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BOLTZMANN EQUATION IN THE MODELING OF MINERAL PROCESSING

RÓWNANIE BOLTZMANNA W MODELOWANIU PROCESÓW PRZERÓBCZYCH

The paper presents an application of the Boltzmann kinetic equation to the simultaneous modeling 
of multi-dimensional processes. This equation defines the evolution of the distribution of the probability 
density in a given phase space. In the case of a grinding process, the considered phase space is defined by 
the Cartesian coordinates of particle position, the components of particle velocity and the particle size. The 
theory of Markov processes is used in the paper to solve the Boltzmann equation for the multi-dimensional 
space of system states. In order to verify the presented model, research into the simultaneous comminution 
and movement of material in a drum ball mill was performed. The methodology developed to solve the 
Boltzmann equation significantly reduces the computational time, which is particularly important in the 
solution of multi-dimensional problems.
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Równanie Boltzmanna jest podstawowym równaniem kinetycznej teorii gazów opisującym ewolucję 
cząstek w rozrzedzonym gazie. W równaniu tym występuje funkcja gęstości prawdopodobieństwa zmien-
nej losowej w trójwymiarowej przestrzeni fazowej (funkcja rozkładu). W artykule przedstawiono sposób 
wykorzystania równania Boltzmanna do analizy procesów przeróbki mechanicznej surowców mineral-
nych. Wynikiem tej analizy jest matematyczny model występujących równocześnie procesów mielenia, 
klasyfikacji i transportu materiałów ziarnistych. W tym przypadku równanie Boltzmanna opisuje ewolucję 
gęstości rozkładu ziaren względem składowych prędkości, współrzędnych kartezjańskich oraz rozmiaru 
ziarna. W młynie funkcja rozkładu zmienia się w wyniku rozdrabniania i ruchu ziaren, a w klasyfikatorze 
tylko w wyniku ruchu ziaren. W ogólnym przypadku funkcja rozkładu zależy od: czasu, ruchu ziaren, 
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prędkości ziaren i rozmiaru ziaren, który zmienia się w wyniku rozdrabniania. Uwzględnienie zjawisk 
losowych wymaga wprowadzenia składowej dyfuzyjnej do równania Boltzmanna. W artykule rozpatrzono 
zastosowanie równania Boltzmanna do rozdrabniania periodycznego i ciągłego. W otrzymanych postaciach 
równania można uwzględnić rzeczywiste warunki technologiczne, co pozwala opisać stanu układu podczas 
oddzielnych lub jednoczesnych procesów przeróbczych. Przy założeniu jednowymiarowości procesów 
rozpatrywane zagadnienie sprowadza się do znanych przypadków, analizowanych jako oddzielne procesy. 
Obliczenia numeryczne wykonano metodą macierzową z wykorzystaniem teorii łańcuchów Markowa. 
Przedstawiono wyniki obliczeń dla przypadku jednoczesnego rozdrabniania i ruchu ziaren w młynie 
bębnowym kulowym. Analiza wyników obliczeń wykazała, że przebieg ewolucji stanu układu ziaren 
jest prawidłowy. W przyszłych badaniach można uwzględnić w równaniu Boltzmanna kształt ziaren, 
co oznacza wprowadzenie dodatkowych trzech współrzędnych do przestrzeni fazowej. Współrzędne te 
związane są ze zmianą długości, szerokości i wysokości ziarna.

Słowa kluczowe: równanie Boltzmanna, procesy przeróbcze, rozdrabnianie, klasyfikacja, transport 
ziaren, model macierzowy, młyn kulowy

1. Introduction

The Boltzmann equation is one of the most important equations in non-equilibrium statistical 
mechanics. This equation describes the evolution of rarefied gas. In rarefied gas there is enough 
space for particles to have different velocities in one spatial volume element. In a microscopic 
description of a rarefied neutral gas, the gas particles are moving with a constant velocity until 
undergoing binary collisions. In a kinetic picture, the properties of the gas are described by 
the density function in the phase space f(x,v,τ) called the distribution function. The quantity 
f(x,v,τ)dxdv represents the number of particles in the phase-space volume of the element dxdv 
at time τ. Both x and v are three-dimensional independent variables. The distribution function 
satisfies the Boltzmann equation, an integro-differential equation, which describes the effect of 
the free flow and binary collisions between the particles (Cercignani, 1988; Kubo et al., 1991, 
1991a; Huang, 1987; Kremer, 2010). 

