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Experimental determination of correlations for
mean heat transfer coefficients in plate fin and
tube heat exchangers
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Abstract This paper presents a numerical method for determining heat
transfer coefficients in cross-flow heat exchangers with extended heat ex-
change surfaces. Coefficients in the correlations defining heat transfer on the
liquid- and air-side were determined using a nonlinear regression method.
Correlation coefficients were determined from the condition that the sum of
squared liquid and air temperature differences at the heat exchanger outlet,
obtained by measurements and those calculated, achieved minimum. Mini-
mum of the sum of the squares was found using the Levenberg-Marquardt
method. The uncertainty in estimated parameters was determined using the
error propagation rule by Gauss. The outlet temperature of the liquid and
air leaving the heat exchanger was calculated using the analytical model of
the heat exchanger.
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Nomenclature

A – area, m2

Af – fin surface area, m2

Ain, Ao – inner and outer area of the bare tube, m2

Amf – tube outer surface area between fins, m2
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Amin – minimum free flow frontal area on the air side, m2

Aoval – area of oval opening in the plate fin, m2

Aw, in – cross-section area of the tube, m2

c – specific heat, J/(kg K)
c̄ – mean specific heat, J/(kg K)
C – matrix
dh – hydraulic diameter of air flow passages, m
dt – hydraulic diameter on the liquid side, 4 Aw, in/Pin, m
D – variance-covariance matrix with positive diagonal elements
h – convection heat transfer coefficient, W/(m2K)
ho – weighted heat transfer coefficient, W/(m2K)
Hch – height of automotive radiator, m
I – identity matrix
J – Jacobian matrix
k – thermal conductivity, W/(m K)
kt – tube thermal conductivity, W/(m K)
(k) – iteration number
L – heat exchanger thickness, L = 2p2, m
Lch – length of automotive radiator, m
m – number of measured water and air temperatures (total number of data

points is equal to 2 m)
ṁ – mass flow rate, kg/s
ṁa – air mass flow rate, kg/s
ṁw – water mass flow rate, kg/s
n – number of unknown parameters
nl, nu – number of tubes in the first row in the first (upper) and the second

(lower) pass of heat exchanger, respectively
nr – total number of tubes in the first row of heat exchanger, nr = nl + nu

Na, Nw – air and water number of transfer units, respectively
Nua – air side Nusselt number, = ha dh/ka

Nuw – water side Nusselt number, = hw dt/kw

p1 – pitch of tubes in plane perpendicular to flow (fin height), m
p2 – pitch of tubes in direction of flow (fin width), m
P – confidence interval of the estimated parameters, %
Pin, Po – inside and outside perimeter of the oval tube, respectively, m
Pr – Prandtl number, = µ cp/k

Q̇ – heat flow rate in exchanger between hot water and cold air, W
Rea – air side Reynolds number, = wmax dh/νa

Rew – water side Reynolds number, = ww dt/νw

s – fin pitch, m
s2

t – variance of the fit, K2

S – sum of temperature difference squares, K2

t
α/2
m−n – the ( 1 − α/2 )th quantile of the Student’s t-distribution for m data

points and n unknown parameters with m − n degrees of freedom,
T – temperature, oC
T′′ – vector of water and air temperatures at the outlet of the heat exchanger,
Ta – air temperature, oC
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T ′
am, T ′′

am – mean inlet and outlet temperature of air from the heat exchanger,
oC

T ′
lm, T ′′

lm, T ′′′
lm – mean air temperature at inlet and after the first and second row

of tubes at the second (lower) pass, respectively, oC (Fig. 1)
T ′

um, T ′′
um, T ′′′

um – mean air temperature at inlet, after the first, and second row of
tubes at the first (upper) pass, respectively, oC (Fig. 1)

Tw – water temperature, oC
Twm – water outlet temperature after the first pass, oC
T ′

w, T ′′
w – water inlet and outlet temperature, respectively, oC

T ′
w, 1, T

′
w, 2 – water temperature at the inlet to the first and second tube row

in the first pass, oC (Fig. 1)
T ′

w, 3, T
′
w, 4 – water temperature at the inlet to the first and second tube row

in the second pass, oC (Fig. 1)
T ′′

w, 1, T
′′
w, 2 – water temperature at the outlet from the first and second tube

row in the first pass, oC (Fig. 1)
T ′′

w, 3, T
′′
w, 4 – water temperature at the outlet from the first and second tube

row in the second pass, oC (Fig. 1)
Uo – overall heat transfer coefficient related to the outer surface of bare

tube, W/(m2K)
V̇ ′

a, V̇ ′
w – air and water volume flow rate before the heat exchanger, m3/s

wa, ww – weighting factor for measured air and water temperature wmax

mean velocity in the minimum free flow area, m/s
w0 – average frontal flow velocity, m/s
W – matrix of weighting factors
x1,. . . , xn – unknown parameters
x – vector of unknown parameters
x, y, z – Cartesian coordinates

Greek symbols

δf – fin thickness, m
δt – tube wall thickness, m
ε – relative difference between water side and average heat flow rate, %
ηf – fin efficiency
µ – dynamic viscosity, Pa s
ν – kinematic viscosity, m2/s
ρ – density, kg/m3

σ2
a – variance of measured air temperature, K2

σ2
w – variance of measured water temperature, K2

ξ – friction factor

Subscripts

a – air
f – fin
in – inner
o – outer
t – tube
w – water
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Superscripts

c – calculated
l – lower pass (second pass)
m – measured
u – upper pass
− – mean

1 Introduction

Most engineering calculations of heat transfer in heat exchangers use heat
transfer coefficients obtained from experimental data. The empirical ap-
proach involves performing heat transfer measurements and correlating the
data in terms of appropriate dimensionless numbers, which are obtained
from expressing mass, momentum, and energy conservation equations in
dimensional forms or from the dimensionless analysis. A functional form of
the Nusselt relationship

Nu = f(Re,Pr) (1)

is usually based on energy and momentum-transfer analogies. Traditional
expressions for calculation of heat transfer coefficient in fully developed flow
in smooth tubes are usually products of two power functions of the Reynolds
and Prandtl numbers. The Chilton-Colburn analogy written as [1]

j =
ξ

8
, (2)

where
j =

Nu
RePr1/3

(3)

denotes the Colburn factor, can be used to find empirical equation for Nus-
selt number [1].

