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Abstract The paper presents a one-dimensional mathematical model
for simulating the transient processes which occur in the liquid flat-plate
solar collector tubes. The proposed method considers the model of collector
tube as one with distributed parameters. In the suggested method one tube
of the collector is taken into consideration. In this model the boundary con-
ditions can be time-dependent. The proposed model is based on solving the
equation describing the energy conservation on the fluid side. The temper-
ature of the collector tube wall is determined from the equation of transient
heat conduction. The derived differential equations are solved using the
implicit finite difference method of iterative character. All thermo-physical
properties of the operating fluid and the material of the tube wall can be
computed in real time. The time-spatial heat transfer coefficient at the
working fluid side can be also computed on-line. The proposed model is
suitable for collectors working in a parallel or serpentine tube arrangement.
As an illustration of accuracy and effectiveness of the suggested method
the computational verification was carried out. It consists in comparing the
results found using the presented method with results of available analytic
solutions for transient operating conditions. Two numerical analyses were
performed: for the tube with temperature step function of the fluid at the
inlet and for the tube with heat flux step function on the outer surface. In
both cases the conformity of results was very good. It should be noted, that
in real conditions such rapid changes of the fluid temperature and the heat
flux of solar radiation, as it was assumed in the presented computational
verification, do not occur. The paper presents the first part of the study,
which aim is to develop a mathematical model for simulating the transient
processes which occur in liquid flat-plate solar collectors. The experimental
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verification of the method is a second part of the study and is not presented
in this paper. In order to perform this verification, the mathematical model
would be completed with additional energy conservation equations. The
experimental verification will be carry out in the close future.
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Nomenclature

A – area, flow area, m2

c – specific heat, J(kgK)
d – diameter, m
g – thickness, m
h – specific enthalpy, J/kg
k – thermal conductivity, W/(mK)
L – length of the analysed collector tube, m
ṁ – mass flow, kg/s
M – number of cross-sections
p – tube pitch, m
r – radius, m
t – temperature, oC
T – temperature, K
w – flow velocity, m/s
z – spatial coordinate, m

Greek symbols

α – heat transfer coefficient, W/(m2K)
η – dimensionless time
θ – wall temperature, oC
µ – dynamic viscosity, kg/(sm)
ρ – density, kg/m3

τ – time, s
ζ – dimensionless coordinate
∆τ – time step, s
∆z – spatial size of control volume, m

Subscripts

in – inner
j – subsequent control volume
l – loss
m – middle
o – outer
w – wall
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1 Introduction

Due to environmental issues and limited fossil fuel resources, more and
more attention is being given to renewable energy sources (RES) [1]. The
energy of solar radiation is one form of RES. It can be widely used for
example for water heating in hot water systems, swimming pools as well as
a supporting energy sources for central heating installations. The energy
of the solar radiation is in this case converted to heat with the use of solar
panel. Currently the most often used solar collectors are liquid flat-plate
(working in parallel or serpentine tube arrangement) and the vacuum based
structures. The vacuum based collectors, despite their higher efficiency, are
rarely used by the individual users (due to the high investment cost).

In order to obtain the appropriate heat power for the particular instal-
lation, the knowledge of the collector operation parameters is necessary.
Those parameters, which include e.g. fluid temperature at the panel outlet,
depend on the level of sun exposure, thus they are variable. The solar col-
lector works in transient conditions. The variability of the collector working
conditions depends also on the transient energy consumption by the users.

Existing attempts to model solar collectors are based on steady state
conditions, much simplified models or models with lumped parameters, e.g.
[2–4]. Moreover, the majority of models do not take into consideration
the dependency of thermophysical properties of the fluid and the material,
of which the tubes and the absorber are made, on the temperature. Fan
et al. [2] presented a numerical and experimental investigation of the flow
and temperature distribution in a solar collector panel. Numerically, the
flow distribution through the tubes was investigated with CFD (a simpli-
fied model was built using the CFD code Fluent 6.1). They achieved high
agreement between the calculation results and measurements for large mass
flows. For smaller flows some inconsistencies occurred, resulting most likely
from the oversimplification of the collector model. Zueva and Magiera [4]
developed a mathematical model of heat exchange in the arrangement con-
sisting of solar collector – heat exchanger. In this arrangement, both the
collector and the exchanger are modelled as lumped parameters structures.
The dependencies allowing to determine the temperature of the working
fluid at the collector outlet and the heat flux transferred to the fluid were
developed.

