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Abstract In the paper the paths of bubbles emitted from the brass noz-
zle with inner diameter equal to 1.6 mm have been analyzed. The mean
frequency of bubble departure was in the range from 2 to 65.1 Hz. Bubble
paths have been recorded using a high speed camera. The image analysis
technique has been used to obtain the bubble paths for different mean fre-
quencies of bubble departures. The multifractal analysis (WTMM – wavelet
transform modulus maxima methodology) has been used to investigate the
properties of bubble paths. It has been shown that bubble paths are the
multifractals and the influence of previously departing bubbles on bubble
trajectory is significant for bubble departure frequency fb > 30 Hz.
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Nomenclature

a1, a2, ..., an – coefficients in Taylor series
C – constant
d – bubble diameter, m
Dh – global singularity spectrum
f – function
H – Hurst exponent
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h – Hölder exponent
N – number of considered states
Pn – n-th order polynomial
q – q-th moment
s – scale parameter
x – samples value
X – time series
Y – time series
W – wavelet transform
Z – partition function

Greek symbols

Ω(s) – sum of all maxima over scale s
τ (q) – scaling exponent
ψ(x) – wavelet function

Subscripts

e – equivalent sphere diameter
h – Hölder exponent
o – initial value
n – order

1 Introduction

Bubble-fluid interactions are significant in many technological applications
such as bubble column reactors, oil/natural gas transport, boiling heat
transfer, etc. The study of bubble dynamics is crucial to understand bubble-
-liquid and bubble-bubble interactions. According to [1] the bubble motion
and bubble shape are controlled by deterministic forces such as body force
and drag force caused by the convective motion, and the complex non-linear
forces generated by liquid motion around bubbles. Results of investigation
show that such parameters as: bubble departure frequency (time between
subsequent departing bubbles), bubble departure diameter, bubble shape
and its deformation, gas pressure fluctuation in the nozzle, bubbles inter-
action, bubbles coalescence and bouncing, liquid flow pattern around the
bubbles and bubble column change in time chaotically [2–6].

The tubes of streamwise liquid vorticity are being left by each bubble
and they are responsible for the appearance of lift force acting on the bub-
bles [7]. The strength of the circulation of each vortex tubes decreases with
increase in the distance from the bubble. Therefore bubbles in the bubble
column create the complex structure of bubble wakes. These wakes interact
between each others and finally modify the bubbles trajectory. The increase
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of bubble departure frequency decreases the vertical distance between bub-
bles. It causes the increase of interaction between the bubbles and tubes
of streamwise liquid vorticity generated by previously departed bubbles.
Such interaction changes the lift force and finally modifies the oscillation
bubble trajectory.

In the present paper the dynamical properties of bubble paths have been
investigated to detect the intensity of interaction of bubbles with the struc-
ture of liquid flow in the bubble column. The paths of bubbles emitted
from the brass nozzle with inner diameter equal to 1.6 mm has been ana-
lyzed. The bubble departure diameter was ∼4.6 mm. The laser-photodiode
system has been used to measure the bubble departures frequency. The
analyzed frequencies ranged from 2 Hz to 65.1 Hz (bubbles per second).
The bubble paths have been recorded using a high speed camera. The
image analysis technique enabled obtaining the bubble paths for different
mean frequencies of bubble departures. The multifractal analysis (WTMM
– wavelet transform modulus maxima methodology) has been used to inves-
tigate properties of bubble paths in the bubble column. It has been shown
that multifractal analysis allows to recognize the changes of dynamics of
bubble flow depending on the bubble departure frequency.

2 Experimental setup

The air bubble paths in bubble column in the tank (400×500×40 mm) filled
with distilled water have been investigated. In the experiment bubbles were
generated from the brass nozzle with inner diameter of 1.6 mm. The mean
bubble departure diameter was estimated using the set of obtained photos
with resolution ∼100 pixels per one millimeter and it was about 4.6 mm.

Because in the experiment with bubble column generation both the pres-
sure and gas mass flux fluctuated then in order to evaluate experiment con-
ditions it was necessary to use the mean value of gas mass flux or bubble
departure frequency. In the present experiment the mean bubble depar-
ture frequency was used as a control parameter. The frequency has been
measured using simultaneously the laser-phototransistor system and gas
pressure sensor. The gas pressure fluctuation has been measured using un-
compensated silicon pressure sensor MPX12DP. In the laser-phototransistor
system the semiconductor red laser with the wave length of 650 nm, 3 mW,
special aperture and phototransistor BPYP22 has been used. The diameter
of laser ray was 0.2 mm. The experiment has been carried out in conditions
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when subsequent departing bubbles did not coalesce vertically close to the
nozzle outlet. The frequency of bubble departure was in the range from
2 to 65.1 bubbles per second, the water temperature was 20 oC.

