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Abstract: With the advent of high throughput experiments in genomics and proteomics, the researcher
in computational data analysis is faced with new challenges, both with regards to the computational capaci-
ties and also in the probabilistic/statistical methodology fields; in order to handle such massive amounts of
data in a systematic coherent way. In this paper we describe the basic aspects of the mathematical theory
and the computational implications of a recently developed technique called Compressive Sampling, as well
as some possible applications within the scope of Computational Genomics, and Computational Biology in
general. The central idea behind this work is that most of the information sampled from the experiments
turns out to be discarded (for being non-useful) in the final stages of biological analysis, hence it would
be better if we could find an algorithm to remove selectively such information in order to get rid of the
computational burden associated with processing and analyzing such huge amounts of data. Here we show
that a possible algorithm for doing so it is precisely Compressive Sampling. As a working example, we
will consider the data-analysis of whole-genome microarray gene expression for 1191 individuals within a
breast cancer project.
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1. Introduction

Within the context of computational analysis of data generated in high through-
put experiments in genomics (e.g. massive DNA sequencing, whole genome gene-
expression, genome-wide genotyping or proteomics) one is usually confronted with the
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acquisition and reconstruction of large data-vectors or matrices. Suppose our data is in
the form of a vector X in Rm. According to the usual tenets in signal processing (i.e.
Nyquist-Shannon Sampling Theory) [10, 11] this would require m samples. However,
if we know a priori that X is compressible by means of transform coding with a known
coding function, of course we can choose to acquire X by sampling instead n general
linear functionals. In the case that the collection of functionals is well-chosen and by
considering also that we allow a certain degree of Sampling/Reconstruction error, the
size n of the sampling set could be drastically reduced (i.e. n << m). For example, in
some instances in digital signal processing a sampling space of size n = O(m

1
4 log

5
2 m)

is required to fully recover a m-pixel image.

This is of course in stark contrast with common wisdom assuring us that we have to
account for at least the number of Shannon-Nyquist (SN) [15, 16] modes to reconstruct
such image, since according to SN Theorem, in order to reconstruct a signal (without er-
ror) we need to comply with the signal’s bandwidth, i.e. the length of the shortest interval
which contains the support of the signal’s spectrum, which correspond to its dimension
m [8, 5]. SN sampling theorem and most of its extensions were stated primarily for
band-limited functions (signals), and not for general random processes. However, these
are more relevant to the information theorist and computational scientist, as opposed
to the electric/electronic engineering applications of band-limited signals. Neverthe-
less, most of these sampling expansions can be extended easily to random processes by
means of data-transformation. The original sampling theorem states that ...If a function
f (t) contains no frequencies higher than W cps [i.e. Hz] it is completely determined by
giving its ordinates at a series of points spaced (1/2W) s apart... [16]. It is pertinent to
mention that due to the symmetry of the Fourier transform pairs (in which the proof is
based), the sampling theorem is also valid for time-limited functions.

Even if the SN sampling theorem sets a minimum sampling rate, it only refers to
standard (independent signal) measurements. However, sampling with derivatives, for
example, increases the sample spacing required, or in other words it allows the recon-
struction of the band-limited signal with a sampling rate less than the Nyquist rate. An-
other approach aiming at the same goal was established [12] and it is related with the
problem of the representation and construction of wide-sense stationary stochastic sig-
nals, not from one set of data but from several sets of sampled values obtained by using
a multiple channel sampling scheme. It was showed that with the optimum combination
of prefilters and post-filters, in the case where two sets of sample values are taken, the
frequency range of the input signal is limited by the prefilters to a total width twice the
SN prediction. It has also been proposed [17] the use of multiple channels to reconstruct
deterministic band-limited signals with a sampling rate less than the Nyquist rate. The
sample rate needed is inversely related to the number of the channels used and directly
proportional to the Nyquist rate.
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These examples (illustrative but by no means comprehensive) shown that by chang-
ing the sampling strategy it is possible to overcome the sampling rate established by SN
theory. Let us begin the consideration of how sampling scheme modifications (and in
particular ideas from compressive sampling) could be applied in the case of biosignals.
One interesting point with regards to biological signal processing (that also applies to
other kinds of signals such as digital images) is that: a) there is a certain degree of noise
involved in the related measurement processes b) there is a also a tolerated error bound
associated with reconstruction. Since biosignals are usually noisy, there is no need for
complete accuracy, since any reconstruction error below the noise bound would be un-
noticed in further analysis. Of course, in order to attain acceptable signal-to-noise ratios,
careful reconstruction techniques are needed. In the present case, ’careful’ reconstruc-
tion is related with taking into account issues such as data sparsity and compressibility.
Sparsity leads to dimensionality reduction and effective modeling strategies; whereas
compressibility enables optimal data handling and processing. All of this issues have
been considered in the past and as such they constitute the cornerstone of signal process-
ing techniques. However, the present paradigm of acquiring the full signal, then calcu-
lating the entire set of transform coefficient to compress the signal, encode the largest
coefficients (e.g. the Principal Components) and discard all others has become extremely
cumbersome, specially in the case of high throughput experiments (for an example, see
Figure 2 and related discussion below).

