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Models for water steam condensing flows
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Abstract The paper presents a description of selected models dedicated
to steam condensing flow modelling. The models are implemented into an
in-house computational fluid dynamics code that has been successfully ap-
plied to wet steam flow calculation for many years now. All models use
the same condensation model that has been validated against the majority
of available experimental data. The state equations for vapour and liquid
water, the physical model as well as the numerical techniques of solution to
flow governing equations have been presented. For the single-fluid model,
the Reynolds-averaged Navier-Stokes equations for vapour/liquid mixture
are solved, whereas the two-fluid model solves separate flow governing equa-
tions for the compressible, viscous and turbulent vapour phase and for the
compressible and inviscid liquid phase. All described models have been
compared with relation to the flow through the Laval nozzle.
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Nomenclature

aw – water activity in a solution
c – speed of sound, m/s
Cc – Cunningham slip correction factor
e – specific internal energy, J/m3

E – specific total energy, J/m3

h – specific enthalpy, J/kg
H – specific total enthalpy, J/kg
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J – nucleation rate, 1/(m3s)
ls – mean free path, m
k – Boltzmann constant (1.3804·10−23), J/K
Kn – Knudsen number, Kn ≡ ls/2r
M – Mach number
Ml – molality, mol/kg
m – mass of a water molecule (2.99152·10−26), kg
ṁ – mass flux, kg/s
nhet – droplet number per volume (heterogeneous), 1/m3

n – droplet number per mass (homogeneous), 1/kg
p – static pressure, Pa
r – droplet radius, m
R – individual gas constant (461.52 for vapour), J/(kgK)
Re – Reynolds number
t – time, s
T – static temperature, K
u – velocity, m/s
x – spatial variable, m
y – mass fraction of the liquid phase
z – compressibility coefficient

Greek symbols
α – volume fraction
β – correction factor
Γ – mass source, kg/(m3 s)
γ – isentropic exponent
δji – Kronecker delta
λ – heat conductivity, W/(mK)
µ – molecular viscosity, Pa s
ρ – density, kg/m3

σ – surface tension, N/m
τ – shear stress tensor, N/m

Subscripts
0 – total
het – heterogeneous
int – interfacial
i, j – indices
L – left
l – liquid phase
m – mixture
o – surface
R – right
S – saturated
v – vapour phase
w – water
′ – saturated water
′′ – dry saturated vapour
∗ – critical parameter, parameters from ‘star’ region
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1 Introduction

The low-pressure turbine blades are one of the most important components
in the overall steam turbine design. A fully developed 3D stage flow analysis
can provide an optimum blade profile capable of minimizing the losses from
shock waves resulting from the supersonic flow. The accuracy of the modern
3D analysis as a prediction tool has improved considerably and it can now
account for non-equilibrium condensation flows with different steam wetness
conditions and phase change variations [1,2].

The steam temperature in low-pressure turbines decreases due to expan-
sion. In turbines of large output the superheated vapour usually crosses the
saturation line in penultimate stages. At least the last two stages of the low-
pressure turbine operate in the two-phase region producing much more than
10% of the total output. The presence of the liquid phase within the turbine
causes thermodynamic losses (caused by the internal heat transfer within
the fluid), aerodynamic losses (losses that occur due to the interaction of
the fluid with the walls and caused by aerodynamic shocks) and mechanical
losses or erosion (droplet impingement on the blades damages the steam
turbine blades). Therefore, any decrease in them is worth striving for.

There are two main kinds of numerical models of the wet steam flow
with condensation which can be applied to the flow field modelling in low-
pressure (LP) stages. One includes the single-fluid model (SFM) and is
called a no-slip model. The other is a two-fluid model (TFM) taking into
account the velocity slip between the vapour and the liquid phase.