Substituting the Moody equation for the friction factor for smooth pipes
[2,3]

ξ =
0.184
Re0.2 (4)

into Eq. (3) we obtain the relation proposed by Colburn

Nu = 0.023Re0.8Pr1/3, 0.7 ≤ Pr ≤ 160, Re ≥ 104, L/d ≥ 60 . (5)

Similar correlation was developed by Dittus and Boelter [1,2,4]

Nu = 0.023Re0.8Prn, 0.7 ≤ Pr ≤ 100, Re ≥ 104, L/d ≥ 60 , (6)



Experimental determination of correlations for mean heat transfer. . . 7

where n = 0.4 if the fluid is being heated, and n = 0.3 if the fluid is being
cooled.

A better accuracy of determining the heat transfer coefficient, h, can be
achieved applying the Prandtl analogy [5,6]

Nu =
ξ
8RePr

1 + C
√

ξ
8 (Pr − 1)

, Pr ≥ 0.5 . (7)

This equation was derived by Prandtl using a two-layer model of the bound-
ary layer at the wall which consists of the laminar sublayer and the turbulent
core. The constants C in Eq. (7) is equal to the dimensionless (friction) ve-
locity at the hypothetical distance from the tube wall that is assumed to be
the boundary separating laminar sublayer and turbulent core. The constant
C depends on the thickness of the laminar sublayer assumed in the analysis
and varies from C = 5 [1] to C = 11.7 [6]. Later Prandtl suggested that
the constant C is equal to 8.7 [7].

The relation (7) was improved by Petukhov and Kirillov [6] using the
Lyon integral [8,9] to obtain numerically the Nusselt number as a function
of the Reynolds and Prandtl numbers. The eddy diffusivity of momentum
and velocity profile in turbulent flow were calculated from experimental
expressions given by Reichhardt [10]. The Lyon integral was evaluated
numerically and the calculated Nusselt numbers were tabulated for various
values of the Reynolds and Prandtl numbers. The obtained results can be
approximated by different functions. Petukhov and Kirillov [9] suggested
the following expression:

Nu =
ξ
8RePr

1.07 + 12.7
√

ξ
8

(
Pr2/3 − 1

) , 104 ≤ Re ≤ 5×106, 0.5 ≤ Pr ≤ 200,

(8)
where the friction factor for smooth tubes is given by

ξ = (1.82 log Re − 1.64)−2 . (9)

If the same data as for the Petukhov-Kirillov correlation (8) are used, then
the following power-type correlation is obtained

Nu = 0.00685Re0.904Pr0.427, 104 ≤ Re ≤ 5×106, 0.5 ≤ Pr ≤ 200. (10)
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The Petukhov correlation (8) has been modified by Gnielinski [11,12] to the
form

Nu =
ξ
8 (Re− 1 000) Pr

1.07 + 12.7
√

ξ
8

(
Pr2/3 − 1

) , 2.3×103 ≤ Re ≤ 106, 0.5 ≤ Pr ≤ 200.

(11)
to increase the accuracy of this equation in the transition area, i.e. in the
range of Reynolds numbers: 2.3 × 103 ≤ Re ≤ 104. The relationships
(5), (7), (8), (11), and (12) listed above were derived on the basis of heat
transfer models for turbulent fluid flow in straight ducts and can be used
for approximation of the experimental results in heat exchangers. However,
the coefficients appearing in these correlations have to be adjusted using
experimental data since the fluid flow path in heat exchangers is usually
complex.

2 Experimental determination of heat transfer
correlations

One of the most popular methods for determining the average heat transfer
coefficients in heat exchangers is the Wilson plot method and its numerous
modifications [3,13,14]. The Wilson method is based on the linear regres-
sion analysis of the experimental data. The disadvantage of the Wilson plot
technique is the need to maintain constant thermal resistance of one of the
fluids. Application of the method is limited to the power type correlations
for Nusselt numbers. It is also difficult to apply Wilson’s method for de-
termining the average heat transfer coefficients in finned heat exchangers.
In this paper, a general method for determining the average heat transfer
coefficients in heat exchangers based on nonlinear least-squares method will
be presented. A mathematical model of the heat exchanger is required that
allows calculation of the heat exchanger outlet temperatures of both fluids
assuming that mass flow rates and inlet temperatures of both fluids are
known.

Unknown coefficients in heat transfer correlations will be determined
based on measured mass flow rates and measured inlet and outlet temper-
atures of both fluids. These coefficients will be adjusted in such a way that
the sum of squares of measured and calculated temperature at the outlet
of the heat exchanger is minimum. The proposed method will be presented
in detail on the example of determining the correlation for air and water
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Nusselt numbers for a car radiator, which is a two-row tube and a plate fin
heat exchanger with two passes.

