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Abstract During heat transport through the walls of a hollow sphere,
the heat stream can achieve extreme values. The same processes occur in
regular polyhedrons. We can calculate the maximum heat transfer rate,
the so-called critical heat transfer rate. We must assume here identical
conditions of heat exchange on all internal and external walls of a regular
polyhedron. The transfer rate of heat penetrating through the regular poly-
hedron with different heat transfer coefficients on the walls is called the heat
transfer rate with asymmetric boundary conditions. We show that the heat
transfer rate in this case will grow up if we replace those coefficients with
their average values.
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Nomenclature

d – diameter, m
n – number of sides of polyhedron
P – area, m2

r – radius, m
t – temperature of fluid, oC
Q̇ – heat transfer rate, W
xi – real number
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Greek symbols

α – heat transfer coefficient, W/m2K
δ – thickness, m
λ – thermal conductivity, W/mK
υ – temperature of surface, oC

Subscripts and superscripts

as – asymmetric boundary condition
t – total
i, j – i-, j-function (i = 1, 2, . . . , n), (j = 1, 2, . . . , n)
s – symmetric boundary condition
1, 2 – internal and external, respectively
0 – internal base

1 Introduction

Processes connected with heat transfer through spherical walls are described
in [1,2]. In this context the problem of critical diameter for the hollow sphere
can be noticed. It is analogical in the mathematical and physical meaning
to the idea present for cylindrical and polygonal pipes [3,4].

Figure 1. The cross-section of the hollow sphere with appropriate notation.



Heat transfer through the regular polyhedrons. . . 125

If we use Newton‘s and Fourier‘s equations for description of heat transfer
through spherical walls (Fig. 1), the heat transfer rate through the hollow
sphere [1] is expressed by the expression:
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where α1, α2, are the heat transfer coefficients, t1, t2 temperature of fluid on
inner (1) and outer (2) surface, respectively, and λ is the thermal conductiv-
ity. For given data α1, α2, λ, t1, t2 and specified radius of the interior area
r0 we can select the radius r2 at which the heat transfer rate will achieve
the maximum of its value (critical value), the so-called critical radius (di-
ameter).

Regular polyhedrons are composed of identical, truncated pyramids,
which adhere by lateral surfaces. Bases of the pyramids are regular poly-
gons, homothetic with respect to the centre of similarity in point O (Fig. 2).
Lateral surfaces are insulated (heat exchange does not occur between ad-
joining pyramids). In polyhedron we can inscribe the hollow sphere. It is
tangential to the respectivee bases of piramids, which form the internal and
external surface of the total solid. Material of the polyhedron is anisotropic
with respect to thermal conductivity, which value is finite in perpendicular
planes, and is infinite in planes parallel to the bases of pyramids.

If we use (for the above mentioned regular polyhedrons) heat transmis-
sion laws, geometrical relationships between specific areas and radii of a
hollow sphere which is inscribed in a polyhedron, P2

P0
= r2

2

r2
0
, and boundary

conditions (Fig. 2), after necessary transformations we obtain a heat trans-
fer rate trough a single truncated pyramid which is a repetitive element of
the structure of the polyhedron, therefore, the total heat transfer rate is:
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where n is the number of polyhedron sides.
Now we analyze the influence of the heat transfer coefficient changes

of the regular polyhedron circumference on the value of the heat transfer
rate. The aim is to compare the values of the heat transfer rate through
the regular polyhedron in two cases. In the first one the heat transfer
coefficients are different on each side, while in the second one the heat
transfer coefficients are identical and equal to their average value.
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Figure 2. Truncated pyramids with square bases as an example of repeatable element for
the regular hexahedron.

2 Calculations

For any real number xi and for any concave function, f , the Jensen inequal-
ity is true [5]:

n∑
i=1

wif (xi) ≤ f

(
n∑

i=1

wixi

)
, (3)

where the so-called Jensen’s weights wi are non-negative. In our case
Jensen’s weights are identical on each wall and equal wi=1/n. This is due
to the geometrical properties of regular polyhedrons:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
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n∑
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P = 1
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i=1
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1
n =1 .

(4)

We assume in addition that the heat-transfer coefficients α1,i, α2,i for in-
dividual walls have different values. Taking this into account, using the
inequality (3) and formula (2) we get for the case with asymmetric bound-
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ary conditions the relation
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which after rearrangements can be transformed to:
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Finally, we get
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where ⎧⎪⎪⎨
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The expressions (8) represent the average values of heat transfer coefficients
on the inner and outer surfaces of the solid, respectively.

The expression on the left hand side of (7) is the formula for the heat
transfer through the regular polyhedron, taking into consideration the asym-
metry of boundary conditions on the inner and outer surface, Q̇as

t , (so called
heat transfer rate with asymmetric boundary conditions), while the expres-
sion on the right, Q̇s

t , shows the formula for the rate of heat with average
heat transfer coefficients (8), which are constant (heat transfer rate with
symmetric boundary conditions), therefore

Q̇as
t ≤ Q̇s

t , (9)
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and the structure of Q̇s
t is identical with Eq. (2).