Modelling steam condensation has been investigated in thermodynamic
and gas dynamic aspects by numerous authors for many years now [3–5].
A lot of experimental data for the flow in the Laval nozzle and 2D blade
cascades have been contributed to the validation of the computational fluid
dynamics (CFD) methods with implemented various condensation models
[1,3,4], but mainly SFM models. These models seemed to be well-suited
for modelling the wet steam flow in real turbine stages [6,7] to determine
both thermodynamic and aerodynamic losses. However, in order to predict
mechanical losses, especially the trajectory of liquid droplets and their pos-
sible impingement on the blade surface, a two-fluid model has to be applied,
in which the velocity slip between the phases is taken into account. It al-
lows better understanding the processes of the blade surface deterioration.
Two-fluid models for such type of flow are much more complicated and,
consequently, much less popular.

The aim of this paper is to present models for the wet steam flow field
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prediction. These models are implemented into an in-house CFD code [14]
used for many years at the Institute of Power Engineering and Turboma-
chinery of the Silesian University of Technology in Gliwice for engineering
applications.

2 Physical model

Steam with high velocity in LP stages achieves a supercooled state and
then the subcooled vapour loses its latent heat. During that process liquid
droplets with small diameters are formed. Next, depending on the thermo-
dynamic conditions these small droplets grow or vanish. Hence, the numer-
ical algorithm modelling such flow must solve the equations governing the
compressible flow supplemented by the real gas equation of state, and the
algorithm should include additional relations describing phase transitions.

It was assumed in the presented models that the two phases are governed
by the same pressure:

p = pv = pl , (1)

where indices v and l denote the liquid and vapour phase, respectively. The
following relationships connect the liquid and the vapour phase:

α =
Vl

Vm
,

ρm = (1 − α) ρv + αρl ,
hm = (1 − y) hv + yhl ,

y = α
ρl

ρm
,

(2)

where α is volume fraction and y is the mass fraction of liquid phase, and
Vl,, Vm are respectively the volume of liquid phase and mixture. The density
of the mixture ρm, is a function of vapour density ρv, liquid density ρl, and
volume fraction α. The enthalpy of mixture hm, is determined in a similar
way, where hν and hl are specific enthalpy of vapour and liquid. Mass
fraction y depends on the volume fraction as well as on the ratio between
the liquid and the mixture density, and for the presented problem has a
value by approx. 103 higher than the volume fraction.

2.1 Equation of state for vapour

There are many forms of real gas equations of state for steam known from
literature. At the moment, the most accurate and widely used and the
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most recommended for industrial use is the "IAPWS Industrial Formula-
tion 1997" (IAPWS-IF97). It consists of a set of equations for different
regions. The basic equation for each region is a fundamental equation for
the specific Gibbs free energy. This equation has a very complicated form
and is practically useless for a direct application into CFD codes. In the
presented in-house CFD code the ‘local’ real gas state equation was used in
a form similar to the virial equation of state with one virial coefficient [2]:

p

RTvρv
= z (Tv, ρv) = A(Tv) + B(Tv)ρv , (3)

where p, Tv are pressure and temperature of vapour, respectively, R =
461.5 J/(kg K) is the gas constant, z stands for the compressibility coeffi-
cient and polynomials A(T ), B(T ) are defined as:

A(T ) = a0 + a1T + a2T
2 ,

B(T ) = b0 + b1T + b2T
2 .

Coefficients ai, bi (i = 0,1,2) of polynomials A(T ) and B(T ) are the func-
tions of temperature only, and they are calculated from an approximation
of the thermodynamic properties of steam following the IAPWS-IF97.

Due to its simple form, the solution to the flow governing equations
is obtained relatively fast, but it is still necessary to solve the non-linear
equations to determine the primitive variables from the conservatives ones.
The applied simple mathematical form of a real gas equation of state (EOS)
can be very accurate, but only for a limited range of parameters. The rest
of the thermodynamic properties of the vapour phase are calculated on the
basis of the applied state equation (3).

2.2 Equation of state for liquid

While considering water under the conditions close to the saturation line
for pressure smaller than 1 bar, the IAPWS-IF97 can be used as well, where
the liquid water properties like temperature, density, enthalpy and speed of
sound c can be determined from the following functions:

Tl = Tl (p, hl) ,
ρl = ρl (p, Tl) ,
hl = hl (p, Tl) ,
cl = cl (p, Tl) .

