ δχ (δξ∗, δϑ, τ )
}

=
{

B (ϑ (ξ∗) , τ) + δB (δξ∗, δϑ, τ )
}

(41)
Then, subtracting (39) from (41) we have that

[

A (Θ, ϑw (ξ∗) ,∆τ)
]{

δχ (δξ∗, δϑ, τ )
}

=
{

δB (δξ∗, δϑ, τ )
}

. (42)

Therefore,

{

δχ (δξ∗, δϑ, τ )
}

=
[

A (Θ, ϑw (ξ∗) ,∆τ)
]−1{

δB (δξ∗, δϑ, τ )
}

, (43)
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where, on the basis of (38), we have

δBj (δξ
∗, δϑ) =

ϑ (ξ∗ ± δξ∗, τj+1) + δϑ (ξ∗, τj+1)− (ϑ (ξ∗ ± δξ∗, τj) + δϑ (ξ∗, τj))
τj+1 − τj

−ϑ (ξ
∗, τj+1)− ϑ (ξ∗, τj)
τj+1 − τj

, j = 0, 1, . . . , i− 1 . (44)

5 Sensitivity of the calculation process by
employing singular value decomposition

In order to examine the sensitivity of the solution {χ} the singular value
decomposition (SVD) for the matrix A was applied; it allows the matrix A
to be presented in the form of UΣV ∗, where U and V are unitary matrices, Σ
is a diagonal matrix, and V ∗ denotes the conjugate transpose of V [17]. For
the matrix A, whose elements are real numbers, the SVD decomposition
allows the matrix A to be presented as UΣV T , where UUT = UTU =
V V T = V TV = I. The subscript T on the matrices U and V denotes
the matrix transpose of U or V , respectively. Therefore, from the matrix
equation Aχ = B we have

UΣV Tχ = B . (45)

If the rank of the matrix A is rankA = r, then the following dependences
between the elements on the main diagonal of the matrix Σ occur:

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σN = 0 . (46)

Numbers σi are non-negative square roots of the matrix ATA eigenvalues.
The condition number of the function condA defined as

condA =
σ1
σr

(47)

serves for the analysis on how the output values are sensitive to disturbances
of the input data, and σr represents the smallest positive singular value of
the matrix A. Columns of the matrix V are orthonormal eigenvectors of
the matrix ATA corresponding to those eigenvalues. Columns of the matrix
U are orthonormal eigenvectors corresponding to eigenvalues of the matrix
ATA.
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6 Numerical example

Sample calculations were conducted for the cylinder of the radius rz =
50 mm, made of low-carbon steel of the following properties: density ρ =
7841 kg/m3, specific heat c = 456 J/(kgK) and heat conduction coeffi-
cient λ = 50.3 W/(mK). To test the program, it was assumed that the
non-dimensional distribution of temperature on the edge of the element is
expressed as an exponential function f (τ) = 1− e−βτ , where β is a coeffi-
cient determining the rate of heating; for the sample under consideration it
was assumed to be equal to 1.5. Time of heating the edge of the cylinder
was t = 680 s. Assumed values correspond to the courses of heating ele-
ments in many industrial processes, for instance in a process of nitriding.
It was assumed that the thermocouple is located at the distance of 2 mm
from the edge of the cylinder, i.e., on the radius r∗ = rz − 2 mm= 48 mm.
It was assumed that the accuracy of the thermocouple installation is equal
to 0.5 mm, and the measurement is done with the accuracy of 2.2 oC. For
the analysed sample, Θ = 0.5 and Θ = 0.52 were assumed.

Distributions of temperature on the element’s edge, calculated employ-
ing the direct problem and the inverse problem with the random error of
disturbance of the temperature measurement and with the error of the ther-
mocouple installation are presented in Fig. 3. For Θ = 0.5 the differences
between the assumed temperature on the edge and the calculated one em-
ploying the method of inverse problem increase for subsequent time units
and reach the values above 120 oC (Fig. 3a). A significant growth of the
error of solution may already be noticed after 120 s from the moment of
starting the heating process. With the growth of Θ from the value of 0.5 to
0.52 the deviation of values calculated emploing the inverse problem from
the assumed function of temperature distribution on the edge of the cylin-
der decreases significantly, which corresponds to the decrease in the value
of the condition number condA. Therefore, a right choice of Θ influences
significantly on the sensitivity of the solution.

The results of calculations of singular values for the matrix A, obtained
employing the SVD decomposition for the time of heating the cylinder t =
680 s, β = 1.5; rz = 50 mm and for the thermocouple located at the distance
of g = 2 mm from the edge (ξ∗ = 50−2

50 = 0.96) are presented in Tab. 1.
For Θ < 0.5, the rank of matrix ATA is less than 680, then the ma-

trix A is a singular one. For the value of 0.5 ≤ Θ ≤ 1, the rank of the
matrix under consideration is equal to 680, and condA decreases from the
value of 1310.501518 to 1.512672. High value σ1 and condA for Θ ≈ 0.5
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a) b)

Figure 3: Distribution of temperature on the edge of the cylinder calculated on the basis
of solving the direct problem (dp), the inverse problem with the error of the
thermocouple location (r = r∗ + δr∗) and random disturbance of temperature
(ip_random+) for β = 1.5; t = 680 s; rz = 50 mm, the thermocouple located
g = 2 mm from the edge, and for parameter Θ = 0.5 (a) and Θ = 0.52 (b).

Table 1: Values σr of the minimum (σr > 0) and σ1 of the maximum singular value for
the matrix A, rank of the matrix A (rankA) and condition number condA for
different values of Θ.

Θ σ1 σr condA rankA

0, 0.1, 0.2 0 0 ∞ 0
0.3 ∞ 0 ∞ 547
0.4 ∞ 0 ∞ 544
0.5 1312.261387 1.001343 1310.501518 680
0.51 75.269699 1.001343 75.168758 680
0.52 37.806790 1.001343 37.756090 680
0.6 7.572991 1.001342 7.562839 680
0.7 3.786683 1.001342 3.781610 680
0.8 2.524479 1.001340 2.521100 680
0.9 1.893365 1.001339 1.890834 680
1 1.514694 1.001337 1.512672 680

(Θ > 0.5) causes the solution to be very sensitive to disturbances of the
temperature measurement; whereas, with the growth of Θ the sensitivity of
the temperature distribution on the edge of the cylinder to disturbances of
the temperature measurement inside the cylinder decreases significantly.

7 Summary

This paper presents analytical and numerical solution to the inverse prob-
lem for unsteady heat exchange in the cylinder. The physical object was
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the cylinder of low-carbon steel of the diameter of 100 mm. While solving
the direct problem it was assumed that the edge of the element was heated
according to the function f (τ) = 1−e−βτ . It was assumed that the thermo-
couple is located at the distance of 2 mm from the edge and the accuracy
of its location equals to ±0.5 mm, and the temperature measurement is
done with the accuracy of ±2.2 oC. The influence of the value of the inte-
gration parameter Θ on the sensitivity of the solution was considered. The
sensitivity of the solution to the matrix equation Aχ = B to an inaccurate
location of the thermocouple and the stochastic error of the temperature
measurement depends significantly on the value of Θ. With the occurrence
of the random error of the temperature measurement for Θ = 0.5 the max-
imum error of temperature, ∆Tmax, determined on the edge of the element,
reached the value above 120 oC; while for Θ = 0.52 ∆Tmax ≈ 25 oC. On
the basis of research conducted it can be concluded that a right choice of
the value Θ during numerical integration may result in obtaining a solution
that is significantly less sensitive to disturbances of the measurement data.
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