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ZYGMUNT NIEDOJADŁO*, WOJCIECH GRUSZCZYŃSKI*

THE IMPACT OF THE ESTIMATION OF THE PARAMETERS VALUES ON THE ACCURACY 
OF PREDICTING THE IMPACTS OF MINING EXPLOITATION

WPŁYW OSZACOWANIA WARTOŚCI PARAMETRÓW MODELU NA DOKŁADNOŚĆ 
PROGNOZOWANIA WPŁYWÓW EKSPLOATACJI GÓRNICZEJ

The possibility of the assessment of the probability that the acceptable values of deformation indexes 
will be exceeded and the introduction of the coefficient of safety are more and more seriously considered 
in case of predicting the impacts of exploitation both on the surface and the shaft tube. This article presents 
the mentioned above issue focusing on the authors’ project of the exploitation in the protective pillars 
of the shafts of the Legnica and Głogów Copper Area (LGOM). To assess the accuracy of the predicted 
deformation indexes Monte Carlo method (often used in statistics) was proposed as well as the strict and 
approximate analysis using the law of error propagation. The values of vertical strains were analysed, 
as the most important at the assessment of the state of deformation of the shaft tube. The comparison 
of the results obtained with different methods confirmed the correctness of the carried out calculations. 
The applied methods allowed the analysis of the impact of individual parameters of the model on the 
prediction of the accuracy of forecast. This article makes the continuation of the solutions of the article 
(Niedojadło & Gruszczyński, 2010) thus some contents essential for the continuity of understanding 
were repeated here.

Keywords: protective pillars, shaft, vertical strains, mean errors, predicting the impacts of exploitation, 
Monte Carlo method

Możliwość oceny prawdopodobieństwa przekroczenia dopuszczalnych wartości wskaźników defor-
macji oraz wprowadzenie współczynnika bezpieczeństwa coraz częściej są brane pod uwagę w przypadku 
prognozowania wpływów eksploatacji tak na powierzchnię jak i rurę szybową. W niniejszym artykule 
przedstawiono powyższe zagadnienie na przykładzie autorskiego projektu eksploatacji w filarach ochron-
nych szybów LGOM. Do oceny dokładności prognozowanych wskaźników deformacji zaproponowano 
wykorzystywaną w statystyce metodę Monte Carlo oraz analizę ścisłą i przybliżoną wykorzystującą prawo 
przenoszenia się błędów średnich. Analizowano wartości odkształceń pionowych, jako najistotniejsze przy 
ocenie stanu deformacji rury szybowej. Porównanie wyników uzyskanych różnymi metodami potwierdziły 
poprawność wykonanych obliczeń. Zastosowane metody pozwoliły na analizę wpływu poszczególnych 
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parametrów modelu na dokładność prognozy. Niniejszy artykuł stanowi kontynuację rozważań zawartych 
w artykule (Niedojadło & Gruszczyński, 2010) stąd pewne treści niezbędne dla zachowania ciągłości 
rozumowania zostały powtórzone.

Słowa kluczowe: filary ochronne, szyb, odkształcenia pionowe, błąd średni, prognozowanie wpływów 
eksploatacji, metoda Monte Carlo

1. Introduction 

Every expert dealing with the problem of predicting the impacts of mining exploitation on 
the surface and the rock mass, in the first phase of the speculations referring to a concrete min-
ing region and object, asks a question which parameters of the accepted for calculations model 
correspond the real conditions. In principle it can be said that there is no correct answer to this 
question, in the meaning of deterministic values of these parameters. The authors of this article, 
with their experience of decades in this field, can state that almost never the hypotheses accepted 
„a priori” to predict the parameters strictly correspond the values marked „a posteriori”, after 
exploitation and revealing the earlier predicted impacts. This results from the randomness of the 
phenomenon, incomplete compatibility of the model with its real course, wrong estimation of 
the theory parameters or deviations from the assumptions of the project of exploitation (depth, 
thickness of the layer, the way of filling the cavity, the shape and size of the exploitation field). 
This does not mean that the model is incorrect. One should simply use the model in an proper way.

In case of the Legnica and Głogów Copper Area, at the assessment of the impacts of planned 
exploitation in protective pillars of the shafts on the shaft tube, we know very little about the 
values of the parameters of theories for the inside of the rock mass, necessary for the calculations 
of the values important for the safety of shaft deformation indexes. The project of exploitation 
in the protective pillar of the shaft in tubing, functioning in the conditions of water threat, at the 
very beginning requires establishing the extreme values of deformation indexes, possible to occur 
during the planned exploitation. In the section of the tubing in the watered zone, one must not 
allow any damage to the shaft, compromising its integrity. Thus it is necessary to evaluate the 
risk of transgressing the limit value of the analyzed deformation index, established for the shaft. 