(4)
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The functions in Eqs. (4) in the considered region of liquid water are very
sensitive, and even a minute change of parameters can bring about a signifi-
cant change of their value. It is of course very inconvenient for the numerical
algorithm solving the flow governing equations.

2.3 Non-equilibrium condensation model

2.3.1 Homogeneous condensation

The nucleation model presented in this study is a homogeneous nucleation.
In this kind of nucleation, condensation occurs without any impurity or
surfaces. In the supersonic region, if the flow is heated by the latent heat of
the condensation process, its velocity decreases and its pressure increases.
Therefore, a condensation shock (or rise in pressure) occurs, which increases
the flow entropy producing local losses.

In the presented models, the homogeneous condensation phenomenon
is modelled on the basis of the classical nucleation [8] and the continuous
droplet growth model [9]. The nucleation rate, i.e. the number of supercrit-
ical droplets produced per mass unit of vapour per time unit, is calculated
from the relation obtained according to the classical nucleation theory. This
relation has been derived by an assumption of a thermodynamic equilibrium
between critical droplets and vapour:

Jhom = C

√
2σ
π

m−3/2 ρv

ρl
exp

(
−β

4πr∗2σ
3kTv

)
, (5)

where σ is the surface tension, m is the mass of a water molecule, β is
the correction factor coefficient, k is the Boltzmann constant and C is the
non-isothermal correction factor proposed by Kantrowitz [10]

C =
[
1 + 2

γ − 1
γ + 1

hv − hl

RTv

(
hv − hl

RTv
− 1

2

)]−1

, (6)

because the isothermal model assumption does not apply to vapour, where
γ is isentropic exponent. The correction factor applied in the presented
calculations is β = 1.

The radius of critical clusters r∗ for the applied real gas EOS (Eq. (3))
has a form, which differs from the known relation for the ideal gas:

r∗ =
2σ

ρl(f(pv) − f(ps)) − (pv − ps)
, (7)
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where:

f(p) =
dA

2
ln p +

√
d2

A + 4pdB − dA

2
ln

⎛
⎝1 +

√
d2

A+4pdB

dA

1 −
√

d2
A+4pdB

dA

⎞
⎠ ,

dA = A(T )RT ,
dB = B(T )RT ,

in which ps stands for saturated pressure.
The further behaviour of the critical droplets can be described by the

suitable droplet growth law. Once the droplets are formed, they increase
in size as vapour molecules condense on their surfaces. The energy released
in condensation leads to a rise in temperature of the droplets, and hence,
droplets become hotter than the surrounding vapour during condensation.
The droplet growth is thus governed mainly by the mass transfer towards
a droplet and energy flux away from it. In pure vapour, however, due to
the release of a very high latent heat in the rapid condensation zone, the
droplet growth is dominated by the thermal transfer rate.

Knudsen number, Kn, plays a key role in the coefficient of the heat
transfer due to a wide range of the radii of droplets. Knudsen number
expresses the ratio of the mean free path of vapour molecules to the droplet
diameter (Kn= ls/2r).

The size of droplets for vapour under low pressure is much smaller than
the mean free path of vapour molecules. Therefore, the growth of the
droplets should be governed by considering the molecular and macroscopic
transport process (Hertz-Knudsen model). The problems with the choice of
the condensation and accommodation coefficients make the application of
the Hertz-Knudsen model very difficult for calculations. This problem can
be avoided by using Gyarmathy’s droplet growth model, which takes into
account the diffusion of vapour molecules through the surrounding vapour
as well as the heat and mass transfer, and the influence of capillarity:

dr

dt
=

1
ρl

λv

(1 + 3.18Kn)
r − r∗

r2

Ts − Tv

hv − hl
, (8)

where r is the droplet radius, Ts is the saturation temperature and λv is
the thermal conductivity of the vapour phase.