2.1 Tested plate fin and tube heat exchanger

The tested automotive radiator is used for cooling the spark ignition engine
of a cubic capacity of 1580 cm3. The cooling liquid, warmed up by the
engine is subsequently cooled down by air in the radiator. The radiator
consists of 38 tubes of an oval cross-section, with 20 of them located in the
upper pass with 10 tubes per row (Fig. 1).

Figure 1. Flow diagram of two row cross-flow heat exchanger (automotive radiator) with
two passes; 1 – first tube row in upper pass, 2 – second tube row in upper pass,
3 – first tube row in lower pass, 4 – second tube row in lower pass.

In the lower pass, there are 18 tubes with 9 tubes per row. The radiator
is 520 mm wide, 359 mm high and 34 mm thick. The outer diameters
of the oval tube are dmin = 6.35 mm, dmax = 11.82 mm. The tubes are
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Lch = 0.52 m long. The thickness of the tube wall is δt = 0.4 mm. The
number of plate fins equals to 520. The dimensions of the single tube
plate are as follows: length – 359 mm, height – 34 mm and thickness –
δf = 0.08 mm. The plate fins and the tubes are made of aluminium. The
path of the coolant flow is U -shaped. The two rows of tubes in the first pass
are fed simultaneously from one header. The water streams from the first
and second row are mixed in the intermediate header. Following that, the
water is uniformly distributed between the tubes of the first and second row
in the second pass. The inlet, intermediate and outlet headers are made of
plastic. The pitches of the tube arrangement are as follows: perpendicular to
the air flow direction p1 = 18.5 mm and longitudinal p2 = 17 mm. A smooth
plate fin is divided into equivalent rectangular fins. Efficiency of the fin
given by Eq. (7) was calculated by means of the finite element method.
The hydraulic diameter of an oval tube is calculated using the formula
dt = 4Aw, in/Pin. The Reynolds and Nusselt numbers were determined on
the base of the hydraulic diameter, dt. Equivalent hydraulic diameter, dh,
on the side of the air was calculated using the definition given by Kays
and London [15]. Flow arrangement and construction of the radiator are
discussed in detail in the monograph [16].

2.2 Experimental data

The heat transfer data were taken for cooling of hot water flowing through
the car radiator. The experimental test facility and measurement proce-
dure are presented in [16]. The following parameters are known from the
measurements: water volumetric flow rate V̇ ′

w, air velocity w0, water inlet
and outlet temperature (T ′

w)m and (T ′′
w)m, air inlet and outlet temperature

(T ′
am)m and (T ′′

am)m . Data were obtained for the series of four air velocities,
spanning the range 1.0 to 2.2 m/s (Tab. 1).

The energy balance between the hot water and cold air sides was found
to be within four percent for all runs (Tab. 2). The heat flow rates were
calculated from the relations

Q̇w, i = V̇w, i · ρw

[(
T ′

w, i

)m] · cw

∣∣∣∣(T ′
w, i)

m

(T ′′
w, i)

m · [(T ′
w, i

)m − (
T ′′

w, i

)m]
, (12)

Q̇a, i = V̇ ′
a, i · ρa, i

[(
T ′

am

)m] · cpa

∣∣∣(T ′′
am)m

(T ′
am)m · (T ′′

am − T ′
am

)
, (13)

where
V̇ ′

a, i = Hch Lch w0, i . (14)
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Table 1. Measurement data.

i w0, i [m/s] V̇ ′
w, i [L/h]

(
T ′

w, i

)m
[oC]

(
T ′′

w, i

)m
[oC]

(
T ′

am, i

)m
[oC]

(
T ′′

am, i

)m
[oC]

1 1.00 872.40 71.08 61.83 15.23 54.98
2 1.00 949.20 70.76 62.07 14.89 55.31
3 1.00 1025.40 70.51 62.35 14.74 55.64
4 1.00 1103.40 70.30 62.65 14.59 56.03
5 1.00 1182.60 70.18 62.91 14.65 56.39
6 1.00 1258.80 69.99 63.18 14.87 56.75
7 1.00 1335.00 69.79 63.33 14.87 56.90
8 1.00 1408.80 69.68 63.51 14.71 57.15
9 1.00 1488.60 69.48 63.67 14.86 57.33
10 1.00 1564.80 69.25 63.73 14.81 57.45
11 1.00 1642.20 69.01 63.77 14.78 57.53
12 1.00 1714.80 68.82 63.83 14.77 57.53
13 1.00 1797.00 68.60 63.85 14.97 57.66
14 1.00 1892.40 68.35 63.83 14.98 57.65
15 1.00 1963.80 67.57 63.26 14.65 57.14
16 1.00 2041.20 66.96 62.80 14.24 56.72
17 1.00 2116.20 66.86 62.77 14.17 56.68
18 1.00 2190.60 66.73 62.83 14.27 56.75
19 1.27 865.80 66.33 56.74 14.11 49.56
20 1.27 942.60 66.16 56.96 13.91 49.69
21 1.27 1020.00 66.00 57.40 14.21 50.28
22 1.27 1099.20 65.82 57.66 13.91 50.60
23 1.27 1176.00 65.76 58.01 13.76 51.03
24 1.27 1252.20 65.68 58.27 13.63 51.42
25 1.27 1329.00 65.51 58.43 13.94 51.76
26 1.27 1404.00 65.46 58.71 13.83 52.02
27 1.27 1478.40 65.36 58.95 14.02 52.34
28 1.27 1557.60 65.25 59.12 13.88 52.52
29 1.27 1631.40 65.14 59.25 13.78 52.68
30 1.27 1708.80 65.05 59.35 13.58 52.83
31 1.27 1789.20 65.02 59.55 13.48 53.06
32 1.27 1882.20 65.02 59.80 13.49 53.23
33 1.27 2040.00 64.70 59.80 13.40 53.50
34 1.27 2118.00 64.70 59.80 13.40 53.41
35 1.27 2188.80 64.73 60.14 13.42 53.61
36 1.77 863.40 63.93 52.22 13.17 42.85
37 1.77 1015.80 63.65 53.18 13.21 44.23
38 1.77 1173.60 63.57 54.15 13.18 45.43
39 1.77 1249.20 63.53 54.60 13.09 45.92
40 1.77 1327.80 63.40 54.86 13.14 46.34
41 1.77 1476.60 63.36 55.44 13.00 47.11
42 1.77 1630.80 63.34 56.05 13.03 47.87
43 1.77 1789.80 63.25 56.52 13.14 48.37
44 1.77 1959.00 63.14 56.91 13.03 48.86
45 1.77 2112.60 62.91 57.10 13.00 49.12
46 1.77 2186.40 62.89 57.26 13.00 49.32
47 2.20 865.20 62.28 49.58 13.12 38.51
48 2.20 1017.00 62.24 50.64 12.91 39.83
49 2.20 1171.80 62.09 51.53 12.80 41.03
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i w0, i [m/s] V̇ ′
w, i [L/h]