One possible way-out for this situation is based on considering data-objects X that
possess a sparse representation in some basis (in general orthonormal) such as wavelets,
Fourier modes, principal components, or even Shannon-Weaver, Kullback-Liebler or
Gabor optimals. If X has an sparse representation, then all of its coefficients belong to
a certain lp ball with 0 < p < 1 and also that the N most-important coefficients in the
expansion allow a reconstruction with l2 error of order O(N

1
2 − 1

p) [8]. Nevertheless
if some error is allowed (below the noise bounds) then it is possible to design a small
dimension space by means of Basis Pursuit a nonadaptive sampling technique, thus
reducing the gap between sampling and processing solving at least partially the so-called
dimensionality problem.

Having these facts in mind, the rest of the paper will be organized as follows: Section
2 will present the mathematical basis of Compressing Sampling in terms of sparse data
matrixes and their relation with sampling below the Shannon-Nyquist limit, in particular
with regards to the possibility of performing a priori data compression under optimal
recovery conditions. Then in Section 3 an approximate setting termed near optimal
recovery is discussed. Section 4 establish these ideas in the context of noisy data and
robustness of the reconstruction. After this, Section 5 refers to the application of the
Compressed Sampling algorithm to gene expression data for a Computational Genomics
analysis. Section 6 deals with the Materials and Methods used in such analysis. Finally,
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Section 7 presents a discussion of this proof-of-concept and gives some perspectives on
it.

2. Undersampling and Sparsity

Let us consider a general signal reconstruction problem for a vector x inRN from a
set of y linear measurements of the form:

yk = 〈x, φk〉; k = 1, 2, . . . K or −→y = Φ−→x (1)

If we take a look at the underdetermined case K << N we are facing the dimen-
sionality problem in which we have many fewer measurements than unknown signal
values. This is one of many challenges during the analysis of data for genome-wide
gene expression experiments [1]. The usual setting here is the consideration of hundreds
of thousands of gene-probes characterizing the expression of thousand genes (i.e.
different mRNA transcripts) out of a set that, commonly, is in the tens to, at most few
hundreds of samples (microarrays) [1]. Underdetermined reconstruction problems are
ill-fated unless they satisfy two conditions: 1) there is a finite noise-bound and 2) they
are compressible. Compressibility implies that the signal depends on a number of
degrees of freedom smaller than N. If our target signal is sparse, then it can be written
either exactly or at least accurately (i.e. with an error below the noise bound) as a
superposition of a number Ns < N of vectors in some fixed basis. As we shall see
Ns-reconstruction turns out to be nothing but a simple convex optimization problem [4].