2.3.2 Heterogeneous condensation

In the heterogeneous condensation model the nucleation process is neglected.
The existence of foreign solid particles favours the nucleation, mainly due
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to the diminished thermodynamic barrier (compared to the homogeneous
nucleation). The heterogeneous nucleation is rapid and has negligible in-
fluence on the results obtaining for expansion processes discussed below.
This assumption enables to eliminate droplet number governing equation
for heterogeneous droplets. The droplets growth on the particle impuri-
ties, which are assumed to be spherical with the given initial mean radius
and concentration in mass unit, is modeled according to the same droplets
growth law, Eq. (8).

The model of heterogeneous condensation on soluble particles is based
on the work [11]. For heterogeneous condensation model on soluble particles
(usually NaCl) the physical properties of steam have to be changed, because
we do not deal with pure vapour but with the solution of the vapour and
e.g. NaCl. In this case the saturated pressure and surface tension have to
be corrected:

psolution(Tv) = awps(Tv) ,
σ = σo (T ) + B Ml ,

(9)

where aw represents the water activity and σo is a surface tension for the
pure steam and water, Ml is molality and B = 1.62 · 10−3 N kg/(m mol) is
a constant for NaCl.

2.4 Interfacial exchange terms

In the presented models the phase change is represented by two mass sources,
according to the relations:

Γ1 = m∗
l J = 4

3πρlr
∗3J ,

Γ2 = 4πρlρmnr2 dr

dt
,

Γhet = 4πρlρmnhetr
2
het

drhet

dt
,

(10)

where Γ1 is the mass source of critical droplets of the mass created due to the
nucleation process, and Γ2,Γhet is the mass condensation rate of all droplets
per volume unit of the two-phase mixture [kg/(m3s)] for homogeneous and
heterogeneous condensation respectively, and J stand for nucleation rate,
and m∗

l is the mass of a critical droplet.

2.5 Drag force

Taking account of the drag force in momentum equations for the TFM
model is crucial for the correct prediction of the velocity field. Omission of
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it for very small droplets in the transonic flow can lead to their excessive
slowdown. For smaller Reynolds numbers, the molecular viscous forces
have to be considered. Under the laminar flow conditions of the droplets

(Re =
ρ(uvj−ulj)2r

µ < 1) the molecular viscous forces dominate, and the
inertial forces can be omitted. According to the Stokes law, the drag force
can be written as:

FDj = −6πµr

Cc

1
Vm

(uvj − ulj) = −
9
2

µα
r2

Cc
(uvj − ulj) , (11)

where uvj and ulj are velocity components of the vapour and liquid, respec-
tively, r is radius of the droplet, and µ is dynamic viscosity. An important
assumption in the derivation of the Stokes law is that the relative velocity
of the gas at the surface of the droplet is zero. This assumption does not
hold for small droplets whose size approximates the mean free path of the
vapour (Kn � 1). For this reason, the Stokes law has to be corrected with
the empirical Cunningham slip correction factor:

Cc = 1 + 2Kn
(
1.257 + 0.4e−1.1/2Kn

)
. (12)

Factor Cc depends on the ratio of the mean free path to the particle diameter
and thereby also on the Knudsen number.

2.6 Governing equations for single-fluid model

A typical approach used for the analysis of two-phase flows is a mixture
model, i.e. the individual fluid phases are assumed to behave as a flow-
ing mixture described in terms of the mixture properties. The applied
single-fluid model consists the mass, momentum and energy equations for
a vapour/liquid mixture, two equations describing the formation and growth
of the liquid phase occurred due to the homogeneous condensation:

∂ρm

∂t
+

∂ (ρmumj)
∂xj

= 0 ,

∂ (ρmumi)
∂t

+
∂ (ρlumjumi + pδji)

∂xj
− ∂τji

∂xj
= 0 ,

∂ (ρmEm)
∂t

+
∂ (ρmumjHm)

∂xj
+

∂ (qj − umjτji)
∂xj

= 0 ,

∂ (ρmy)
∂t

+
∂ (ρmumjy)

∂xj
= Γ1 + Γ2 ,

∂ (ρmn)
∂t

+
∂ (ρmumjn)

∂xj
= J

(13)
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and one for heterogeneous condensation:

∂ (ρmyhet)
∂t

+
∂ (ρmumjyhet)

∂xj
= Γhet ,

where:

Em = hm − p

ρm
+

1
2
umjumj

is the specific total internal energy of the mixture, Hm the specific total
enthalpy of the mixture, δji, τji are the Kronecker delta and shear stress
tensor, respectively, n denotes the droplet number per mass, and xj repre-
sents the spatial variable.