The published results describing the work of the solar collectors were ob-
tained mainly from the experiments and measurements, e.g. [2,5,6]. Razavi
et al. [5] analysed the heat fluxes in solar water heaters with poly-propylene
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piping within the determined range of the Reynolds number. The obtained
results were used to determine the Nusselt number and can be used to
evaluate the heat fluxes transferred in poly-propylene collectors for similar
working conditions. Morrison et al. [6] investigated the efficiency of the
vacuum based collector and the mass flow distribution. They determined
the influence of various factors on the collector operation. The numeri-
cal model of the vacuum based collector was proposed. On the basis of this
model Morrison et al. determined the critical values of the Rayleigh number
and the collector inclination angle for which the stagnation area occurred
in the collector tube.

Augustus and Kumar [7] developed a mathematical model of the unglazed
transpired collector (UTC), also known as perforated collectors – an inno-
vation in the solar technology. On the basis of the proposed model the
influence of the main parameters on the efficiency of the UTC collector can
be determined. The analyses were performed for different values of porosity,
air mass flows, solar radiation and emissivity. The obtained results allowed
to develop nomograms, which can be a valuable tool for the design and
optimisation of the UTC collectors.

The thermal performance of flat-plate collectors is strongly related to
the flow distribution through the absorber tubes [8]. The more uniform the
flow distribution, the higher the collector efficiency. However, uniform flow
distributions are not always present in solar collectors [9,10]. Weitbrecht
et al. [9] investigated the mass flow distribution of the “Z” configuration
flat collector working in a laminar flow regime. They determined the flow
distribution and the pressure losses in the collector. The proposed analyt-
ical solution of the flow through the collector, based on the values of the
pressure losses coefficients, allows to determine the flow distribution for dif-
ferent cases and for variable boundary conditions.

In this paper a mathematical model of heat transfer in flat-plate solar
collector tubes, being a model with distributed parameters, is proposed. It
enables the on-line analysis of collector operation under transient boundary
conditions. In order to correctly model the dynamics of the collector using
the proposed method, the knowledge of the solar radiation intensity, the
effective transmittance-absorption coefficient of the collector and the value
of heat losses to the environment is necessary. Knowing from the measure-
ment the value of the solar radiation, heat losses can be determined using
the energy balance of the collector. The method presented in this paper
allows to compute or to predict the transient fluid temperature. All the
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thermophysical properties of the operating fluid and the material of the ab-
sorber can be computed in the on-line mode. The model can be also useful
to compute monthly average hourly and daily utilizability [11].

2 Description of the proposed method

In this section the mathematical model for simulating the heat transfer
in the liquid flat-plate solar collector tubes is presented. One tube of the
collector is taken into consideration. In the proposed model, which is one
with distributed parameters, the computations are carried out along the
way of the flow of the operating fluid in one tube. That tube is equal in size
to ones existing in the real object. The mass flow of fluid is also related to
a single tube. The proposed method is based on the assumption that the
operating fluid flows uniformly through all tubes of the collector working in
a parallel channel arrangement. All the thermo-physical properties of the
fluid and the material of the tube wall (absorber) can be computed in real
time. The suggested one-dimensional model is proposed for modelling the
dynamics of the liquid flat-plate solar collectors, considering time-dependent
boundary conditions. The presented method of determining the time-spatial
temperature distributions of the fluid and wall is based on the implicit finite
difference scheme of iterative character.

The computational verification of the method is presented in Section 4.
In order to carry out this verification, the energy conservation equations
for the glass cover, insulation, and air gap between cover and absorber are
omitted in this paper. One tube of the collector, working in a parallel
channel arrangement, is taken into consideration (Fig. 1a).