If we consider the so-called principle of transform sparsity (that we have just stated)
then it is satisfied that for some 0 < p < 2 and for some Z > 0:

‖θ‖p =

(∑

i

|θi|p
) 1

p

≤ Z (2)

Here the θi are the sparse transform (compression) coefficients from an orthonor-
mal basis φi defined so that θi = 〈xi, φi〉 [7]. Equations (1) and (2) thus define the
usual procedures of sampling and compressing a signal. Within this setting we have a
so-called lp -norm sparsity constraint. It can be shown that for p ≥ 2 no sparsity is
present. However, specially for the cases 0 < p ≤ 1 (highly compressive data-objects)
it is possible to construct a near-optimal algorithm (NOA) which can be based on linear
programming (essentially by a combination of l1 and even l0 minimization). This NOA
basically computes the coefficients to reconstruct (and decompress) the object X with
the smallest l1-norm that is consistent with the information yn. For the details of the
reconstruction see [4, 5].
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2.1. A relation between l1 and l0 minimization in the context of Optimal Recovery

The reason for the NOA to actually work is based on a recent finding relating the
minimization problems constrained by l1 and l0 -norms, respectively. As we have just
said, the NOA is based on lp minimization (0 < p ≤ 1) that is a highly non-trivial,
non-convex optimization problem. For p=1 however, solving l1 minimization (LOm) is
related with solving l0 minimization (LZm). Let us examine this relation in detail.

LZm : min ‖θ‖0 subject to Φ θ = X (3)

Here the zero-norm of θ , is of course just the number of non-zero entrances in θ, i.e.
the sparsity measure. Ordinarily solving LZm would require combinatorial optimiza-
tion. However when LZm has an sparse solution, LOm could find it. In fact, when θ
has at most O(n/ log m) non-zeros (for n << m), the LZm and LOm have the same
unique solution [5] (see Theorem 8). This fact takes relevance in view of the works of
Candes, Romberg and Tao [4] that studied the design matrices built by taking n rows at
random from an m by m Fourier matrix (i.e. a sparse orthonormal representation of a
compressible data source) and proved an O(n/ log m) bound. They were thus proving
that the NOA was feasible. In other words, even if the system of equations is massively
underdetermined, l1 minimization and its sparse solution coincide- when the result is
sufficiently sparse.

3. Near-Optimal Recovery

In general, signals that result interesting in practice may not have complete support in
space or even within a transformation domain. Instead, they very often are concentrated
near a sparse set. For example, within the context of harmonic analysis one usually
assumes that the coefficients of elements taken for a signal class decay very fast, usually
with a power-law decay. Of course, a wide-variety of signals, both smooth and piece-
wise smooth are susceptible of harmonic modeling. Under this scenario, a common
question would be: how well can one recover a nearly-sparse signal?. For an arbitrary
vector x in RN , let us call xS its best S-sparse approximation, i.e. the approximation
obtained by keeping the S largest entries of x setting all other entries equal to zero.
It turns out that if the sensing matrix obeys a restricted isometry hypothesis called the
Uniform Uncertainty Principle (UUP) [4] [i.e. that every set of columns with cardinality
less than S approximately behaves like an orthonormal system], then the recovery error
is not-much-worse than ‖x−xs‖ l2. Of course, for sparse systems this error turns out to
be asymptotically small.

It is noticeable that the very fact that makes high dimensionality undersampled prob-
lems complex to solve in a traditional way (high dimension of the support space and
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small sampling numbers) make the design matrices and sensing vectors very sparse (in
general, but specially under orthonormality), thus obeying UUP and being natural can-
didates for CS reconstruction techniques.

4. Robustness and Compressive Sampling

As we have stated, any realistic signal reconstruction technique has to take into ac-
count that signals are noisy and recovery algorithms generate errors. It is thus necessary
to examine the issue of robustness of compressive sampling against measurement errors.
Of course, in order for CS to be widely applicable, the algorithm should be stable (i.e.
small fluctuations in the data should give rise to small reconstruction errors). Let us con-
sider a simple reconstruction model like the one in equation (1) but including an error
term:

−→y = Φ−→x +−→ε (4)

Here −→ε is a stochastic or deterministic error term with bounded energy (mean vari-
ance) E = ‖−→ε ‖l2 , by doing so, the reconstruction program will be of the form:

min ‖x̃‖l1 such that ‖Φx̃−−→y ‖l2 (5)