The Boltzmann equation is use to analyse the thermophoresis of adhesive spherical particles 
immersed in fluid flows. Most theories for thermophoretic force are derived on the basis of the 
solution to the Boltzmann equation, or some approximations of the Boltzmann equation (Li et 
al., 2011). Nonlinear kinetic equations with an inflow term and rather general interactions were 
studied by Eibeck and Wagner (2003). A particular nonlinear kinetic equation with a gradient 
term was considered by Rjasanow and Wagner (2005). The Boltzmann equation allows to cal-
culate flows of simple gases and gas mixtures in micro- and nanosize channels (Anikin et al., 
2012). The kinetic approach was also applied to analyze the long time evolution of the viscous 
compressible weakly rarefied gas flow (Aristov & Rovenskaya, 2011). There is lack of using 
the Boltzmann equation to analyse of mechanical processing of mineral resources. However, it 
can only find Brożek and co-authors’ papers, in which the Boltzmann’s distribution is used to 
modeling of the flotation process (Brożek & Turno, 2005; Brożek, 2010). In the work of Brożek 
& Turno (2005) in the enrichment process it was assumed that the distribution of potential energy 
along the vertical axis of the separator chamber is in agreement with Boltzmann’s distribution. 
The distribution of air bubble size in flotation cell obtained in heuristic considerations (Brożek, 
2010), is based upon an assumption that air flowing into the flotation cell is subject to disper-
sion in turbulent vortexes of the liquid and the newly formed bubble surfaces have energies 
whose correspond the Boltzmann’s distribution. Brożek and Młynarczykowska assumed that in 
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the pneumatic mechanical flotation machine a large air bubble is divided into smaller bubbles 
according to Boltzmann’s law of energy distribution.

2. Multi-dimensional modeling of mineral processing

The paper presents a concept for modeling the simultaneous processes of grinding, clas-
sification and transferring of granular materials based on the Boltzmann kinetic equation. This 
equation defines the variation in time of the probability density function of a random variable 
in the defined phase space. The sought function is the density of the particle distribution with 
respect to: the Cartesian coordinates, velocity components and size f (r,v,x,τ), where: r(z1,z2, z3) 
– unit vector (versor) of the Cartesian coordinates, v(v1,v2, v3) – vector of particle velocity com-
ponents, x – particle size, τ – time. The product of the function f(r,v,x,τ) and the phase space 
dV = dz1dz2dz3dv1dv2dv3dx express the probability of the following event: particle of a size from 
the elementary range (x, x + dx), staying in the position defined by the elementary coordinates 
(z1, z1 + dz), (z2, z2 + dz2), (z3, z3 + dz3) at the time (τ, τ + dτ) is moving at the velocity of the el-
ementary components (v1, v1 + dv1), (v2, v2 + dv2), (v3, v3 + dv3). Integrating over all phase space 
gives the total number of particles in the granular material. In a mill, the distribution function 
varies as a result of particle size reduction and particle motion, while in a classifier – only as 
a result of particle motion.

In a general case, the distribution function depends on: the time, particle motion divr(vf ), 
particle velocity divv(af ) and the size variation caused by comminution f·c. The Boltzmann equa-
tion in a differential form is as follows: 
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where:  f(r,v,x,τ)  – the sought density of the particle distribution with respect to the Cartesian 
coordinates r(z1,z2, z3), velocity components v(v1,v2, v3) and particle size x; a(a1,a2, a3) – particle 
acceleration; repetition of the index k in the numerator and in the denominator means summation 
with respect to this index. The quantity f·c on the right-hand side of the equation describes the 
variation of density of the particle distribution as a result of comminution of particles of the size 
of (x, x + dx) (which means the transition of those particles to finer classes) and the appearance 
of particles of the same sizes (x, x + dx), representing the product of comminution of particles of 
the larger size. By using the comminution model based on the mass balance of particle popula-
tion (Mizonov et al., 1997), equation (2) takes the following form:
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where: S(y) – selection function, b(x,y) – breakage function, x – particle size after comminution, 
y – particle size prior to comminution, xmax – maximum particle size.
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Further on in this paper, two cases of application of equation (3) will be considered:
a) periodical comminution (bowl and roller mill, ring and ball mill)
 At zero particle velocities and accelerations, in the case of the periodical comminution, 

equation (3) will take the form of the known equation of the population mass balance:

 

max

( ) ( ) ( , )
x

x

f fS y fS y b x y dy

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   (4)

b) comminution by attrition
 In order to describe the comminution of material by attrition, it is necessary to transform 

equation (4). Attrition takes place by detaching fine particles from large ones and thereby 
reducing the particle size of the feed, which means the movement of particle along the 
coordinate x of its size at a velocity defined as the attrition speed:

 
4

4
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In this case the particle motion is described in the four-dimensional space (z1,z2,z3,z4) 
(k = 1,2,3, 4). The formation of fine particles during attrition corresponds to the boundary values 
of the function f·c of the following equation:
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Further generalization of the considered problem may result from taking into account the 
shape of particles. In that case, three additional coordinates, x4, x5, x6, are introduced into the 
phase space. These coordinates represent the change in the particle length, width and height, 
while the index k in equation (2) takes the values k = 1,2,…,6.

Consideration of the random phenomena needs to introduce the diffusion component 
2

2
k
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to the equation (1) (Huang, 1987; Bozhenko et al., 2011):
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In the obtained forms of the Boltzmann equation, specific real technological conditions can 
be considered, what allows the system state’s evolution during either separate or simultaneous 
comminution, classification and transport processes to be described. Assuming one-dimensional 
movement or comminution processes, the problem is brought to the known cases which tradition-
ally are solved separately.

3. Boltzmann equation solution

A matrix method, using the Markov theory of chains (Berthiaux et al., 2005; Mizonov et al., 
2008; Mizonov et al., 2011), was proposed to solve equation (7) numerically. Let N denotes the 
number of phase coordinates. Along each coordinate of process, the number of the selected cells (or 
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steps) is ni, where the index i = 1,2,...,N denotes the ordinal number of the coordinate. The general 
number of the considered cells n is equal to the product N of the numbers: n = n1 · n2 · ... · nN. 
The vector of system state U = {Ui} with the dimension 1· n is composed of the probabilities 
of presence in the i-th cell, which are equal to the product of the distribution function f and the 
elementary volume of the phase space: Ui = fΔV. From the normalization condition (being equiva-
lent to the mass conservation law), the sum of these probabilities is equal to unity 1i

i
U  .

For the description of the system evolution in time according to equation (7), a random 
quantity Yi is introduced into each cell, which defines possible transitions:

 Yi = {yi, y2, ..., ymi} (8)

where: y1, y2, ..., ymi – numbers of those cells of the state vector U, to which transition from the 
i-th cell is possible with the probability q1, q2, ..., qmi; mi – number of cells, to which transition 
from the i-th cell is possible. These probabilities form the vector Q:

 Qi = {qi, q2, ..., qmi}  (9)

According to the normalization condition, the sum of the probabilities of all possible transi-
tions equals 1:

 
1

i
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m
m
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If transition from the i-th cell is possible only to neighbouring cells, then the vector of pos-
sible transitions will take the following form: 

  2 2 1, 1, , ,..., ...
ii i i i mY i i i n i n n i n n n       (11)

In equation (11), the index i denotes transition to the considered cell, the indexes i±1 – tran-
sitions to the right-hand and left-hand adjacent cells, the indexes i ±n1 – transition to the cells 
situated in the rows above and below the row with the i -numbered cell, etc. The probabilities Qi 
of the transitions, defined by the random quantity Yi, are determined on the basis of the physical 
laws applicable to the courses of the considered processes. For the one-dimensional motion of 
a particle at the velocity v, the probability of transition to the adjacent cell in time Δτ is determined 
from the following expression:

 

vq v
x


 
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 (12)

where: Δx – size of the cell along the x axis.