The proposed model shows the same transient behaviour as the real
solar collector tube if:

• the tube has the same inside and outside diameter, the same length
and the same mass as the real one;

• mass flow of the operating fluid is given by:

ṁ1 =
ṁt

nct
, (1)

where: ṁt – total mass flow of operating fluid, nct – number of solar
collector tubes;
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Figure 1. Liquid flat-plate solar collectors working in: a) parallel tube arrangement,
b) serpentine tube arrangement.

• the linear heat load of the collector tube equals:

∆q =

(
Gβ (τa) − Q̇l

A

)
p , (2)

where: Gβ – heat flux of solar radiation, W/m2, Q̇l – collector heat
loss, W, τa – effective transmittance-absorption coefficient;

• all the thermophysical properties of the operating fluid and the tube
wall material are computed in real time;

• heat transfer coefficient at the fluid side is computed in on-line mode.

The temperature of the collector tube wall is determined from the equa-
tion of transient heat conduction:

cw (θ) ρw (θ)
∂θ

∂τ
=

1
r

∂

∂r

[
rkw (θ)

∂θ

∂r

]
. (3)

After some transformation, Eq. (3) takes the following form:

cw (θ) ρw (θ)

(
r2
o − r2

in

)
2

∂θ

∂τ
=
[
rkw (θ)

∂θ

∂r

]∣∣∣∣
r=ro

−
[
rkw (θ)

∂θ

∂r

]∣∣∣∣
r=rin

. (4)
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Taking into consideration the boundary conditions:

kw (θ)
∂θ

∂r

∣∣∣∣
r=ro

= Gβ (τa) , (5)

kw (θ)
∂θ

∂r

∣∣∣∣
r=rin

= α
(
θ|r=rin

− t
)

= α (θ − t) , (6)

the following ordinary differential equation was obtained:

D
dθ

dτ
= t − θ + E∆q . (7)

In the above formula:

D =
cw (θ) ρw (θ) dm gw

αdin
, E =

1
απdin

and dm =
do + din

2
.

Coefficients D and E are derived from solving the heat transfer equation
(3) for the specific boundary conditions (5) and (6). Coefficient D is the
time constant characterising the thermal inertia of the tube.

On the side of the fluid energy balance equation, taking into consid-
eration the change in time of the total energy in the control volume, the
flux of energy entering and exiting from control volume, and the heat flux
transferred to it through its surface, is used. The mass and momentum bal-
ance equations are omitted. Such a model results in fewer final equations
and in their simpler form. Their solution is thereby reached faster. The
omission of the mass and momentum balance equations does not generate
errors in the computations and does not constitute the limitation of the
proposed method.

The transient temperature of the operating fluid is evaluated iteratively,
using relation derived from the equation of the energy balance (Fig. 2):

∆zAc (t) ρ (t)
∆t

∆τ
= ṁ h|z − ṁ h|z+∆z + απdin∆z (θ − t) . (8)

After rearranging and assuming that ∆τ → 0 and ∆z → 0, Eq. (8) takes
the following form:

B
∂t

∂τ
= θ − t − F

∂t

∂z
. (9)

In the above equation:

B =
Ac (t) ρ (t)

απdin
, F =

ṁc (t)
απdin

and A =
πd2

in

4
.
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Figure 2. Analysed control volume of the solar collector tube.

Coefficient B is a time constant of the working fluid and coefficient F de-
scribes the relation between the fluid heat capacity and the thermal power
of the surface of the 1m long channel.