For the calculations, often a „standard” set of parameters is accepted, which consequently 
does not give information on a real state of the deformations in the surface or the rock mass in 
the analyzed region. The article presents the methods of making calculations, enabling to deter-
mine the predicted values with the assessment of the probability of exceeding acceptable values. 
The author’s project of the copper deposit exploitation in the protective pillars of LGOM shafts 
(Niedojadło, 2008a) was analyzed. The presented methods are, however, of general character and 
are possible to be used also in other projects of the exploitation of useful minerals.

2. General relationships and formulae of Knothe’s theory 
in the area of predicting the rock mass deformations 

The process of the rock mass deformation caused by the mining exploitation takes place in 
the conditions of significant complexity of the rock mass structure. The phenomena occurring 
within the rock mass are hard to be record by the measurements, especially in case of one-seam 
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copper deposit. The measurements inside the rock mass are carried out only in the shafts and 
usually in the scale not allowing the full verification of the theoretical model and its parameters. 

The state of the threat to the shaft tube with the deformations is defined by the following 
indicators:

– vertical displacement (subsidence) of the points in the rock mass for various horizons 
w(x, z) [m],

– vertical specific strains εz [mm/m],
– horizontal displacements (inclination of the shaft in a horizontal plane) u [m].

In the S. Knothe’s theory the distribution of the subsidence of points (Sroka, 1976; 
Piwowarski at al., 1995) in any horizon of the rock mass z, in the cross section perpendicular to 
a straight-line edge of the front of mining exploitation, of the half-planar shape is described by 
the formula (l):
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where:
 a — so-called exploitation coefficient, 

 r — the radius of dispersion of the main impacts [m], 
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
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 tgβ — the parameter of the dispersion of the impacts (tangent of the angle of the disper-
sion of main impacts). 

 z — vertical distance of the examined horizon from the mined seam [m], 
 g — thickness of the mined seam [mm]; 
 x — distance of the examined point from the edge of the exploitation front [m], 
 wk(x, z) — final subsidence of the examined point in a given horizon z [mm].

Vertical strain is defined in the following way:
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To define rock mass deformation, the important issue is the distribution of r parameter: 
r = r(z), i.e. the radius of the dispersion of main impacts in the rock mass, described by the fol-
lowing formula:
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where:
 H — depth of exploitation [m],
 zo — parameter depending on the values of the radius of impacts rs (in the roof of the 

exploited seam).
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The value of parameter zo is found based on the following relationship (4):
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where n — parameter of the rock mass, taking values of the range: 

 0,45 ≤ n ≤ 1,0 (5)

Regarding (3), according to the definition of vertical strain (2) we obtain:
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Distribution of vertical strains for a so-called infinite half-plane is described by the rela-
tionship: 
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With formula (7) one can calculate the distribution of vertical strains alongside any horizontal 
or vertical line in the rock mass, for the exploitation in the shape of half-plane.

3. The variability of parameters and coefficients of Knothe’s 
theory in the conditions of LGOM

Accepting the ranges of the variability of the parameters related to the theory has a funda-
mental significance for the assessment of the accuracy of predicting the values of deformation 
indexes. Below the ranges of the variability of parameters (Sroka, 1974, 1976; Hejmanowski at 
al., 2004; Kwinta, 2009; Hejmanowski & Kwinta, 2009) are presented for LGOM conditions.

The angle of dispersion (range) of impacts β

Above 75% of determined values of parameter tgβ are in the range within 1.3÷1.8, and 
88% within the range of 1.2÷1.9. The distribution of this parameter is close to the rectangular 
(uniform) distribution.

Exploitation coefficient a

For room-and-pillar systems applied in LGOM usually the following values of coefficient 
are accepted:

a = 0.5 for systems with caving (natural roof settlement),
a = 0.2 for systems with hydraulic backfill.
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This parameter is, however, quite variable. Recently made verifications of parameters indicate 
that for caving systems this parameter ranges within:

 0.45 < a < 0.8
and for hydraulic backfill:
 0.2 < a < 0.3

The parameter of the rock mass – n

The value of parameter n is within the limits (Preusse, 1990):

 0.45 < n < 0.70

The parameter of the dispersion of impacts in the roof of the seam rs

The value of parameter rs for the Polish copper ore deposits is (Biliński, 1989) between 40 
and above 150 m. In expertises and opinions, the calculations are often carried out with the as-
sumptions that zo = 0 (rs = 0). 

The presented views on individual parameters and their values, show how difficult it is to 
accept correct values for the calculations of predicted deformation indexes. The ranges of possible 
values of parameters are in some cases very wide. Accepting the values of indexes predicted for 
mean values of the parameters of the model is not a correct procedure. The assumption that occur-
rence of each value of a parameter from the determined range is nearly equally probable was taken. 