Pressure p has to be calculated from the relation for the total energy of
mixture:

Em − hv(p, ρv)(1 − y − yhet) − hl(p)(y + yhet)+

+
p

ρm
− 1

2
umjumj = 0 . (14)

The relation for pressure is of course non-linear due to the non-linear form
of the applied equations of state for vapour and liquid (Eq. (3)), and is
solved by means of the Newton iteration method.

In this model, the volume of the condensate is neglected. Thus, the
density of the vapour phase is calculated from the mixture density and the
wetness fraction only. Next, knowing the pressure and the vapour den-
sity, the temperature of the vapour phase is calculated from state equation,
Eq. (3). The liquid temperature is calculated from the relation proposed
in [9]:

Tl = Ts(p) − [Ts(p) − Tv

]r∗
r

= Ts(p) − ∆T
r∗

r
. (15)

2.7 Governing equations for two-fluid model

In the considered two-fluid model, homogeneous condensation will only be
taken into account and separate sets of the governing equation for the
vapour and liquid phases have been used. For the vapour phase they can
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be written as follows:

∂ (ρv (1 − α))
∂t

+
∂ (ρv (1 − α)uvj)

∂xj
= −Γ1 − Γ2 ,

∂ (ρv (1 − α)uvi)
∂t

+
∂ (ρv (1 − α)uvjuvi + (1 − α)pδij)

∂xj
−

+
∂ ((1 − α) τji)

∂xj
= −Γ2uint j − FDj ,

∂ (ρv (1 − α)Ev)
∂t

+
∂ (ρv (1 − α)uvjHv)

∂xj
+

+
∂ ((1 − α) qvj − (1 − α) uviτji)

∂xj
= −Γ2(Hvint − L) ,

(16)

where
Ev = hv − p

ρv
+

1
2
uvjuvj

is the specific total internal energy of the vapour, Hv is the specific to-
tal enthalpy of the vapour, and the subscript int indicates the interfacial
location.

The liquid phase is in the form of a fog composed of small droplets.
Therefore the authors have decided to use an inviscid form of the governing
equations for the liquid phase:

∂ (ρlα)
∂t

+
∂ (ρlαulj)

∂xj
= Γ1 + Γ2 ,

∂ (ρln)
∂t

+
∂ (ρlnulj)

∂xj
= J ,

∂ (ρlαuli)
∂t

+
∂ (ρlαuljuli + αpδij)

∂xj
= Γ2uint j + FDj ,

∂ (ρlαEl)
∂t

+
∂ (ρlαuljHl)

∂xj
= Γ2Hlint ,

(17)

where
El = hl − p

ρl
+

1
2
uljulj

is the specific total internal energy of the liquid and H its total enthalpy.
In Eqs. (16) and (17) uint j represents the interface velocity components

and is calculated from relation:

uint j =
ρluljα + ρvuvj (1 − α)

ρm
(18)
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and Hl int, Hv int are the total enthalpies for liquid and vapour, respectively,
which are associated with the interphase mass transfer and calculated, as-
suming saturated conditions, in the following way:

Hl int = h′(p) + uint julj − 1
2uljulj ,

Hv int = h′′(p) + uint juvj − 1
2uvjuvj ,

(19)

where superscripts next to specific enthalpy symbol indicate the saturated
water and the dry saturated vapour.