All data was simultaneously recorded using the data acquisition system
DT9800 series USB Function Modules for Data Acquisition Systems with
sampling frequency of 1000 Hz. The air supply system consisted of air tank
capacity of 2 dm3 and the electronically controlled air pump, where the
velocity of electric engine was controlled by the chip U2008B. The scheme
of experimental stand has been shown in Fig. 1.

Figure 1. Experimental setup: 1 – glass tank (400 mm×500 mm×40 mm), 2 – air tank,
3 – laser, 4 – phototransistor, 5 – air valve, 6 – pressure sensor, 7 – computer
acquisition system (DT9800 series USB Function Modules for Data Acquisition
Systems), 8 – Casio EX FX1(600 fps), 9 – light source, 10 – screen, 11 – air
pump with electronic control, 12 – the rectangle area of 230×50 mm where the
bubble paths have been recorded.

Bubble paths have been recorded in the rectangle area of 230 mm×50 mm
using the high speed camera Casio EX FX1. The recorded color video
(600 fps) has been divided into frames. All colored frames ware converted
into gray scale images. The Sobel filter based on convolution of the image
with a small, integer valued filter has been used to identify the bubbles on
the frames [8]. Exemplary results of using the Sobel filter for bubble image
are presented in Fig. 2a. Because the Sobel algorithm identifies only the
edge of the bubble, therefore the additional algorithm to fill interior of the
detected bubble by black pixels has been used. Finally, each bubble was
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visible in the frame as a set of black pixels (Fig. 2).

Figure 2. The bubble identification process: a) original photo, b) results of Sobel filter,
c) filling interior of the bubbles by black pixels.

The path of each bubble was reconstructed by tracking the trajectory
of mass center of each bubble in subsequent frames. The mass centre has
been calculated according to the following formula:

xc =
ΣiΣjk

s
, where k =

{
i for black pixels,
0 otherwise, (1)

yc =
ΣiΣjk

s
, where k =

{
j for black pixels,
0 otherwise, (2)

where s denotes the area of the bubble picture.

3 Bubble behaviors

3.1 Previous works

The bubble size is one of the factors which determines the shape of the
bubble path. A number of experimental and numerical studies have been
carried out to investigate the movement of single millimeter-sized air bubble
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in water [9]. Those investigations show that for de < 1 mm the bubble path
is similar to a vertical line. For de > 1 the bubble at first flows along the ver-
tical line and then it develops a zigzag motion, which in certain conditions
changes into a spiraling circular motion. Bubble path instabilities occur
when the Reynolds number is greater than 103. The problem of the bubble
path shape and its instability has been considered in the papers [7,10–16].
In the paper [17] the paths of bubbles for different initial bubble diameters
have been analyzed. It has been shown that the function of mean lateral
displacement of the bubble versus equivalent sphere diameter of the bubble
has two maxima. The first one (for de ∼ 2 mm) appears when the bubble
path is similar to periodic function and the other one (for de ∼ 4 mm)
when the random lateral displacement of the bubble is observed. The mean
frequency of bubble lateral displacement is independent of the bubble size
and it is equal to ∼5 Hz [17].

In the paper [18] the bubble shape oscillations have been analyzed. The
initial bubble diameter was 3.4 mm and its departure frequency was 5 Hz. It
has been found that when the bubbles flatten then their paths become more
sensitive to perturbations. In this experiment the bubbles continue a recti-
linear rise for 25 mm above the nozzle outlet. At this position, the bubble
aspect ratio reaches the value of ≈3.15. At the same time the complex shape
oscillations and path transition to a spiral form occur. In the paper [1]
changes of rise velocity, the shape and orientation of bubbles were simul-
taneously measured using a high-speed camera. Investigations have been
carried out in the channel whose cross section was 100 mm×7 mm×600 mm.
Bubbles have been produced from the nozzle with inner diameter equal to
4 mm. The chaotic fluctuation of bubble shape and its rise velocity have
been observed. The fluctuation in bubble rise velocity can be considered as
a consequence of oscillation of drag force associated with the bubble-shape
fluctuation. In the paper [19] the movement of two bubbles with a radius
of 0.41 mm to 0.95 mm has been investigated. The initial distance between
bubbles was in the range from 2.2 mm to 5.0 mm. It has been found that the
patterns of the trajectories of rising bubbles are strongly dependent on the
Reynolds number. When the Reynolds number is over the critical region,
two bubbles approach each other and then they collide. After the collision,
two types of motions are observed. These are the coalescence and bouncing.
The velocities of bubbles decrease by ∼50% when the bubbles bounce with
each other. It has been observed that the behavior of repeatedly bouncing
bubbles is significantly influenced by the wake instability of a single bubble
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rather than by bubble-bubble interaction.
In the paper [20] it has been shown that bubbles rise in approximately