4. Preliminary assumptions of exploitation project, 
with the analysis of the distribution of vertical strains

In case of the exploitation in the protective pillars of the shafts, the most important defor-
mation index is vertical strain. 

In most LGOM shafts significant compressing vertical strains occur on the level of the floor 
of intensively dehydrated tertiary layers and the roof of the buntsandstein (H ≈ 370÷420 m). On 
this level vertical strains are observed, which in some shafts achieve maximal value:

 εz_odw ≈ –1.5 mm/m

The total compressing vertical strains should not exceed values: 

 ε(–)
z_gr ≈ –3.0 mm/m

which means that during the exploitation in the shaft pillar the tubing in the threatened area can-
not be subdued to additional compressing strains higher than:

 Δεz = εz_dop = εz_gr – εz_odw = –1.5 mm/m

Taking into account a significant water threat in the LGOM shafts, in the carried out analy-
ses and theoretical calculations of the predicted deformation indexes, one shoud also consider 
a random character of deformations. 

Two aspects of this issue should be taken into account. The first refers to the irregularities in 
actually observed deformation indexes. The second question is the assessment of the accuracy of 
calculations of the predicted deformation indexes, at the presumed variability of input parameters. 
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The variability of the observed deformation indexes is often characterized by the so called 
variability coefficient MD (D – analysed deformation index). The standard deviation of the de-
formation index e.g. εz is:

 σεz = Mεz · εz (8)

The value Mεz was accepted according to the literature (Sroka, 1975; Popiołek, 1994):

 Mεz = 0,2 (9)

Thus a general formula is:

 _ max _ _(1 ) ( )
zz z gr z odwM       (10)

where: εz_max — maximal value of compressing vertical strains caused by exploitation.

For the values presented in this chapter we obtain:

 _ max (1 0,2) (( 3,0) ( 1,5)) mm/m 1,2mm/mz          (11)

The scheme of exploitation should be designed in such a way that the predicted values of 
compressing vertical strains for mean values parameters, do not exceed the limit value of the 
Tertiary layers in the floor (–1.2 mm/m) decreased by the estimated error of the forecast. It was 
presumed a priori that the predicted average value of maximal vertical strain (for H ≈ 400 m) 
should equal:

 εz_prog ≈ –1,0 mm/m

The general scheme of the project of exploitation in the protective pillars of LGOM shafts 
(Niedojadło 2008a) is presented in Fig. 1.

The analysis refers to the impact of exploitation of the external zone (field I and II as well as 
III and IV – Fig. 1). This exploitation will generate in the shaft-tube maximal values of vertical 
compressing strains, the border value should not exceed Δεz = –1.5 mm/m. The calculations were 
carried out for the mean depth of the floor of the Tertiary horizons h ≈ 400 m. The stabilizing 
zone (field V), will make a square of side 2·d. The size of the zone mainly depends on the depth 
of the exploited deposit and on its thickness and the system of exploitation.

For each field the possibility that different values of parameters characterizing the exploi-
tation (i.e. H, g, a) will occur was accepted. Taking into account state-of-the-art presented in 
chapter 3, in calculations with Monte Carlo method the following ranges of possible values of 
the parameters for the theory and coefficients were accepted:

1,3 tg 1,8 (tg ) 1,55E   

0,2 ≤ a ≤ 0,3  E(a) = 0,25 (exploitation coefficient for hydraulic backfill)

0, 45 0,70 ( ) 0,575n E n  

50m 150m ( ) 100ms sr E r  

10m; 5m 5m ( ) 0avg avg avgH H H H E H       
 

0,3m; 0,15m 0,15m ( ) 0avg avg avgg g g g E g       

where: E(·) — expected value.
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We ask the question what is the probability that as the result of the exploitation, according 
to the proposed exploitation scheme (Fig. 1) the values of compressing vertical strains will not 
exceed the established limit value.

The solution, practically not applied so far at the analysis of the deformation of the shaft 
tube, is the algorithm of calculations, in which the ranges of the values of parameters are given 
instead of deterministic values. In every calculation series the set of parameters from the accepted 
ranges is randomly selected. 

The method of the simulation of physical processes with a random selection of input pa-
rameters is known in statistics and belongs to so-called Monte Carlo methods (MCM). However, 
they have not been used so far in case of predicting mining damage in the conditions of LGOM.

The application of such algorithm gives possibility of multiple calculations of deformation 
indexes (Naworyta, 2004). As a result we obtain the set of values, having the character of the 
continuous random variable. Large enough number of repetitions of calculations and the ap-
plication of definition and the relation of the probability calculus allows the assessment of the 
distribution of random variable and estimation of the statistics. 