Here x̃ is an approximant to−→x . The program defined by equation (5) is a convex sec-
ond order cone program [3], these methods are extremely reliable and could be reduced,
either to quadratically constrained quadratic programs, or to linear matrix inequalities in
the constrains and can be solved with great efficiency by interior point methods. These
problems are so ubiquitous that there exist generic solving platforms for them such as
Mosek (http://www.mosek.com/) or OpenOpt (http://openopt.org/Welcome). In the
particular case of the problem in equation (5) one can notice that the reconstruction er-
ror is the sum of a term proportional to the size of the measurement error and a term
corresponding to the noiseless case. Due to this linear additivity it is possible to prove
that there is no recovery method that outperforms the program in equation (5) for arbi-
trary perturbations (of size ε) [4]. Thus CS programs obtained by following equation (5)
are robust against bounded perturbations.

Having studied the main properties, scope and limitations of the Compressive Sam-
pling algorithm as a means to attain a sub-Shannon-Nyquist sampling limit, making use
of sparsity, near-optimal recovery and the relation between l1 and l0 minimization; and
once it is proved that this procedure is linear-robust against noise-levels, and it is thus
a tractable convex optimization problem, even implemented in both, commercial and
open-source packages; we are now in a position to sketch its possible application within
the realms of Computational Genomics.
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5. A plausible framework for the application of Compressive Sampling in
Computational Genomics

In recent times, high density oligonucleotide arrays have become widely used both
in basic and biomedical research in genomics. The system made use of oligonucleotides,
usually of 25 base-pairs in longitude that are used to probe genes. Each gene is generally
represented by a set of 16-20 pairs of those oligonucleotides known as probe sets. One
of each pair of these oligos is known as the perfect match (PM) probe and correspond
to an exact segment of the complementary sequence of the associated gene, whereas the
other one, known as the mismatch probe (MM) is made by changing the middle (13th)
base in order to look up for the effects of non-specific binding [1].

A question arise as how to combine the data for the set of 16-20 PM-MM pairs
to define a measure of expression that represent in an optimal way the amount of the
associated mRNA species [9]. This is not a trivial issue since there are a lot of variables
involved in the analysis (several probes for a probe-set, tens of thousands of probe-
sets for whole genome approaches in humans and other mammals, for instance; versus
some dozens of samples, a few hundreds at most), and the resulting signals are very
noisy. These facts imply that the usual frequentist approach to probability and statistics
has to be modified to deal with whole-genome gene expression data. As we already
have described in the previous sections, this kind of high dimensional data calls for the
implementation of techniques such as compressive sampling.

Let us consider this issue in a greater detail. Statistical analyses of the PM and
the MM probes under controlled experimental conditions have revealed that for large
values of genetic abundance the differences between PM and MM probes have a bi-
modal distribution with the second mode occurring for negative differences. This effect
has been related with heteroscedasticity (unequal variances in the distributions). Com-
monly, hybridization noise characteristics at the high expression regime are Poisson-like,
whereas its characteristics for the small expression levels are more complex. Hence
to assess the statistical validity of gene expression differences between two experi-
ments we must characterize the fluctuation caused purely by experimental measure-
ment. It is known that noise depends strongly on the expression level. Therefore, an
expression-dependent distribution function is needed to characterize the variability be-
tween replicates. In order to correct (or at least take into account) for these issues an
optimization of the signal-to-noise-ratio (SNR) has been proposed in the form of the
so-called background correction [9, 1]. In the other hand, observed intensity levels
also depend on sample preparation, manufacture of the arrays, and lab processing of
such arrays (dye labeling, hybridization and scanning), for this reason, unless arrays
are correctly normalized comparing data from different arrays can lead to misleading
results. In short, from very large data-sets we have to define a method for combining
probe-level samples of noisy-data, measured across different scales and filter them in
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a clean cut way to make them ready for statistical analysis and probabilistic model-
ing.

A plethora of computational and mathematical approaches ranging from support vec-
tor machines, to bayesian predictors, neural networks and machine learning techniques
have been developed to this end. However, a simple and reliable algorithm designed
to meet all the aforementioned requirements of normalization, background correction,
and probe-summarization has been proposed [2]. The algorithm called RMA consists of
three steps: a background adjustment, quantile normalization and finally summarization.
Mathematical details of the algorithm have been analyzed [1, 2]. With regards to them,
let us just state that background adjustment is made by means of a (linear) conditional
expectation transformation, and that quantile normalization and probe summarization
are attained also as linear applications; so that the whole RMA processing algorithm
could be visualized as a signal reconstruction and data-compression (yet incomplete)
problem.