(
T ′

w, i

)m
[oC]

(
T ′′

w, i

)m
[oC]

(
T ′

am, i

)m
[oC]

(
T ′′

am, i

)m
[oC]

50 2.20 1251.00 61.96 51.93 12.73 41.62
51 2.20 1326.60 61.89 52.28 12.74 42.05
52 2.20 1476.60 61.65 52.85 12.73 42.82
53 2.20 1630.80 61.58 53.41 12.76 43.50
54 2.20 1788.00 61.39 53.82 12.73 44.06
55 2.20 1954.20 61.24 54.19 12.69 44.52
56 2.20 2109.60 61.18 54.56 12.69 44.94
57 2.20 2186.40 61.00 54.56 12.70 45.06

The relative difference between water side Q̇w, i and average heat flow rate
Q̇m, i was evaluated as follows

εi =
Q̇w, i − Q̇m, i

Q̇m, i

· 100 , (15)

where

Q̇m, i =
Q̇w, i + Q̇a, i

2
. (16)

Using 57 experimental data sets listed in Tab. 2, the correlations for
the air and tube side heat transfer coefficients were determined. Different
correlations for air and water side were used and compared with each other.
The construction of the heat exchanger and the materials of which it is
made are also known.

3 Determining heat transfer correlations on the
liquid and air sides

The estimation of the heat transfer coefficients of the air- and water-sides
is the inverse heat transfer problem [17,18]. The following parameters are
known from the measurements: water volumetric flow rate, V̇ ′

w, at the inlet
of the heat exchanger, air velocity w0 before the heat exchanger, water
inlet temperature (T ′

w)m, air inlet temperature, (T ′
am)m, and water outlet

temperature, (T ′′
w)m. Next, specific forms of correlations were adopted for

the Nusselt numbers on the air Nua and water Nuw sides, containing n ≤ m
unknown coefficients xi i = 1, . . . , n. The coefficients x1, x2, . . . , xn were
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Table 2. Water Q̇w, i and air Q̇a, i side heat flow rates and relative difference εi between
water side and average Q̇m, i heat flow rates.

i Q̇w, i [W] Q̇a, i [W] Q̇m, i =
(
Q̇w, i + Q̇a, i

)
/2 [W] εi =

Q̇w, i−Q̇m, i

Q̇m, i
100 [%]

1 9186.2 9031.1 9108.7 0.9
2 9390.6 9194.0 9292.3 1.1
3 9526.4 9307.8 9417.1 1.2
4 9610.8 9436.8 9523.8 0.9
5 9789.2 9502.6 9645.9 1.5
6 9761.0 9526.6 9643.8 1.2
7 9820.4 9560.9 9690.6 1.3
8 9898.3 9660.4 9779.3 1.2
9 9849.3 9661.9 9755.6 1.0
10 9837.4 9702.8 9770.1 0.7
11 9801.1 9727.8 9764.4 0.4
12 9746.7 9730.4 9738.5 0.1
13 9723.4 9708.1 9715.8 0.1
14 9744.6 9703.4 9724.0 0.2
15 9645.5 9673.9 9659.7 -0.1
16 9679.1 9684.6 9681.9 0.0
17 9866.3 9694.3 9780.3 0.9
18 9739.1 9683.2 9711.2 0.3
19 9470.8 10266.2 9868.5 -4.0
20 9891.9 10369.5 10130.7 -2.4
21 10006.3 10443.4 10224.9 -2.1
22 10232.0 10634.0 10433.0 -1.9
23 10396.8 10808.5 10602.6 -1.9
24 10584.9 10963.0 10773.9 -1.8
25 10734.2 10959.5 10846.9 -1.0
26 10811.4 11071.9 10941.7 -1.2
27 10811.1 11102.3 10956.7 -1.3
28 10892.9 11200.1 11046.5 -1.4
29 10962.7 11279.3 11121.0 -1.4
30 11112.6 11388.9 11250.8 -1.2
31 11165.9 11490.1 11328.0 -1.4
32 11209.3 11536.0 11372.6 -1.4
33 11405.5 11645.0 11525.2 -1.0
34 11841.6 11617.7 11729.6 1.0
35 11462.9 11668.4 11565.6 -0.9
36 11545.4 12015.9 11780.6 -2.0
37 12145.1 12557.8 12351.5 -1.7
38 12624.0 13058.8 12841.4 -1.7
39 12738.0 13297.4 13017.7 -2.1
40 12948.5 13446.3 13197.4 -1.9
41 13353.8 13822.1 13588.0 -1.7
42 13574.7 14117.2 13846.0 -2.0
43 13753.7 14269.2 14011.5 -1.8
44 13935.7 14517.4 14226.5 -2.0
45 14016.1 14637.8 14326.9 -2.2
46 14056.2 14717.9 14387.1 -2.3
47 12556.6 12780.4 12668.5 -0.9
48 13480.4 13558.7 13519.6 -0.3
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i Q̇w, i [W] Q̇a, i [W] Q̇m, i =
(
Q̇w, i + Q̇a, i