The main disadvantage of the above method is the fact that it is time-consuming. One 
should make dozens of repetitions of the calculations of the predicted values of deformation 
indexes, and then the set of these values should be subdued to statistic analysis. For complicated 
conditions of exploitation and considerable number of fields the time of such calculations can be 
relatively long. Because of the above, we consider that this method has limited utilitarian value. 
It was proposed mainly to be applied in research, to define the distribution and accuracy of the 
determination of the predicted values of deformation indexes. This is a time-consuming method, 
but gives the fullest description of the distribution.

The assumption was made that the parameter can get any value from the range with equal 
probability. This means that the parameters are characterized with a rectangular (uniform) dis-
tribution. 

All the calculations were made introducing the interval range of parameters and coefficients 
as well as the “choice” of their values by programme generator of pseudo-random numbers. As 
a result of a full series of calculations N = 100 of result files were obtained with the values of the 

Fig. 1. The scheme of exploitation fields
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calculated deformation indexes, for the generated sets of parameters and coefficients, different 
every time. 

Calculations were repeated 10 times, to assess the repeatability of the results in “samples” 
and descriptive statistics.

4.1. Deformations of the shaft tube

To verify the accepted assumptions for the method of the exploitation of the copper deposit 
in protective pillars of LGOM shafts, the calculations were made according to the presented 
above methods for the exploitation option of the following data:

 H = 700 m, a · g = 1.0 m 

For the mentioned above conditions the predicted vertical strains in the floor of Tertiary 
horizons (H ≈ 400 m) after the exploitation of fields I-IV (Fig. 1) for the expected values E(·) 
of parameters will be E(εz

(–)) = –1,0 mm/m if the distance of the edges of the stabilizing zone to 
the shaft is d = 188 m.

Dispersion of these values is characterized by, among others, standard deviation. The ap-
plied calculation method gives the possibility of determining the values of standard deviation, 
and also defining the probability of exceeding the limit value (εz_gr ≈ –1.2 mm/m – equation 11).

The results of calculations were presented in the graphical form in the summary chart 
(Fig. 2), from which the distribution and the border minimal and maximal values of calculated 
strains can be found.

In table 1. the following values were put:
 εz_avg — mean value,
 σ(ε) — standard deviation of the deformation index,
 εz_max — maximal (absolute) value of vertical compressing strain in the sample,
 εz_min — minimal value of vertical compressing strain in the sample,
 εz_avg(10) — mean value εz_avg from ten repetitions,
 σ_avg(10) — mean value σavg,
 εz_avg – σ — mean value εz_avg decreased by standard deviation,
 εz_avg + σ — mean value εz_avg increased by standard deviation.

The obtained mean value of vertical strains is εz_avg(10) = –0.989 mm/m ≈ –1.0 mm/m, which 
corresponds exactly to the presumed values. Mean standard deviation in the sample was:

 σavg(10) = 0.152 mm/m

Assuming the correctness of the model and assessment of the ranges of parameters and 
coefficients, the analysis of the obtained calculation results can be done. The analysis showed 
that vertical strain will range between:

 –1,48 mm/m ≤ εz
(–) ≤ –0,64 mm/m

Border values occur sporadically, basically in 1000 results only single such values were 
found. However, being aware of possible values of the results of calculations is very valuable. 
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TABLE 1

The results of the calculations of mean and extreme values of vertical strains

Nr 1 2 3 4 5 6 7 8 9 10
εz_avg –0.986 –0.980 –1.003 –0.990 –0.997 –0.987 –0.965 –0.996 –0.988 –0.997
σ(ε) 0.147 0.156 0.155 0.152 0.146 0.161 0.138 0.158 0.156 0.147
εz_max –1.34 –1.48 –1.36 –1.42 –1.3 –1.39 –1.35 –1.36 –1.39 –1.33
εz_min –0.7 –0.73 –0.66 –0.66 –0.69 –0.69 –0.68 –0.64 –0.7 –0.73
εz_avg(10) –0.989
σ_avg(10) 0.152
εz_avg – σ –0.837
εz_avg + σ –1.141

As a result of calculations with the proposed algorithm the set of the values of deformation 
indexes is obtained, characterized by the normal distribution, confirmed by the test W Shapiro-
Wilk on the significance level 0.05, of the following parameters:

 N(–1,0 ; 0,15)

Now the question about the probability that the predicted value of compressing vertical 
strain will not exceed the acceptable value (εz

(–) ≈ –1,2 mm/m) can be answered. 

Fig. 2. Chart of the results of simulation calculations
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For:

 x = –1,2; μ = –1,0; σ = 0,152
we obtain:

 
* 1, 2 ( 1,0) 1,315

0,152
xz 

   

   

 ( 1, 2 1,0) 0,40575P x    

 ( 1, 2mm/m ) 0,40575 0,5 0,91P x     

where: z* — variable standardised in the tables of the normal distribution.