In order to determine the primitive variables from the conservative ones
used in the governing equations, the system of non-linear equations has to
be solved:

1
ρm

−
(1 − y

ρv
+

y

ρl

)
= 0 ,

ev −
(
hv − p

ρv

)
= 0 ,

el −
(
hl − p

ρl

)
= 0 ,

(20)

where ev, el are the specific internal energy for vapour and liquid, respec-
tively. The unknowns in these equations are p, hv and hl, while the remain-
ing values:

ρm = [(1 − α) ρv] + [αρl] ,

y =
[αρl]
ρm

,

ev =
[(1 − α) ρvEv]
[(1 − α) ρv]

− 1
2

(
[(1 − α) ρvuvi]
[(1 − α) ρv]

)2

,

el =
[αρlEl]
[αρl]

− 1
2

(
[αρluli]
[αρl]

)2

(21)

are constants calculated from the conservative variables (included in square
brackets) obtained from Eqs. (16) and (17) after each iteration step. The
phase densities are the functions of pressure and corresponding enthalpies
and are calculated from the state equations for vapour and liquid water in
accordance with the IAPWS-IF97 standard. Water temperature is calcu-
lated from the state equation for liquid water Eq. (4) in function of pres-
sure and specific enthalpy. The set of non-linear equations (20) is solved by
means of the Newton-Raphson method.
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3 Numerical model

Both described models have been implemented into the in-house CFD code
[14]. The numerical simulation is based on the time dependent 3D RANS
equations. The “local” real gas equation of state, nonlinear relations for
liquid water and the condensation theory are the closure relations for the
applied flow governing equations.

The system of governing equations was discretized on a multi-block
structured grid using the finite volume method, and integrated in time us-
ing an explicit Runge-Kutta method. An upwind scheme was used with the
one-dimensional Riemann solver for the real gas equation of state. Because
the exact solution to the Riemann problem is computationally expensive,
an approximate Riemann solver was used. The acoustic approximation of
the Riemann problem applied for vapour belongs to the flux difference split-
ting (FDS) group, where the primitive variables are estimated. The solver
assumes weak variations across the left- and right-facing. To this end, the
following mass flux can be defined:

m∗ =
cL + cR

2
ρvL + ρvR

2
, (22)

where the subscripts L and R indicate the left and right state of the Riemann
problem, respectively, and c is the speed of sound of the vapour phase. The
parameters in “star” states L∗ and R∗ are obtained as the solution of the
Riemann problem from the relations:

p∗ = p∗L = p∗R =
pL + pR

2
+ m∗uvL − uvR

2
,

u∗ = u∗
L = u∗

R =
uvL + uvR

2
+

pL − pR

2m∗ ,

ρ∗L = ρvL +
m∗ (uvL − u∗)

c2
L

,

ρ∗R = ρvR +
m∗ (u∗ − uvR)

c2
R

.

(23)

The general structure of the Riemann problem for the liquid phase consists
of shock waves and/or rarefaction waves in the u−c and u+c characteristic
fields, and contact discontinuities u.

Acoustic approximation, Eq. (23), cannot be applied for the liquid
phase. Therefore, a simple linearization of the Riemann invariants leads
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to the linear algebraic system for state L∗:

c2
lL (ρlL − ρ∗lL) − (p∗ − pL) = 0 ,

ρlLclL (u∗
l − ulL) + (p∗ − pL) = 0 ,

ρlRclR (u∗
l − ulR) − (p∗ − pR) = 0 ,

(24)

which can be easily solved for u∗
l , ρ∗lL, and p∗. An analogical system of

equations can be defined between state R∗ and R in order to find ρ∗lR. Such
assumption makes it possible to avoid using a complicated state equation for
water to find primitive variables. Next, having the primitive variables from
the Riemann problem, the fluxes can be calculated. The MUSCL technique
is implemented to approach the TVD scheme with the flux limiter to avoid
oscillations.

4 Results

The main intention of this work is to give an overview and to compare the
presented models together. Validation of the SFM model has already been
presented in previous works [2,13]. The calculations are carried out for all
models. To model the condensing steam flow, the geometry of the arc Laval
nozzle, with the radius of the wall curvature of 584 mm and the critical
throat height of 60 mm, is assumed. The following boundary conditions at
the inlet are set to: p0 = 78 390 Pa, T0 = 380.55 K. The geometry of the
nozzle and the boundary conditions correspond to those in Barschdorff’s
experiment [12]. The outlet from the nozzle is supersonic. The inviscid flow
model is applied for calculations.