)
/2 [W] εi =

Q̇w, i−Q̇m, i

Q̇m, i
100 [%]

49 14139.5 14226.0 14182.8 -0.3
50 14337.8 14563.4 14450.6 -0.8
51 14567.5 14771.2 14669.4 -0.7
52 14848.6 15165.5 15007.0 -1.1
53 15224.9 15494.8 15359.9 -0.9
54 15467.2 15791.3 15629.3 -1.0
55 15744.1 16046.0 15895.1 -0.9
56 15959.4 16259.4 16109.4 -0.9
57 16091.6 16315.5 16203.5 -0.7

estimated using the weighted least squares method

S =
m∑

i=1

[(
T ′′

w, i

)m
−

(
T ′′

w, i

)c]2

σ2
w,i

+
m∑

i=1

[(
T ′′

am, i

)m
−

(
T ′′

am, i

)c]2

σ2
a, i

= min ,

(17)
where the calculated water and air outlet temperatures are functions of
measured values and unknown parameters, i.e.

(
T ′′

w, i

)c =
(
T ′′

w, i

)c
[(

V̇ ′
w, i, T

′
w, i

)
,
(
w0, i, T

′
am, i

)
, x1, x2, . . . , xn

]
, (18)

(
T ′′

am, i

)c =
(
T ′′

am, i

)c
[(

V̇ ′
w, i, T

′
w, i

)
,
(
w0, i, T

′
am, i

)
, x1, x2, . . . , xn

]
. (19)

The sum of squared differences (18) between measured and calculated values
of water and air at the outlet of the heat exchanger can be expressed in the
compact form as

S (x) =
{(

T′′)m − [
T′′ (x)

]c}T W
{(

T′′)m − [
T′′ (x)

]c}
, (20)

(T′′)m =
[(

T ′′
w, 1

)m
,
(
T ′′

w,2

)m
, . . . ,(

T ′′
w,m

)m
,
(
T ′′

am, 1

)m
,
(
T ′′

am, 2

)m
, . . . ,

(
T ′′

am, m

)m]T
, (21)

(
T′′)c =

[(
T ′′

w, 1

)c
,
(
T ′′

w, 2

)c
, . . . ,(

T ′′
w, m

)c
, ,

(
T ′′

am, 1

)c
,
(
T ′′

am, 2

)c
, . . . , ,

(
T ′′

am, m

)c]T
. (22)
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W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ww,1 · · · 0 0 · · · 0
0 · · ·

ww, m
...

... wa, 1

· · · 0
0 · · · 0 wa, m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2m×2m

, (23)

where the weighting factors ww,i and wa,i are equal to the inverses of the
variances of the measured water and air values of temperature at the outlet
of the heat exchanger, i.e. ww,i = 1/σ2

w,i, wa,i = 1/σ2
a,i, i = 1, ...,m.

The parameters x1, x2, . . . , xn for which the sum (21) is minimum are
determined by the Levenberg-Marquardt method [19] using the following
iteration

x(k+1) = x(k) + δ(k), k = 1, ... (24)

where

δ(k) =
[(

J(k)
)T

WJ(k) + µ(k)In

]−1 (
J(k)

)T
W

{(
T

′′)m
−

[
T

′′ (
x(k)

)]c}
.

(25)
The Jacobian matrix J is given by

J =
∂Tc (x)

∂xT
=

[(
∂T c

i (x)
∂xj

)]
2m×n

, i = 1 , ..., 2m, j = 1 , ..., n . (26)

The partial derivatives in the Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ (T ′′
w, 1)

c

∂ x1

∂ (T ′′
w, 1)

c

∂ x2
· · · ∂ (T ′′

w, 1)
c

∂ xn
...

...
...

...
∂ (T ′′

w, m)c

∂ x1

∂ (T ′′
w, m)c

∂ x2
· · · ∂ (T ′′

w, m)c

∂ xn

∂ (T ′′
am, 1)

c

∂ x1

∂(T ′′
am, 1)

c

∂ x2
· · · ∂ (T ′′

am, 1)
c

∂ xn
...

...
...