In this case the probability of risk (αgr) is 0.09. Often for important engineering objects, for 
which significant threats were defined, it is accepted that αgr = 0,10 (10%). The obtained value 
αgr for the acceptable value (–1,2 mm/m) corresponds the value above. 

4.2. Distribution of vertical strains alongside the shaft tube

Apart from “point” analysis of the state of deformation, it is also necessary to assess the 
distribution of deformations and determine the predicted values of maximal vertical strains 
alongside the whole shaft tube. 

Calculations were made for identical ranges of parameters, the results of which were pre-
sented on a summary chart (Fig. 3). They show that in the bottom part of the shaft the ranges of 
the values of strains are much bigger.

Fig. 3. The course of vertical strains alongside 
the shaft tube (mean and extreme maximal 
and minimal values)
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The value of standard deviation s, also in the bottom part of the shaft grows to the value 
σ ≈ 0.35 mm/m at the value εz = –0.57 mm/m, i.e. makes more than 60% of this value.

The above values show how difficult is to predict the state of deformations in the shaft-tube. 
Even small changes of parameters significantly change the predicted values of maximal deforma-
tions and the place of their occurrence. These values often determine the scale of the undertaken 
security measures or the place of cutting the shaft lining. 

5. The analysis of the prediction accuracy based 
on the law of error propagation

The presented in the first part of the article assessment of the accuracy of predicting vertical 
strains in the shafts of LGOM, applying Monte Carlo method, has an experimental character. At 
the determination of the subsequent „samples” of the values of strains with „drawn” parameters 
strict formulae of Budryk-Knothe’s theory were applied as presented in chapter 2. As it has al-
ready been stated, this method is relatively time-consuming and difficult in utilitarian application. 

In the further part of this publication the attempt was made to do the analysis of the accu-
racy of predicting vertical strains with another method, based on the same formulae (1÷7). The 
calculations were made for the same geological and mining conditions based on often applied 
in the analysis of measurement results law of error propagation (LEP). RMS error is in this case 
equivalent to the standard deviation, analysed in previous chapters. 

Because of the degree of the complication of the obtained functions for a larger number of 
fields, the calculations of mean error of vertical strain εz was made for the exploitation of one 
half-plane-shaped field. The edge of the half-plane was 188 metres far away from the axis of the 
shaft, like in the case of the example analyzed in chapter 4.2. The same set of parameters was 
accepted, as well as the same range of the intervals of parameters, and their (uniform) distribution. 

The law of error propagation is commonly known and applied in engineering calculations (and 
not only) rule allowing the estimation of the values of the RMS error of the function. To achieve 
this is necessary to know RMS errors of the arguments of this function and their expected values. 

Based on the introduction of the law of the propagation of errors (Hausbrandt, 1970) one 
can notice the following limitations of its application (resulting from the assumptions accepted 
at the introduction):

1. Independent variables’ errors (arguments of the function, for which the RMS errors will 
be estimated) should be independent. 

2. Mean values of the error of each independent variable should be approximately zero. 
3. The values of RMS errors of independent variables should be small. Deriving of the 

law of error propagation is based on the development of the function (for which RMS 
is determined) in the Taylor series, skipping the elements in second and higher powers. 
What values of RMS errors can be regarded as small depends on the shape of the studied 
function and the desired accuracy estimation. It should be emphasized that this feature 
in practice means that the values RMS errors obtained from the application of the law of 
error propagation are only estimation. 
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For the considered function the law of the propagation of errors takes the form:
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where:
  ( , tg , , , , , , )z sf a n r g H x z  ,
 ma, mtgβ, mn, mrs, mg, mH — RMS errors of independent variables (parameters of the model),
 mεz — RMS error of vertical strain,
 x,z — coordinates of the analysed point.

For the calculations we accepted the values of RMS errors of independent variables calculated 
based on their distribution, thus for uniform distribution, according to the formula:
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where (chapter 4.1):
 b — upper limitation of the range, from which the values of the parameter are randomly 

drawn,
 a — lower limitation of the range, from which the values of the parameter are randomly 

drawn,
 σ — standard deviation of the distribution of parameter, here associated RMS error of 

this parameter.

RMS errors’ values of subsequent parameters calculated based on this formula are presented 
in the table below.

TABLE 2

Parameters of the model and their errors accepted for the calculations of RMS error of vertical strains 
with the application of LEP

Parameter RMS error
a 0.03

tgβ 0.14
n 0.07
rs 29 m
H 3 m
g 0.09 m

Assuming formula (7) for the exploitation in the shape of the half-plane for value εz, after 
the differentiation the formula for RMS error of vertical strain was obtained. The resulting for-
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mula will not be presented here, because of its large size and uclarity. Better to present are the 
values RMS errors of vertical strain resulting from this formula. They were presented in figure 4 
against the errors estimated with the application of Monte Carlo method for the same conditions.