identical trajectories up to the distance less than 40 mm from the nozzle
outlet. In the experiment de was in the range of 0.66–2.0 mm The distance
of bubble trajectories from the vertical axis increases together with the
increase of bubble departure frequency. In the paper [21] it has also been
shown using the PIV technique that the variation of bubble rising trajectory
and bubble shape is closely associated with liquid viscosity but less related
to the frequency of bubble formation. The bubble departure diameter was
about 6 mm. It has been observed that bubble rising trajectory changes
from a rectilinear path to a zigzag and spiral path as liquid viscosity reduces.

In the paper [7] the phenomena responsible for the appearance of the
bubble oscillatory trajectory have been analyzed using the PIV technique.
It has been shown that the transition to oscillatory trajectory of bubble
is connected with appearance of two vortex tubes of streamwise vorticity
behind the bubble. It appears that when the bubble aspect ratio exceeds
a critical value (for large Reynolds number) the wake becomes unstable and
induces a horizontal force acting on the bubble. It has been found that the
zigzagging motion occurs in a plane which separates the two vortex tubes
and the magnitude of horizontal force is equal to 20–30% of the buoyancy
force.

In the paper [22,23] the dynamics in the wake of a circular disk and
sphere embedded in an uniform flow has been investigated using DNS. It has
been shown that when the Reynolds number increases then the original se-
ries of bifurcations leading to chaos appears in the flow. In the paper [24] the
model based on the generalized Kirchhoff equations and dynamical model
of the wake deduced from experimental observations has been presented.
The model generates the oscillatory paths observed in the experiment.

3.2 Experimental results

In Fig. 3 it has been shown the data recorded from the phototransistor and
pressure sensor for different mean frequencies of bubble departures. The
laser ray passed 3 mm above the nozzle outlet. When the bubble was pass-
ing through the laser ray the phototransistor sensor generated the signal
of the low voltage level. The time between bubbles is visible in Fig. 3 as
a signal of the high voltage level. Obtained results show that for all fre-
quencies of bubble departures the time periods in which the bubbles pass
through the laser ray are approximately the same, but time periods between
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subsequent departing bubbles decrease together with increase of bubble de-
parture frequency. For bubble departure frequency equal to 65.1 Hz (Fig. 3f)
time periods between bubbles are shorter that time periods when bubbles
pass through the laser ray. When bubbles depart, the air pressure rapidly
decreases as it has been shown in Fig. 3. It has been found that both the
maximum pressure when bubble starts to grow and minimum pressure when
bubble departs vary in time for bubble departure frequencies higher than
14 Hz. The number of minima of pressure signal and number of periods
with low voltage level signal coming from phototransistor sensor have been
used to determine bubble departure frequencies.

Figure 3. Pressure and phototransistor signal recorded for different frequencies of bubble
departures fb: a) fb = 2 Hz, b) fb = 7.3 Hz, c) fb = 14.4 Hz, d) fb = 30.08 Hz,
e) fb = 52.1 Hz, f) fb = 65.1 Hz.

In Fig. 4 the typical behavior of bubble flow for different mean bub-
ble departure frequencies has been presented. Below each of images it has
been presented the example of changes in time of horizontal position of one
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selected bubble in each column. Time series have been recorded during
different time periods because time of passing bubbles through the rectan-
gle area (where video has been recorded) depends on vertical velocities of
bubbles, while the velocities depend on the bubble departure frequencies.

Figure 4. Changes in time of the bubble horizontal position and the typical behavior of
bubble flow for different mean bubble departure frequencies fb: a) fb = 2 Hz,
b) fb = 7.3 Hz, c) fb = 14.4 Hz, d) fb = 30.08 Hz, e) fb = 52.1 Hz, f)
fb = 65.1 Hz.
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For the low bubble departure frequency (2 Hz) the length of almost
rectilinear path (with a small lateral bubble displacement) was equal to
∼26 mm and it decreased together with increasing bubble departure fre-
quency up to ∼13 mm for fb = 52.1 Hz (Fig. 4e). The bubble deformation
in almost rectilinear, bubble motion had a periodic character and it repeated
for subsequent bubbles. In Fig. 5 it has been shown the typical bubble de-
formation during the rectilinear movement for fb = 14.1 Hz. Subsequent
figures present the bubble deformation in different stages. The arrows show
the stages of the bubble when it flows in the bubble column. The rectilin-
ear path finishes between Figs. 5c and 5d, where the rapid irregular bubble
deformation starts.