The change in the particle velocity is defined by acceleration, while the probability of transi-
tion to the adjacent cell along the velocity coordinate in time Δτ is:
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where: Δv – size of the cell along the v axis.
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The change in the particle size is connected with the comminution process. To determine 
the probability of particle transition to finer classes as a result of comminution, a relationship, 
based on the population balance, was proposed:

 

 0 1x x
q d

x
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 (14)

The difference (x–0 – x–1) denotes the change in the average  particle size in time Δτ. In turn, 
the change in the average particle size for linear forms of the selection and breakage functions 
is defined by the following relationship:
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where α – parameter of the selection function (Mizonov et al. 1997).

The matrix operation was introduced to solve numerically the multi-dimensional equation (7):

  1 ,ˆk kU p Y U   (16)

where the superscript k denotes the number of time step. The matrix operator p̂ in equation (16) 
can be determined through the following identity summation of the probabilities of particle 
transition from all cells to the considered i-th cell of the system:
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where pij – probability of transition from the j-th cell to the i-th cell.

The probability pij is determined from the following expression:
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where the index j1 = 1,2,...,mi.

Comparing to the traditional multiplication of matrices, equation (16) allows computational 
time to be reduced due to the elimination of operations with zero elements.

4. Results and summary

According to the above algorithm the solution to the Boltzmann equation will be presented 
on the example of the problem of simultaneous material comminution and movement in a ball 
tumbling mill. The mill’s z axis, the material velocity v along the mill axis and the particle size 
x were assumed as the coordinates; hence the number of coordinates, along which the process 
evolution is considered, is equal to three (N = 3). The three cells n1 = 3, n2 = 3, n3 = 3 were chosen 
along each coordinate. The considered phase space is presented in Figure 1. 
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Numeration of the cells in Figure 1 represents the method of creating the vector of system 
state U, which contains n = n1 · n2 · n3 = 27 elements. Comminution is regarded as the reduction 
of particle sizes or their transition to smaller-size cells with a specified probability d–. At the ini-
tial moment, a unit sample of the coarse particles is fed into the mill. Considering the assumed 
order of cell numerations, the initial state can be described by the vector of system state in the 
following form: 

 

0 1 for 3
0 for 3i

i
U

i


  
 (19)

Each cell, situated inside the separated phase space, may border on 6 adjacent cells. If the 
cell is present at the phase space boundary, then the transitions through the boundary are defined 
by the adequate boundary conditions. In the considered example, an isolated phase volume was 
selected, from which no particles come out. If the material may only pass to adjacent cells during 
evolution, then the random quantity Y is expressed applying the following table:

Y i i – 1 i + 1 i – n1 i + n1 i – n1n2 i + n1n2

Q 1 – d
–
 – a– – v– d

–
0 0 a– 0 v–

The evolution of system state in time, calculated using equation (16) for the initial conditions 
(19) in the totally isolated phase space (Fig. 1), is presented in Figure 2. In time, the elementary 
sample of coarse particles passes to the cell with the minimum particle size, the maximum velocity 
and the maximum coordinate along the mill axis. The change in the contents of three classes in 
time is presented in Figure 3. The mass fraction of coarse class decreases and the mass fraction 
of fine class increases. The change in the contents at the outlet of the mill increases with the 
increasing of the convective mass transfer rate (Fig. 4).

Fig. 1. The phase space in the problem of the simultaneous grinding and movement of material particles 
in the ball mill (the numbers denote the creation method of the state vector)
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Fig. 2. An evolution of the state vector during material comminution and particle motion at a constant accelera-
tion in the tumbling ball mill: the material passing to the cell at the maximum velocity, the minimum particle 
size and the maximum coordinate along the mill’s axis. Designations of the axes: i – cell number consistent 

with the numeration shown in Figure 1, TS – time step, Ui – value of the vector of system state

Fig. 3. Change in the contents of a coarse (1), medium (2) and fine (3) classes in time
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The model presented in the paper enables multi-dimensional simultaneous comminution, 
classification and transport processes to be analysed. The developed methodology to solve the 
Boltzmann equation, using operations only on non-zero elements, significantly reduces the com-
putational time, which is particularly important in the solution of multi-dimensional problems.
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