Fig. 4. The graph of the RMS error of predicted values εz in the depth function

As it can be noticed, the calculations carried out with two methods give similar results and 
this way mutually confirm one another (assuming the correctness of the applied premises). It 
should be underlined that the applied calculation methods have different origin, which is important 
for the assessment of the reliability of the obtained results. 

The greatest discrepancy between the estimated values of RMS error εz from both methods 
take values below 0.02 mm/m, which makes about 25% RMS error of vertical strain in this point 
(H = 648 m) and about 18% of maximal value of RMS error. In most cases of the discrepancies 
between RMS errors obtained from both methods, are significantly lower. 

The obtained similarity indicate practically sufficient accuracy estimation RMS error of 
vertical strain at the application of both methods. 

The law of error propagation allows simple estimation of the impact of the errors of individual 
independent variables on the value of the function error (vertical strain). The value of the square 
of the RMS error of the function is calculated as the sum of squares of the contributions to the 
error of this function resulting from subsequent variables (parameters of the model). Below only 
the formulae for parameter a were presented, but the impact of other parameters can be calculated 
in the same way. RMS error of vertical strain resulting from the RMS error of parameter a can 
be described by the formula: 

 z

a z
am m
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

 (14)

Values of these errors do not sum up to the values of RMS error vertical strain, but sum 
up in squares (to the square of RMS error). Thus it can be presumed that the impact of a given 
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parameter on the value of the square of RMS error of the function can be calculated according 
to the formula:
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where: wa — the impact of parameter a on the value of the square of RMS error εz.

The calculated this way impacts of subsequent parameters express the percentage of the 
participation of errors in the parameters of the model in the calculated squared RMS error of εz. 
The graphs of these impacts are presented in figure 5. 

One can notice that the impacts of errors in defining the thickness and depth of exploitation 
are negligible, however the significant impact of the error of defining rs expires about 100-150 
metres above the exploitation. The impact of the error of the definition of parameter n occurs in 
the area between 50 and 150 metres above the level of exploitation and from 300 metres above 
the level of exploitation to the surface. 

In the broadest range the significant ones are the errors of parameters a and tgβ. The impact 
of the error of parameter a is significant more or less at 150th metre above the exploitation level 
up to the surface, while in case of parameter tgβ in the area between 50 and 550 metres above 
the exploitation level. 

Fig. 5. The graph of the impact of RMS errors parameters of the model on RMS error 
of the vertical strain function (equation 15)

Knowing these impacts and applying Monte Carlo method for a specified level, one can 
neglect drawing the parameters that are not significant for RMS error of vertical strain, taking 
their values equalling their expected values. 
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The law of error propagation does not allow determining the distribution of the values of 
function, and only allows the estimation of the values of its RMS error, however, with Monte 
Carlo method it was shown that at the application of the parameters of the uniform distribution 
model in drawing, the values of vertical strain has a distribution close to normal. This result 
complies with central limit theorem, it is not surprising, but worth noticing. 

The estimation of the shape of the distribution of the function values is of great significance 
for probabilistic interpretation of the obtained results. Failing to know the probability density 
function could lead to the overestimation of danger resulting from the planned exploitation. The 
application of the Chebyshev inequality, Gauss inequality or Camp-Meidell inequality, gives 
wider coverage intervals for the same probability than those found in the tables of the normal 
distribution. 

6. Numeric approximation of the law of error propagation

The main disadvantage of the application of the law of the propagation of errors in its exact 
form is the necessity to define the formulae for the partial derivatives of the function for which 
the RMS error is calculated. In a particular case such as the exploitation of the half-plane shape, 
the formulae are possible to define, but for more complicated shapes of exploitation the formulae 
for derivatives gets much more complicated. 

The solution of the problems connected with the formulae of partial derivatives is the ap-
plication of the approximations in the place of accurate values of derivatives. The approximations 
are calculated as central differences:
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where:
 x, y — coordinates of the point, in which the derivative is calculated,
 h — some small value.

In a particular case of the approximation of the values of derivatives for the formula of verti-
cal strain, in the place of function f there is vertical strain, and in the place of arguments there are 
model parameters. If the derivative is to be used in the approximation of values obtained from the 
law of error propagation, the derivatives will be calculated in the point for which all the model 
parameters have the values equal to the expected value. This means that e.g. for parameter a the 
appropriate approximation is the following:
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In practice, the application of this formula means that making calculations for mean values of 
all the parameters, except the parameter after which the derivative is calculated, thus, if adequate 
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care is taken, the task is relatively simple with the application of the program for the predicting 
of such a deformation index. 