...
∂ (T ′′

am, m)c

∂ x1

∂(T ′′
am, m)c

∂ x2
· · · ∂ (T ′′

am, m)c

∂ xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2m×n

(27)

were calculated using the finite difference method.
The symbol In designates the identity matrix of n × n dimension, and

µ(k) the weight coefficient, which changes in accordance with the algorithm
suggested by Levenberg and Marquardt. The upper index T denotes the
transposed matrix. After a few iteration we obtain a convergent solution.
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4 Water and air temperature at heat exchanger
outlet

The water temperature
(
T ′′

w, i

)c
and air temperature

(
T ′′

am, i

)c
at the out-

let of the heat exchanger appearing in weighted sum of squares (18) can
be calculated using the analytical or numerical models [16,20] of the heat
exchanger or the number of transfer units (NTU) method [1,3]. In this pa-
per, the outlet water temperature (Fig. 1) is calculated from the analytical
expression [20]

(
T ′′

w

)c = T ′′
w =

T ′′
w,3 + T ′′

w,4

2
, (28)

where the outlet water temperature
(
T ′′

w,3

)c from the first row in the lower
pass, and the outlet water temperature

(
T ′′

w, 4

)c from the second row in the
lower pass are given by

T ′′
w,3 = T ′

am +
(
Twm − T ′

am

)
exp

{
−N l

w

N l
a

[(
1 − exp(−N l

a

)]}
, (29)

T ′′
w,4 = T ′

am +
[
Cl +

(
Twm − T ′

am

)]
exp (−Bl ) . (30)

The symbol Twm denotes the mean water temperature between the first
and second pass (Fig. 1). This temperature is equal to calculated as the
arithmetic mean from the outlet water temperature T ′′

w,1and T ′′
w,2 (Fig. 1)

Twm =
T ′′

w,1 + T ′′
w,2

2
, (31)

where the water temperatures T ′′
w,1 and T ′′

w,2 are calculated from the follow-
ing expressions:

T ′′
w,1 = T ′

am +
(
T ′

w − T ′
am

)
exp

{
−Nu

w

Nu
a

[(1 − exp(−Nu
a )]

}
, (32)

T ′′
w,2 = T ′

am +
[
Cu +

(
T ′

w − T ′
am

)]
exp (−Bu) . (33)

The mean air temperature (T ′′
am)c after the heat exchanger is given by

(
T ′′

am

)c = T ′′
am =

nu

nr
T ′′′

um +
nl

nr
T ′′′

lm . (34)
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The mean air temperature behind the first (upper) T ′′′
um and the second

(lower) pass T ′′′
lm are

T ′′′
um = T ′

am + (T ′
w − T ′

am)
{

1−exp(−2Nu
a )

Bu
[1 − exp(−Bu)] +

+ [1 − exp (−Nu
a )]2

[
1−exp(−Bu)

Bu
− exp (−Bu)

]} , (35)

T ′′′
lm = T ′

am + (T ′
w − T ′

am)
{

1−exp(−2N l
a)

Bl
[1 − exp (−Bl)]+

+
[
1 − exp

(−N l
a

)]2
[

1−exp(−Bl)
Bl

− exp (−Bl)
]} , (36)

where

Bu =
Nu

w

Nu
a

[
1 − exp (−Nu

a )
]
, Bl =

N l
w

N l
a

[
1 − exp

(
−N l

a

)]
, (37)

Cu = Bu (T ′
w − T ′

am)
[
1 − exp(−Nu

a )
]
,

Cl = Bl (T ′
w − T ′

am)
[
1 − exp(−N l

a)
]
,

(38)

Nu
w =

Uu AI
u

ṁw
2 c̄w

=
2Uu AI

u

ṁw c̄w
, N l

w =
Ul A

I
l

ṁw
2 c̄w

=
2Ul A

I
l

ṁw c̄w
, (39)

Nu
a =

Uu AI
u

ṁu c̄a
=

Uu AI
u

nu
nr

ṁa c̄a
=

nr Uu AI
u

nu ṁa c̄a
,

N l
a =

Ul A
I
l

ṁl c̄a
=

Ul A
I
l

nl
nr

ṁa c̄a
=

nr Ul A
I
l

nl ṁa c̄a
,

(40)

c̄w = cw

∣∣∣T ′′
w

T ′
w

, c̄a = ca

∣∣∣T ′′
am

T ′
am

, (41)

nr = nu+nl, AI
u = AII

u = nu Ato = nu Po Lc, AI
l = AII

l = nl Ato = nl Po Lc.
(42)

The overall heat transfer coefficient Uo is related to the outer surface of the
bare tube Ao

1
Uo

=
1

ho (ha)
+

Ao

Am

δt

kt
+

Ao

Ain

1
hw

, (43)

where the symbol ho designates the weighted heat transfer coefficient defined
as

ho = ha

[
Amf

Ao
+

Af

Ao
ηf (ha)

]
. (44)
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Since the conditions at the water and air side are identified simultaneously,
the determined correlations account for the real flow arrangement and con-
struction of the heat exchanger. As can be seen, expressions for the fluid
outlet temperatures are of complicated form. For this reason, in the case
of heat exchangers with complex structure and complex flow arrangements,
it is better to calculate the outlet temperature of fluid by the effectiveness-
number of transfer units (NTU) method or by the effectiveness-number of
transfer units (P-NTU) method [3]. The ε-NTU or P-NTU formulas have
been obtained in the recent past for many complicated flow arrangements
[3]. In the case of new heat exchangers with complex structure is highly
recommendable the use of numerical modeling to calculate the outlet tem-
perature of the fluids [16,20,22].

5 Uncertainty analysis

The uncertainties for the estimated parameters were determined using the
Gauss variance propagation rule [19,21]. Confidence intervals of the deter-
mined parameters in the correlations for the heat transfer coefficients at
the sides of the air and water. The real values of the determined param-
eters x̃1,...,x̃n are found with the probability of P = (1 − α) 100% in the
following intervals:

x i − t
α/2
2m−n s t

√
c i i ≤ x̃i ≤ x i + t

α/2
2m−n s t

√
c i i , (45)

where
xi – parameter determined using the least squares method,
t
α/2
2m−n – quantile of the t-Student distribution for the confidence level

100 (1 − α) % and 2m − n degrees of freedom.
The least squares sum is characterized by the variance of the fit s2

t , which
is an estimate of the variance of the data σ2 and is calculated according to

s2
t =

1
2m−n−1

{
m∑

i=1

[(T ′′
w, i)

m−(T ′′
w, i)

c]2

σ2
w, i

+
m∑

i=1

[(T ′′
am, i)

m−(T ′′
am, i)

c]2

σ2
a, i

}
min

1
2m

m∑
i=1

(
1

σ2
w, i

+ 1
σ2

a, i

) , (46)

where 2m – denotes the number of measurement points, and n – stands for
the number of searched parameters.