Figure 5. Typical deformation of bubble during its rectilinear movement, the arrows show
subsequent stages of the bubble during its flow in the column. The frequency
of bubble departure was equal to 14.4 Hz.

The analysis of movement of mass centre of bubbles allows us to estimate
the mean vertical terminal velocity of bubble in the column as a function of
mean bubble departure frequency. In Fig. 6a it has been shown the changes
of vertical velocity of bubble. After the bubble departure its vertical velocity
increases and reaches the terminal value. Oscillations of vertical velocity
around the terminal velocity are connected with the oscillatory movement of
the bubble. The mean terminal vertical velocity has been calculated during



Multifractal properties of large bubble paths in a single bubble column 13

Figure 6. Terminal vertical velocity of bubbles in bubble column. a) Changes of ver-
tical velocity of bubble for fb = 14.4 Hz. b) Mean vertical bubble velocity
versus bubble departure frequency. Calculation has been made for trajectory
presented in Fig. 4.

the time period from 0.0016 to 0.0033 s. It increases together with increase
in frequency of bubble departure (Fig. 6b).

4 Multifractal analysis

The multifractal analysis can be used to classify time series singularities. In
this case the singularity is a rapid change of series values in the small time
period. In the times where singularities are presented, the expansion of
the time series contains some components with non-integer powers of time.
Time series around the singularity point t0 is represented as [25]:

f(t) = a0 + a1 + a1(t− t0) + . . .+ a1(t− t0)n + C|t− t0|α . (3)

The exponent h(t0) is called the local Hölder exponentand for t0 it is defined
as the greatest value of α that satisfies the condition [25]:

|f(t) − Pn(t− t0)| ≤ C|t− t0|h(t0)) , (4)

h(t0) = sup{α : f ∈ Cα(t0)} . (5)
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The local Hölder exponent is a measure of strength of the singularity and
the regularity of the time series at t0. The lower value of Hölder exponent
is characteristic for the stronger singularity. The Hölder exponent which is
a measure of the singularity strength can be considered as a local version
of the Hurst exponent [26] and is calculated as H = h − 1. In case of
monofractal time series, when H is equal to 0.5, the series is random, which
means that its subsequent samples are not correlated. When 0 < H < 0.5
the series is called the ergodic series (its subsequent values oscillates around
the mean value). The series becomes more ergodic when the Hurst exponent
approaches to zero. For 0.5 < H < 1 the series amplifies the trend. In this
kind of series, e.g. when a certain element of series is above the mean value,
it is probable that the next element will also be above the mean value. In
such series the trend is visible.

One of methods for Hölder exponent calculation is based on the wavelet
transform [27,28]. The wavelet transform filters out the polynomial trends
and focuses only on the singularities in the time series. A power law pro-
portionality between the Hölder exponent and wavelet transform is as fol-
lows [27,28]:

Ws,x0(f) ∼ sh(x0) for s→ 0+ , (6)

where Ws,x0(f) = 1
s

∫ +∞
−∞ ψ(x−x0

s )f(x)dx is a walvlet transform, ψ(x) is
a wavelet function orthogonal to the polynomial f(x) up to order n, and
s is a scale defining the width (frequency) of wavelet.

The Hölder exponent is estimated using the partition function Z(s, q)
that is calculated based on the maximum lines of wavelet transform [28].
The definition of the partition function Z(s, q) of q-th moment based on
multifractal formalism is as follows [28]:

Z(s, q) = ΣΩ(s)|Ws,x)
(f)|qαsτ(q) , (7)

where Ω(s) is the sum of all maxima over the scale s, and r(q) is the
scaling exponent that characterizes the power law behavior of this partition
function. The Legendre transform of τ(q) defines a relationship between
itself and global singularity spectrum Dh [28]:

h(q) =
dτ(q)
dq

, (8)

Dh = qh(q) − τ(q) , (9)

where h(q) is the global distribution of Hölder exponents defined at the
moment q.
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The negative values of q stresses the weak exponents, whereas the pos-
itive values stresses the stronger exponents. The Dh spectrum provides us
with estimation of global singularities of the time series. This spectrum cor-
responds to frequency distribution of measure of certain physical quantities
over the geometrical set. The 3rd derivation of Gauss function with a form:

ψ(t) =
[
exp

(−t2
2

)]′′′
(10)

has been used in WTMM analysis of bubble lateral displacements. In Fig. 7
the example of WTMM analysis of bubble paths has been presented. The
wavelet transform of bubble path has been shown in Fig. 7a and the WTMM
tree (location of local maximum of wavelet transform) is visible in Fig. 7b.