The implicit finite differential method was used to solve the Eqs. (7)
and (9). The time derivatives were replaced by the forward difference
scheme, whereas the dimensional derivative in Eq. (9) was replaced by the
backward difference scheme:

dθ

dτ
=

θτ+∆τ
j − θτ

j

∆τ
,

∂t

∂τ
=

tτ+∆τ
j − tτj

∆τ
,

∂t

∂z
=

tτ+∆τ
j − tτ+∆τ

j−1

∆z
. (10)

After some transformations the following formulas were obtained:

θτ+∆τ
j =

(
Dτ

j

Dτ
j + ∆τ

)
θτ
j +

(
∆τ

∆τ + Dτ
j

)(
tτ+∆τ
j + Eτ

j ∆qτ+∆τ
j

)
, j = 1, ...,M ;

(11)

tτ+∆τ
j =

θτ+∆τ
j +

Bτ
j

∆τ tτj +
F τ

j

∆z tτ+∆τ
j−1

Bτ
j

∆τ +
F τ

j

∆z + 1
, j = 2, ...,M . (12)

In view of the iterative character of the suggested method, the computations
should obey the following expression:∣∣∣Y τ+∆τ

j,(k+1) − Y τ+∆τ
j,(k)

∣∣∣
Y τ+∆τ

j,(k+1)

≤ δ , (13)

where: Y – currently evaluated temperature in node j, δ – assumed iter-
ation tolerance, k = 1, 2, ... – subsequent iteration counter over the single
time step.
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The heat transfer coefficient is calculated from the relation:

α =
Nuk

din
. (14)

Velocity of the fluid flowing within the tubes of the solar collector is quite
small – from a few mm/s up to just more than a dozen of cm/s. Con-
sidering the small diameters of the collector tubes, the achieved values of
the Reynold’s number – from a few to a few hundred – are way below the
critical value Recr = 2300 [12]. Thus the flow is of a laminar character. To
determine the Nusselt number for the laminar flow in short channels the
empirical Heaton formula can be used [8]:

Nu = Nu∞ +
a
(
RePrdin

L

)m

1 + b
(
RePrdin

L

)n ; 1 < RePr
din

L
≤ 1000 , (15)

where: Re and Pr – Reynolds and Prandtl numbers, respectively; a, b, m,
n – coefficients.

In the proposed model the boundary conditions can be time-dependent:

ṁ
∣∣
z=0

= ṁ(τ), t
∣∣
z=0

= t(τ) and ∆q = ∆q(τ) . (16)

The method allows to compute the transient temperature distribution
for any selected cross section beginning from time τ = 0, that is from the
start of the process. Moreover, the following condition should be obeyed –
the Courant-Friedrichs-Lewy stability condition over the time step [13]:

|β| ≤ 1, ∆τ ≤ ∆z

w
, (17)

where β = w∆τ
∆z is the Courant number. When satisfying this condition,

the numerical result is achieved with the speed ∆z/∆τ , greater than the
physical speed w.

The efficiency of the proposed method is verified in this paper by the
comparison of the results obtained using the suggested method and from
the corresponding analytical solutions.

3 The exact solutions for transient states

Available in literature exact solutions for transient heat transfer are devel-
oped only for the simplest cases, such as non-heated tube for step function
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change of the fluid temperature at the inlet or for a step function heat-
ing on the outer surface of the tube [14]. The proposed numerical method
allows to solve the problems of transient flows both for those selected con-
figurations for which the analytical solutions exist, as well as for the more
complex cases.

The available analytical dependencies allow to determine:

• time-spatial temperature distribution of the tube wall, insulated on
the outer surface, as the tubes response to the temperature step func-
tion of the fluid at the tube inlet;

• time-spatial temperature distribution of the fluid in case of a heat flux
step function on the outer surface of the tube (the case closest to the
real conditions in which solar collectors work).

3.1 Temperature step function of the fluid at the tube inlet

The analysed step function assumed the following form (Fig. 3):

∆T (τ) =
{

0 for τ < 0 ,
1 for τ ≥ 0 .

(18)

Figure 3. Temperature step function of the fluid at the collector tube inlet.