The weighting factors ww,i = 1/σ2
w,i or wa,i = 1/σ2

a,i are the inverses
of the variances σ2

w,i and σ2
a,i which describe the uncertainties of the data
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points for water or air and are normalized to the average of all the weight-
ing factors. If the Levenberg-Marquardt iterative method is used to solve
the nonlinear least-squares problem, then the estimated variance-covariance
matrix from the final iteration is

D(s )
x = stC (s )

x = st

[ (
J(s )

)T
W J(s )

] −1

, (47)

where the matrix C (s)
x is

C (s )
x =

[ (
J(s)

)T
W J(s )

] −1

. (48)

The superscript (s) denotes the number of the last iteration while J is the
Jacobian matrix.

The symbol c i i in Eq. (45) denotes the diagonal element c i i of the matrix
C (s )

x .
In this paper, the following values are under consideration: m = 57

(Tab. 1), and n = 4. Quantiles t
α/2
m−n and t

α/2
2m−n for 95% confidence level

(α = 0.05) are: t0.025
53 = 2 and t0.025

110 = 2. Having solved the nonlinear
least squares problem, the temperature differences of the calculated and
measured outlet temperatures are known. Next, the minimum of the sum
Smin of the squared temperature differences given by Eq. (18) and the 95%
confidence intervals can be calculated from Eq. (45).

6 Results and discussion

Initially, a specific form of correlation equations is assumed for nondimen-
sional heat transfer coefficients at the side of the air

Nua = ha dh/ka = Nua (Rea,Pra,x1, ..., xna) (49)

and at the side of the water

Nuw = hw dt/kw = Nuw (Rew,Prw, xna+1, ..., xn) , (50)

where the symbol na is the number of unknown parameters in the air side
correlation and (n − na) is the number of unknown parameters in the water
side correlation. The Reynolds and Nusselt numbers were determined based



20 D. Taler

on the hydraulic diameters. Equivalent hydraulic diameters on the side of
the air, dh, and the fluid, dt, are defined as follows:

dh =
4Amin L

A′
f + A′

mf

, (51)

dt =
4 Aw, in

Pin
, (52)

where the fin surface of a single passage, A′
f , and the tube outside surface

between two fins, A′
mf , are given by (Fig. 2)

A′
f = 2·2 (p1 p2−Aoval) = 4 (p1 p2−Aoval), A′

mf = 2 Amf = 2 Po (s − δf ) .
(53)

The minimum cross-section area for transversal air flow through the tube
array, related to one tube pitch, p1, is (Fig. 2)

Amin = (s − δf ) (p1 − dmin) . (54)

The air-side Reynolds number Rea = wmaxdh/νa in the correlation (49) is
based on the maximum fluid velocity, wmax, occurring within the tube row,
and is defined by (Fig. 2)

wmax =
s p1

(s − δf ) (p1 − dmin)
T̄am + 273
T ′

am + 273
w0 , (55)

where w0 is the air velocity before the radiator. The temperatures T̄am and
T ′

am are in oC.
As the tubes in the radiator are set in line, wmax is the air velocity in the

passage between two tubes. The thermophysical properties of the hot water
were determined at the mean temperature T̄w = (T ′

w + T ′′
w) /2, where T ′

w

and T ′′
w denote the inlet and outlet temperatures. All properties appearing

in the Eq. (55) for the air are also evaluated at the mean air temperature
T̄am = (T ′

am + T ′′
am) /2 (Fig. 1).

Based on the analysis conducted in the first section the air correlation
(49) was assumed in the form of the Colburn equation and four different
forms of Eq. (50) are selected (Tab. 3). The correlations are valid for

150 ≤ Rea ≤ 350, 4 000 ≤ Rew ≤ 12 000.

The correlations (56)–(59) in Tab. 3 are based only on the measured water
temperatures (m = 57) at the outlet of the heat exchanger while correlations
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Table 3. Correlations for air and water side Nusselt numbers for the automotive radiator.

Correlation Weights Estimated parameters

Nua = x1 Rex2
a Pr1/3

a

Nuw = x3 Re0.8
w Pr1/3

w

[
1 +

(
dt

Lch

)2/3
] (56)

www,i=1

wa,i=0

i=1,...,m

st = 0.1022K
x1 = 0.0640 ± 0.0114
x2 = 0.7876 ± 0.0335
x3 = 0.0161 ± 0.0207

Nua = x1 Rex2
a Pr1/3

a

Nuw = x3 Re0.9
w Pr0.43

w

[
1 +

(
dt

Lch

)2/3
] (57)

ww,i = 1
wa,i = 0
i = 1, . . . , m

st = 0.0993 K
x1 = 0.0814 ± 0.0010
x2 = 0.7307 ± 0.0137
x3 = 0.0066 ± 0.0448

Nua = x1 Rex2
a Pr1/3

a

Nuw =
ξ
8 (Rew−x3)Prw

1+x4

√
ξ
8 (Prw−1)