We can see that Jensen’s inequality goes into the equation only if the
heat transfer coefficients are equal on the inside and outside of the body.
Such conditions generally does not occur in nature. However we can obtain
them in laboratory conditions.

2.1 Simulation results

In the example below we analyzed the heat transfer for the tetrahedron.
The simulation assumes the following data: t1− t2 = 100 K, r0 = 1 m, λ =
100W/mK, α1,1 = 10W/m2K, α1,2 = α1,3 = α1,4 = 30W/m2K, α2,1 =
10W/m2K, α2,2 = α2,3 = α2,4 = 30W/m2K, ᾱ1 = 25W/m2K, ᾱ2 =
25W/m2K.

Figure 3. Dependency of the heat transfer rate on the inner area radius: Q̇s
t =

f (r2) , Q̇as
t = f (r2), Q̇s

t − Q̇as
t = f (r2).

The heat transfer rate in the asymmetric case is smaller than in the case
with the average heat transfer coefficients (Fig. 3).

We can show the changes of the heat transfer rate together with the
changes of the heat transfer coefficients for the regular polyhedron with
n = 20 sides. The simulation assumes the following data: t1 − t2 = 100 K,
r0 = 1 m, P0 = 1 m2, λ =100 W/mK, r2 = 4 m, and the heat transfer
coefficients changes for each internal surface in the following way: i = 1
means α1,1 = 10W/m2K for 1 wall and α1,i = 20W/m2K for 9 walls, j = 2
means α1,1 = α1,2 = 10W/m2K for 2 walls and α1,i = 20W/m2K for 8
walls and so on. Heat transfer coefficients change only on the inner surface
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of the polyhedron, and have a value 10W/m2K or 20W/m2K (step change),
and j is the number of walls on the inner surface with the lower coefficient
of heat transfer. In this case relation (9) is true (Fig. 4).

Figure 4. Influence of heat transfer coefficients on the inner surface of the regular poly-
hedron with n = 10 sides on the values of the heat transfer rate . The depen-
dencies from the top respectively: Q̇s

t = f (j) , Q̇s
t − Q̇as

t = f (j) , Q̇as
t = f (j),

where j – the number of pairs of walls with the lower coefficient of heat transfer.

The same effect as in (9) occurs when the heat transfer coefficients
change on the external surface of the solid polyhedron only.

Now the heat transfer coefficients change on the internal and external
surface in the following way: j = 1 means α1,1 = 10W/m2K and α2,1 =
10W/m2K for 1 pair of inner and outer walls and α1,i = 20W/m2K, α2,i =
20W/m2K for 9 pairs of walls, j = 2 means α1,1 = α1,2 = α2,1 = α2,2 =
10W/m2K for 2 pairs of walls and α1,i = α2,i = 20W/m2K for 8 pairs of
walls and so on. The heat transfer coefficients have the value 10W/m2K
or 20W/m2K (step change) and j is the number of pairs of parallel to each
other walls with the lower coefficient of heat transfer. In this case relation
(9) is true also (Fig. 5).

3 Conclusions

1. Physical phenomena of heat transfer through regular polyhedrons
have (excluding laboratory conditions) an asymmetric nature only.
The value of heat transfer rate is obtained by Eq. (2) with heat
transfer coefficient as in (8). Mathematically it is easy to calculate.
In the practice of engineering we need accurate measurements of the
heat transfer coefficients on each wall of the body and it is difficult,
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Figure 5. Influence of heat transfer coefficients on the inner and outer surface of the reg-
ular polyhedron with n = 10 sides on the values of the heat transfer rate. The
dependencies from the top respectively: Q̇s

t = f (j) , Q̇s
t − Q̇as

t = f (j) , Q̇as
t =

f (j), where j – the number of pairs of walls with the lower coefficient of heat
transfer.

because there is no equipment for measuring the local heat transfer
coefficient (we are able to measure this factor only in certain cases).

2. In theory the right and the left hand sides of relation (9) are equal
only if the heat transfer coefficients on all the walls of polyhedrons are
equal. Such conditions generally does not occur in nature, although
we can obtain them in laboratory tests. Generally, as a rule, the
left-hand side of (9) is less than the right one: Q̇as

t < Q̇s
t .

3. The difference Q̇s
t − Q̇as

t = f (r2) decreases to asymptotic limit to-
gether with the growth of the external polyhedrons sizes.

4. The concept of the critical diameter described in the literature [1]
in the case of the asymmetric boundary conditions makes sense for
the average value of the heat transfer coefficient on the internal and
external areas of the walls only.

5. The results obtained can be generalized to all solids, which are de-
scribed on the sphere.

6. The issues considered in the paper may have some practical applica-
tions for example in measuring techniques. The apparatus are often
protected against excessive temperature and heat stream. The easily
calculated Q̇s

t with the correctly obtained average heat transfer coef-
ficient ensures improvement of the conditions of service for the often
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expensive electronic equipment and its safety. The second area of
application may be estimating the maximum heat losses in buildings
or in other structures with the shape of a polyhedron. The work can
also be useful for the construction of the apparatus for measuring heat
transfer coefficients too, so called ‘alpha-measurement’.
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