For this step function, the dimensionless dependency determining the in-
crease of the tube wall temperature takes the following form [14]:

∆Θ
∆T

= V1 − V0 , (19)
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where
V1 = e−(ζ+η)U (ζ, η) , (20)

V0 = e−(ζ+η)I0

(
2
√

ζη
)

. (21)

The U (ζ, η) function is described by the following relation:

U (ζ, η) =
∞∑

n=0

n∑
k=0

η nζ k

n!k!
, (22)

and the Bessel function:

I0

(
2
√

ζη
)

=
∞∑

k=0

(ζη)k

(k!)2
. (23)

Values ζ and η present in formulas (20)–(23) are the dimensionless variables
of length and time respectively expressed by the following dependencies:

ζ =
z

F
, η =

τ − τTP (z)
D

, (24)

where
τTP (z) = Bζ =

z

w
. (25)

Coefficients B, D and F were described in Section 2 of this paper.

3.2 Heat flux step function on the outer surface of the tube

A dimensionless time-spatial function describing the increase of the fluid
temperature ∆T , caused by the heat flux step function ∆q on the outer
surface of the tube, is expressed by the following formula [14]:

ϕ1 =
∆T

− c
1−cE∆q

=
τ

D
− 1

1 − c
ϕ0 − V2 , (26)

where c = -D/B and E are the coefficients described in Section 2.
Functions ϕ0 and V2 are described by the following relations:

ϕ0 = 1 − e−(1−c) τ
D − V1 + V00 , (27)

V2 = e−(ζ+η)
[
(η − ζ)U (ζ, η) + ζ I0

(
2
√

ζη
)

+
√

ζηI1

(
2
√

ζη
)]

, (28)
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where

I1

(
2
√

ζη
)

=
∞∑

k=0

(ζη)
2k+1

2

(k!) (k + 1) !
. (29)

Function V00 present in formula (27) takes the following form:

V00 = e−(ζ+η)U

(
ζ

c
, cη

)
. (30)

The presented above analytical dependencies (19) and (26) allow to deter-
mine the time-spatial temperature increases, respectively ∆Θ for the tube
wall and ∆T for the fluid, for any selected cross-section. The results are
obtained beginning from time τTP (z) = z/w, that is from the moment this
cross-section is reached by the fluid flowing with velocity w. For example,
if the flow velocity equals 1m/s, than the analytical solutions allow to de-
termine the temperature changes for the cross-section located 10 m away
from the inlet of the tube only after 10 s.

4 Computational verification

As an illustration of accuracy and effectiveness of the suggested method the
following numerical analyses were performed:

• for the tube with temperature step function of the fluid at the tube
inlet,

• for the tube with heat flux step function on the outer surface.

In both cases the operating fluid was assumed to be a weighed 40% wa-
ter propylene glycol solution. Because the exact solutions do not allow
to consider the temperature dependent thermophysical properties, the fol-
lowing values of the water glycol solution were assumed for the compu-
tations (for temperature 40 oC): ρ = 1020 kg/m3, c = 3750 J/(kgK),
k = 0.447 W/(mK) and µ = 0.0013 kg/(sm). For both cases it was also
assumed, that the collector tube is 1.9 m long, its external diameter equals
0.01 m, the wall thickness is 0.0005 m, and that the tube is made of copper
of the following properties: ρ = 8960 kg/m3 and c = 390 J/(kgK).

Considering the before mentioned properties the following values of coef-
ficients described in Section 2 were obtained: D=9.97 s, E=0.191 (Km)/W,
B=46.52 s, F =0.4653 m and the heat transfer coefficient α=185 W/(m2K).
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Satisfying the Courant condition (17) for the hyperbolic equations, the
following was assumed for the numeric calculations: ∆z = 0.005 m, ∆τ =
0.1 s and w = 0.01 m/s. The collector tube of the 1.9 m length was divided
into 381 cross-sections. Such spatial division allowed to avoid the effects of
dissipation and dispersion causing the errors in the computations.

In the first numerical analysis it was assumed that the water glycol
solution of the initial temperature t = 10 oC flows through the collector
tube. Also, the tube wall for the initial time τ = 0 has the same initial
temperature. Beginning from the next time step, the fluid with temperature
t = 80 oC appears at the inlet. The temperature step function is thus
∆T = 70 K. This is a challenging test for the proposed method. Such
large temperature step functions do not occur in solar collectors in the real
conditions.