The application of this solution allowsvoiding the main problem connected with applying 
the law of the propagation of errors in its exact form, i.e. deriving formulae for partial deriva-
tives. This solution, however, brings two important problems, which must be considered. Firstly, 
what width of the range of the values of the parameter should be taken to calculate the deriva-
tive value (which is value h). Secondly, central differences allow only the calculation of the 
approximation of the values of derivatives produce inaccuracy in the calculations of the values 
of mean errors of vertical strain, regarding the law of the propagation of errors (in its accurate 
form). Both problems described here can be treated jointly (as the cause and result), which leads 
to the following questions:

1. For which width of the interval (values h) of approximation values RMS error εz is the 
most accurate?

2. Do obtained values mεz significantly (from practical point of view) depend on the selec-
tion of values h?

In practice, solving the mentioned above questions, thus the definition of the optimal width h 
required calculations for different values h and selecting such a value for which the approxi-
mation errors are the smallest. The selected value for one case (values of parameters, shape of 
exploitation) does not have to be optimal for other cases, thus it is important to assess the impact 
of h selection to the accuracy of the approximations. Values mεz obtained in the simulation with 
Monte Carlo method and the law of error propagation are similar, but there are certain differences 
between them. The purpose of the approximation should rather be the results of MCM than the 
law of error propagation. Comparison with the results based on the law of error propagation will 
present the accuracy of the approximation of the values of derivatives.

Calculations were done for 4 h widths. The values h was determined in the proportion to 
the width of the ranges of their variability given in chapter 5.1. The general formula to calculate 
the values of parameters h for subsequent options is the following:

 
max min

2x
x x

h k


  (18)

where:
 x — parameter,
 xmax, xmin — respectively: maximal and minimal value of parameter (upper and lower 

limitation of the range of its variability),
 k — coeffi cient.

For subsequent options – the following k values were accepted respectively 1/3, 1/2, 2/3 
and 1. In table 3 the RMS errors of numeric approximations of the law of error propagation 
(further on called the LEP-N) for subsequent values k. Calculated RMS error was referred both 
to the results of Monte Carlo simulation, and the law of error propagation. Calculations were 
made for the previously described case of the exploitation of the first field in the protective pillar 
of the shaft (chapter 4).
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TABLE 3

The values of RMS errors of the approximations with the application of the LEP-N

k RMS referring to MCM 
[mm/m]

RMS referring to LEP
[mm/m]

1/3 0.0039 0.0078
1/2 0.0059 0.0028
2/3 0.0044 0.0024
1 0.0029 0.0037

As one can notice, the RMS error of approximations of the LEP-N referring to the MCM 
is the smallest for the widest analyzed range (k = 1), i.e. for the calculations based on extreme 
values of parameters. Relatively good adjustment was obtained for all the calculation options, 
which proves small, from the practical point of view sensitivity of the accuracy of approximation 
on the width of range 2h. This is particularly important in the use of the proposed approximation 
for the cases, where the MCM was not carried out, thus results of the LEP-N will not be verified. 

To establish the wider context RMS errors were calculated in such a way that the reference 
method was MCM, and the tested one was the LEP (in its accurate form). The value of this error is 
0.0028 mm/m. Taking into account the above, the results of the LEP-N can be regarded very good. 
In figure 6 the graphs mεz of determined MCM and with the LEP-N for k = 1, were put together.

Fig. 6. Comparison of the graphs of RMS error εz estimated with MCM and LEP-N

For more exact illustration, showing which parameters generate approximation errors in 
figure 7 were put in the graphs of the contributions (RMS errors of vertical strains, resulting from 
the RMS error of the given parameter) for the LEP and the LEP-N (k = 1). As one can notice, 
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the compliance of the graphs is very good, the existing small discrepancies partially result from 
the accuracy of the calculations of vertical strains with the applied program (i.e. 0.01 mm/m), 
and partially from other factors i.e. relatively large non-linearity of the function values in the 
relation to e.g. rs parameter.

The proposed method of the approximation of the values of the LEP has the features (both 
advantages and disadvantages) of the LEP, as well as MCM. From the point of view of the 
disadvantages of calculations for the LEP-N, last longer than the LEP (already after calculat-
ing derivatives). At the same time the results provided by the LEP-N are limited compared to 
the results provided by MCM. The LEP-N, like the classical law of error propagation provides 
information only about the RMS error of the given function and does not inform us on the dis-
tribution of the random variable. 

From the point of view of the advantages for the LEP-N the calculations are much faster 
than for MCM, and contrary to the classical law of error propagation, the numeric approximation 
of derivatives can be applied also for complicated shapes of exploitation. Owing to the calcula-
tions made by MCM, distribution, thus probabilistic interpretation of the results is also known. 
This means that also this potential disadvantage of the application of the LEP-N does not have 
practical significance. From practical point of view it can be presumed that the approximation 
of MCM by the LEP-N is accurate enough to be attributed the same probabilistic interpretation.