Figure 7. The wavelet transform modulus maxima (WTMM) of bubble path for fre-
quency of bubble departure equal to 2 Hz: a) bubble path, b) wavelet transform
of bubble path, c) wavelet transform modulus maxima (WTMM tree). The cal-
culation has been made using the libraries of LastWave [29,30] for trajectory
presented in Fig. 4.

The WTMM tree has been used to calculate the spectrum of local Hölder
exponent. The multufractal spectrum of lateral bubble displacement in case
of frequency of bubble departure equal to 2 Hz is shown in Fig. 8a. The
calculation has been made using the libraries of LastWave [29,30]. The
function Dh changes within a relatively wide range of h, therefore we can
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conclude that the bubble path has a multifractal character. The value of
hmax characterizes the process of small scale oscillations, whereas the value
of hmin characterizes the process of large scale fluctuation of lateral bubble
displacements. The value of hmax close to 2 would suggest a non-random,
correlated behavior at small scales horizontal displacements of bubbles. The
value of hDmax is characteristic for the entire process of bubbles flow. This
process is a sum of large and small scale displacements of bubbles. The dif-
ference between values (hmax−hmin) is a measure of multifractal properties
of bubble paths. In Fig. 8b the values of (hmax−hmin) versus mean frequen-
cies of bubble departure have been shown. Obtained results show that in all
cases under consideration the bubble lateral displacements have multifrac-
tal character and for higher frequency of bubble departure the multifractal
properties are clearly visible.

Figure 8. The singularity spectrum. a) The singularity spectrum for bubble trajectory
for frequency of bubble departure equal to 2 Hz. b) The measure of multifractal
character of bubble paths versus bubble departure frequency. Calculation has
been made using the libraries in LastWave [29,30] for trajectory presented
in Fig. 4.

In Fig. 9 it has been shown the changes of mean values of Hurst expo-
nent HDmax = hDmax − 1 vs frequencies of bubble departures. The mean
value has been calculated for five trajectories obtained for different mean
frequencies of bubble departures. In Fig. 9 the maximum and minimum
values of HDmax have been presented.
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Figure 9. Hurst exponent vs. frequency of bubble departure. Calculation has been made
using the libraries of LastWave [29,30] for 5 trajectories at different mean fre-
quencies.

The value of HDmax characterizes the entire bubble path. For the low
bubble departure frequencies (2, 7.3, 14.4 Hz) this value is close to 0.5 Hz
and it means that bubble lateral mass centre displacements during the flow
in the bubble column are ergodic, similarly to the Brownian motion. For
fb > 30 Hz the significant increase in the egrodic character of bubble lateral
displacements has been observed.

This process can be explained as follows. When the frequency of bub-
ble departure increases then the distance between bubbles in the column
decreases. The strength of vorticities generated by previously departing
bubbles increases. Such process leads to increase in egrodic character of the
bubble path. The effect of influence of liquid flow generated by previously
departing bubbles on the bubble trajectory is significant for fb > 30 Hz.
Taking this into consideration we can treat that the value of HDmax iden-
tifies the level of vertical interaction between bubbles.

5 Conclusions

In the paper the paths of bubbles emitted from the nozzle with frequency
of bubble departure ranging from 2 Hz to 65.1 Hz have been analyzed. In
case of low bubble departure frequency the typical behavior of bubble paths
reported in other papers has been observed. For the higher frequencies of
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bubble departure the decrease of lateral bubble displacement and length
of rectilinear bubble movement after departure have been observed. It has
been found that vertical terminal bubble velocity increases with the increase
in frequency of bubble departures. The multifractal analysis shows that:

• Bubble paths have a multifractal character.

• Bubble lateral displacements during the flow in bubble column are er-
godic, similarly to Brownian motion. The value of hmax would suggest
non-random, correlated behavior at small scales horizontal displace-
ments of bubbles.

• Influence of previously departing bubbles on multifractal characteris-
tics of bubble trajectory in the column is significant for fb > 30 Hz

As a turbulent flow has the multifractal character therefore the obtained
multifractal character of bubble path confirms that bubble behaviors are
connected with turbulent flow around the bubble. Obtained results show
that the multifractal analysis can be a useful tool to analyze the dynamics
of bubbles motion in the bubble column. It seems that it can be used to
measure the strength of bubbles interaction in bubble columns.
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