4.1 Single-fluid model versus two-fluid model

Figures 1–4 show the comparison of the main flow parameters important in
the case of steam flows with the nucleation process and the growth of liquid
droplets. The static pressure distributions along the nozzle (Figs. 1 and
2) show a proper modelling of the place of condensation by means of both
models. In the case of the TFM model, the condensation wave is smoother
than in the case of the SFM model. The static temperature distributions
for the liquid and the vapour phase have a very similar character. For the
SFM model, the liquid temperature is calculated from Eq. (15), whereas for
the TFM it is obtained from the governing equations for the liquid phase.

The SFM presented in this work underestimates the droplet radii. It
was presented by Wroblewski et al. [13] that the radii of the droplets were
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Figure 1. Static pressure distributions along the nozzle (2D view).

Figure 2. Pressure and temperature distributions along the nozzle.

by about 40% smaller than those measured in the experiment. In the case
of the TFM, the droplets radii are bigger than in the SFM model (Fig. 3).
The wetness fraction is similar in both models. The distributions of the
nucleation rate and the number of droplets are presented in Fig. 4. The
character of the nucleation rate follows from the differences in the conden-
sation intensity for both models, weaker for the TFM.

The slip velocity modelled in the TFM model will depend on the flow
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Figure 3. Wetness fraction and droplet radius distributions along the nozzle.

Figure 4. Distributions of nucleation rate and number of droplets along the nozzle.

pattern. In the case of the nozzle flow, the slip between the vapour and the
liquid phase is the highest at the nozzle outlet close to the walls (Fig. 5).

4.2 Single-fluid model with homogeneous and heterogeneous
condensation

The experiments of wet steam transonic flows are difficult mainly because of
a problem with steam supply. The quality of steam has a great influence on
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Figure 5. Slip of the velocities between vapour and liquid phase for TFM model.

the type of condensation process. If the steam was supplied directly from
a steam power cycle or from industrial steam installation, the influence
of impurities in condensation modelling has to be taken into account in
experiment.

Figure 6. Effect of the insoluble particles concentration on the condensation process,
rp,het0 = 10−7 m.

We can notice from Figs. 6 and 7 that concentration of impurities in steam
affects the condensation process significantly. Three concentrations of parti-
cles with radius 10−7 m were considered. The impurities extend the domain
of the possible solutions and make the expansion process different. It shows
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Figure 7. Effect of the soluble particles concentration on the condensation process,
rp,het0 = 10−7 m.

an importance of the steam quality data in validation of condensation mod-
els. The other parameters of impurities as particles mean radius and contact
angle are important as well. Detailed description of these parameters can
be found in [14].

5 Conclusions

The models presented in this paper and implemented into the in-house CFD
code create the possibility to predict wet steam losses in LP turbine stages
accurately. The results obtained show that both presented models, SFM
and TFM, for the wet steam flow modeling can predict the place of con-
densation correctly in comparison with the experiment. The pressure and
temperatures are similar. For the TFM, the predicted condensation wave
is a little smoother than for the SFM; it is observed in the static pres-
sure distributions. The wetness fraction is very similar, both in character
and value. The SFM without special corrections mostly underestimates the
droplet diameters. Consequently, the droplet radii obtained from the TFM,
which are by approx. 40% bigger than in the calculations for the SFM
model, show a better tendency. The velocity slip between the vapour and
the liquid phase is observed in the TFM model, which shows the correct
behavior of the applied drag forces. Therefore, by using the TFM in steam
turbines, the thermodynamic and aerodynamic losses of the two-phase flow
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can be predicted.
Two models of heterogeneous condensation on insoluble and soluble im-

purities are presented and discussed. The influence of impurities on expan-
sion process was shown. The calculations of a steam condensing flow by
means of the presented algorithms are very sensitive to the flow parame-
ters that are dependent on state equation for vapour and liquid, Riemann
problem solution, accuracy of integration in time and in space.
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