Fig. 7. RMS errors of the prediction of the vertical strain resulting from individual parameters of the model
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Taking into account all the described features of the LEP-N, its application for practically 
occurring complex cases seems simpler, faster and not much less accurate than the other described 
method. Thus the LEP-N is the most practical method of all the described.

To illustrate the results the calculation mεz as made applying the LEP-N (k = 1) for the state 
after exploitation of 4 fields in the protective pillar of the shaft (chapter 4). Fig. 8 presents the 
set of graphs with the results of calculations made by the LEP-N and for MCM for this case. 

Fig. 8. RMS errors of the prediction of vertical strain in the shaft after exploiting 4 fields 
of the pillar estimated with MCM and the LEP-N

The obtained compliance is sufficient from the practical point of view. RMS error of the 
LEP-N at the assumption of MCM as reference method has the value of 0.03 mm/m, which makes 
almost 10% of maximal value mεz calculated with MCM for this case. Maximal discrepancy 
between the results of the calculations with both methods does not exceed 0.05 mm/m, which 
makes almost 15% of maximal values mεz for the results obtained from MCM.

7. Conclusions

In the research dealing with the prediction of the impact of the exploitation of the copper 
deposit in the protective pillars of the shafts in LGOM, it was necessary to apply a new calcula-
tion method, based on Knothe’s theory, giving the possibility of the assessment the probability 
of risk exceeding acceptable values of deformation indexes, and introducing proper coefficient 
of safety. The proposed calculation algorithm based on the applied in statistic Monte Carlo 
method, has not been applied before in the case of predicting deformations of the rock mass and 
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the shaft tube. Proper computer applications were also made, supporting the calculation process 
and statistic analyses. 

The analysis of the accuracy of vertical strains calculations, based on the same equations 
and assumptions, based on the law of error propagation confirmed the correctness of the method 
selection and meaning of the application of this method in predicting the impacts of mining 
exploitation.

The presented method can be applied not only in the estimation of the values of deformation 
indexes, but also in different issues. The disadvantage of the presented theoretical analysis (the 
law of error propagation) is significant complication of the derived formula, at any shapes of ex-
ploitation. The advantage is the short time of making the calculations once the formula is derived. 
On the other hand, the application of Monte Carlo method is often too much time consuming, 
however allows the estimation not only of the values of root mean square error of the function, 
but also the distribution of values for more complicated shapes of exploitation. This method is 
relatively simple to program, while practical requirements of the accuracy of the estimation of 
errors of vertical strains allows the limitation of the number of iterations. 

The proposed method, preliminarily called the LEP-N based on the law of error propagation 
at the application of central differences for the approximation of the values of derivatives seems 
the most practical of all the presented in the article. It combines the features of both methods, 
however from the practical point of view the balance of advantages and disadvantages compared 
to the other methods seems positive. This method guarantees the simplest way of processing the 
results and in practice the shortest time of obtaining them at small loss of accuracy compared to 
Monte Carlo method. To use the LEP-N it is necessary that the number of calculations equals the 
double number of significant model parameters. The full version of presented algorithm requires 12 
calculations (there are 6 model parameters: a, tgβ, n, rs, g, H). Rejection of the parameters that 
do not have a significant impact on worsening the accuracy of the assessment of the RMS error 
(i.e. g and H) only 8 calculations are required. It is a small number compared to the number of 
calculations necessary in Monte Carlo method. Moreover, the calculations are done for fixed 
values of parameters, thus the problem of the quality of random numbers generator disappears, 
while the problem of the selection of the width of the intervals of parameters taken to calculate 
finite differences appears. The results of the presented calculations indicate, however that the 
accuracy of approximation with the use of the LEP-N is relatively resistant to the selection of the 
width of these intervals, which is very important for practical purposes. The carried out calcula-
tions indicate that the best results are obtained for relatively wide range of parameters used to 
calculate central differences (k = 1). 

For the forecast and estimation of the accuracy of the calculated values of vertical strains 
the relationships based on Knothe’s theory were applied. In case of the intention to apply another 
model to carry out the operations as the calculations described in this article, it is necessary to 
know the range of all the parameters significant for the calculations in this model. This can cause 
certain difficulties, however the authors of the publication encourage doing such calculations 
for the research, because this way the assessment of the accuracy of the models used for the 
predictions would be made, and not, as usually it takes place, for the approximation of deforma-
tion indexes for the exploitation already carried out. This would allow their comparison, and 
possibly also the choice of the most appropriate model. One should emphasise that in case of 
the forecasts, unlike the approximation, not necessarily more “flexible” models will turn out to 
be more accurate than the models of a smaller number of parameters.
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This publication was made in the framework of the research badania statutowe WGGiIŚ 
AGH no. 11.11.150.195 (Department of the Protection of Mining Areas, Geoinformatics 
and Mining Surveying). 
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