The results of the computations are presented in Fig. 4. The presented
dimensionless coordinates ζ = 0, 1.289, 2.579 and 4.083 correspond with the
dimensional coordinates z = 0, 0.6 m, 1.2 m and 1.9 m respectively. Anal-
ysis of the comparison shows satisfactory convergence of the exact solution
results and the results obtained using the presented method. Additionally
temperature histories of the tube wall and the fluid at the analysed cross-
sections are presented in Fig. 5. These histories were obtained using the
proposed model.

In the second case it was assumed that the working fluid and the tube
at time τ = 0 take the initial temperature t = θ = 10 oC. Starting from
the next time step, the heat flux step function (∆q = Gβ · p) on the outer
surface of the tube was assumed. The assumed heat load is the heat flux
equals Gβ = 500 W/m2. The tube pitch p = 0.12 m.

Omitting heat losses included in formula (2) and assuming that (τa) = 1
following was obtained:

∆q = 500 · 0.12 = 60 W/m . (31)

The selected results of the numerical calculations for the same cross-
sections as in the first case are shown in Figs. 6–8. Figure 6 shows the
comparison of the dimensionless histories of the fluid temperature increase
at the analysed cross-sections. These histories begin from the time instant,
respectively: η = 6.018 (τ = 60 s), η = 12.036 (τ = 120 s) and η = 19.057
(τ = 190 s), that is from the moment the analysed cross-sections were
reached by the fluid flowing with the velocity w = 0.01 m/s. A satisfactory
convergence of the results of the analytical calculations with the results
obtained using the method suggested in this paper was achieved.
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Figure 4. Dimensionless histories of the tube wall temperature increase.

Figure 5. Tube wall and fluid temperature histories for the analysed cross-sections.
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Figure 6. Histories of the dimensionless fluid temperature increase.

Figure 7. Dimensionless histories of the fluid temperature increase for the analysed cross-
sections (results obtained using the proposed method).
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Figure 8. Fluid and tube wall temperature histories for the analysed cross-sections (re-
sults obtained using the proposed method).

Figure 9. Distributions of the fluid and tube wall temperature after stabilization of the
heat transfer conditions.
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As distinct from the analytical method, the proposed model allows to
determine temperature histories from the beginning of the process (from
time τ = 0) and the temperature increase can be dimensionless (Fig. 7)
or dimensional (Fig. 8). Figure 7 shows the dimensionless fluid tempera-
ture increase for analysed cross-sections from the beginning of the process.
These histories were obtained using the proposed method. The dimension-
less temperature increase ϕ1 = 0 corresponds to temperature t = 10 oC.
Figure 9 shows the fluid and the tube wall temperature distributions at the
length of the tube. These distributions were achieved after stabilization of
the heat transfer conditions, which occurred after ∼ 350 s.

5 Summary

The proposed in this paper mathematical model of heat transfer in the liquid
flat-plate solar collector tubes can be characterised by large precession and
efficiency. This was proven by the comparison of the results obtained using
this model with the results of the exact solutions for the transient states.
Two numerical verifications were carried out. The inlet fluid temperature
and the heat flux on the outer tube surface were set as a step function. In
the real conditions the fluid temperature changes and the changes of the
solar radiation heat flux do not occur that rapidly. To reach a stable solu-
tion to the difference equations, optimal time-spatial steps were determined
(∆τ = 0.1 s and ∆z = 0.005 m). The obtained time-spatial division allows
dissipation and dispersion at the grid to be avoided and at the same time
allows the Courant condition to be satisfied.

The performed comparisons relate to the collector working in a parallel
channel arrangement, however this method can also be used for solar col-
lectors working in serpentine tube arrangement.

From the computational verification results, obtained by presented sim-
plified model, follow that the fluid temperature distribution is correct. That
fact allows to create complex mathematical model, for simulating the dy-
namics of liquid flat-plate solar collectors, equipped with additional energy
conservation equations. These equations will be derived for glass cover, in-
sulation, and for air gap. The complex model will be verified experimentally
in the close future.
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