[
1 +

(
dt

Lch

)2/3
]

(58)

ww,i = 1
wa,i = 0
i = 1, . . . , m

st = 0.0981 K
x1 = 0.0988 ± 0.0081
x2 = 0.6741 ± 0.0152
x3 = 1422 ± 0.1949
x4 = 6.22 ± 0.1990

Nua = x1 Rex2
a Pr1/3

a

Nuw =
ξ
8 (Rew−x3)Prw

1+x4

√
ξ
8

(
Pr2/3

w −1
)

[
1 +

(
dt

Lch

)2/3
] (59)

ww,i = 1
wa,i = 0
i = 1, . . . , m

st = 0.0980 K
x1 = 0.0899 ± 0.0028
x2 = 0.6990 ± 0.0060
x3 = 1079 ± 0.1974
x4 = 16.38 ± 0.1998

Nua = x1 Rex2
a Pr1/3

a

Nuw =
ξ
8 (Rew−x3)Prw

1+x4

√
ξ
8

(
Pr2/3

w −1
)

[
1 +

(
dt

Lch

)2/3
] (60)

ww,i = 100
(σw,i = 0.1)
wa,i = 1
(σa,i = 1)
i = 1, . . . , m

st = 0.1207 K
x1 = 0.0852 ± 0.0014
x2 = 0.7116 ± 0.0032
x3 = 1145 ± 0.2327
x4 = 16.17 ± 0.2428

Nua = x1 Rex2
a Pr1/3

a

Nuw =
ξ
8 (Rew−x3)Prw

1+x4

√
ξ
8

(
Pr2/3

w −1
)

[
1 +

(
dt

Lch

)2/3
] (61)

ww,i = 1
(σw,i = 1)
wa,i = 0.01
(σa,i = 10)
i = 1, . . . , m

st = 0.1207 K
x1 = 0.0850 ± 0.0046
x2 = 0.7121 ± 0.0102
x3 = 1144 ± 0.2439
x4 = 16.22 ± 0.2446
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Figure 2. Cross section of two parallel tubes in the heat exchanger illustrating determi-
nation of the equivalent hydraulic diameter on the air side.

(60) and (61) are based on measured water and air temperatures. The
confidence intervals of the coefficients x1, ..., x4 are small, which results
from a good accuracy of the developed mathematical model of the radiator
and small measurement errors.

Figures 3 and 4 compare the correlations listed in Tab. 3.

Figure 3. Comparison of correlations from Table 3 for air side Nusselt number.

Figures 3 and 4 show that when power type correlations (56) and (57) are
used for water then the power type correlations for air overpredict the air
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Figure 4. Comparison of correlations from Tab. 3 for water side Nusselt number.

side Nusselt numbers which were obtained when the Nusselt type corre-
lation (58) or Petukhov-Gnielinski type correlations (59)–(61) were used
as the correlations for water. However, if the exponent to the water side
Reynolds number Rew in the relation (57) is equal to 0.9 as in the correla-
tion (11), then the agreement of the correlation (57) with other correlations
from Tab. 3 is better. It can be seen from Figs 3 and 4 that if the air side
heat transfer coefficient is too large, then the water side heat transfer is too
low and vice versa when the heat transfer coefficient on the water side is
too large a heat transfer coefficient on the air side is too small. It should
be emphasized that regardless of heat transfer coefficients on the water and
air side, the overall heat transfer coefficient, Uo, is always the same. Com-
parison of correlations (60) and (61) shows that the determined coefficients
are almost identical. This is due to the same ratio of the weighting factors
on the water and air side, which is equal to ww, i/wa, i = σ2

a, i/σ
2
w, i = 100 ,

i = 1, . . .,m.
For the correct determination of the correlations for Nusselt numbers on

the air and water side it is sufficient to take into account only outlet water
temperatures in the sum of the squares. This is due to greater accuracy in
measuring the water side heat flow rate because the mass flow rate and inlet
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and outlet temperatures can be measured with high accuracy. The measure-
ment of the heat flow rate on the air side is less accurate due to the difficulty
of accurate measuring of the air mass flow rate and mass average air tem-
perature (bulk mean temperature) behind the heat exchanger. The mass
average temperature is a temperature that is averaged over cross section of
the flow duct weighted by the local flow velocity. Thus, the measurement
of the mass average velocity requires the simultaneous measurement of the
velocity and temperature over the passage cross section. The air outlet tem-
peratures can be included in the sum of the squares provided the relative
differences εi, between the experimentally determined water and mean flow
rates are very small, for example, for εi ≤ 2%, i = m + 1, ..., 2m.

7 Conclusions

In the paper, a new method for the simultaneous determination of the
heat transfer correlations for both fluids has been presented. The method
is based on the weighted least squares method. In the sum of squared
differences between measured and computed outlet fluid temperatures, both
water and air temperatures are taken into account. Because of the lower
accuracy of measurement of the air volumetric flow rate and mass average
air temperature after the heat exchanger, is recommended to use in the
sum of the squares higher weighting factors for the temperature differences
on the water side. The proposed method allows estimation of the 95%
confidence intervals of determined parameters. The method can be used
to determine the unknown coefficients in the Nusselt number correlations
of any form. The paper presents an example application of the method
for determining the heat transfer correlations on the air and water side in
a plate fin-and-tube heat exchanger.

The developed method can be applied to various types of heat exchang-
ers. To determine the outlet temperatures of both fluids analytical and
numerical methods can be used. Fluid outlet temperatures can also be
relatively quickly and easily determined by the ε-NTU or P-NTU method.

Received 1 August 2012
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