Fig. 1. Processing stages of Whole Genome Gene Expression data from Microarray Experiments
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The resulting gene expression (GE) design matrix (a N1 by N2 matrix representing
N1 different mRNA expression values in N2 different experimental conditions or sam-
ples) is thus a Compressive-Sampling Matrix (CS-Matrix) i.e. one that can be acquired
by means of compressive sampling techniques. This is so, because GE matrices pos-
sess a certain degree of linear independence (but not complete independence) among
all small groups of columns (e.g. mRNA samples belonging to different individuals or
to a same individual in purposely different conditions). This is nothing but condition
CS1 of Candes, Romberg and Tao CS theory [8]. With regards to condition CS2, linear
combinations of small groups of columns give vectors that look much like random noise,
this condition is attained because quantile-normalized columns may belong to different
quantile levels and so their linear combinations are to some degree incoherent. Finally,
with regards to condition CS3, it states that for every vector constructed from a subma-
trix of the GE matrix, the quotient norm is asymptotically the l1 norm. This condition
is also fulfilled since gene expression vectors (after RMA algorithm has been applied)
are normalized. The mathematical proof that conditions CS1-CS3 completely determine
that a data-matrix as a CS matrix (too complex to be stated here), it is based on the
abstract theory of Gel’fand n-widths, the interested reader could check it on [4].

If we look at Figure 2 we will be able to understand the need for optimized sam-
pling strategies in the case of computational analysis of biological data. The problem
corresponds to Genome-Wide Gene Expression studies (GWGE) in a series of 1191
human mRNA samples for a combined breast cancer study that is being carried out in
the Computational Genomics department at the National Institute of Genomic Medicine
(INMEGEN) in Mexico. These experiments correspond to the so-called GPL96 proto-
col which is based on the Affymetrix HGU-133A microarray GeneChip platform. The
set includes over 1,000,000 unique oligonucleotide features covering more than 39,000
transcript variants, which in turn represent greater than 33,000 of the best characterized
human genes. The data, as it comes from Affymetrix scanning data-acquisition server,
is stored in raw binary files (.CEL files), the amount of memory allocated by the 1191
CEL files corresponds to about 21 Gb, whereas the over and under expressed gene list
(which is the final outcome of data-processing), that is, the file examined by the mole-
cular biologists to make their analysis (for the very same dataset) corresponds to about
1.4 Mb. This implies a 15313-fold memory allocation reduction, i.e. we sampled fifteen-
thousand times the amount of data we ended-up using. This fold-change is expected to
be highly-increased with the advent of Next Generation Sequencing (NGS) techniques,
since NGS experiments could generate up to 2 Terabyte of raw data in a single experi-
mental run.

Let us consider a hypothetical instance in which we can actually attain the Candes-
Romberg-Tao (CRT) sampling space size limit, i.e. n = O(m

1
4 log

5
2 m). Since we

are trying to recompose a 39,000 variable gene-data set (for the Affymetrix HGU133A
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Fig. 2: Memory allocation reduction through different stages of computational processing of gene expression data (Notice
logarithmic scale in the y-axis)

array), at the gene level, we will just have to sample O(162.1294655) or, about 163
samples to have full coverage at this level. Even if we wish to consider the whole gene-
probe level data, in order to cover the full one-million oligonucleotide sampling space
(something that is rarely made in practice) it would be theoretically feasible to make that
with just O(476.797144) or 477 samples, again in the case of the HGU133A GeneChip.
Of course the CRT sample limit is a theoretical lower bound, however, if we consider the
actual nature of the data and the desired results in the usual GWGE analyses we will see
that compressive sampling could be implemented in an efficient manner in practice. In
the Breast Cancer project that we are using here, several important issues could be raised.
First, if we consider figure 3, we could see that the vast majority of genes are expressed
on a similar level in both the cancer and normal tissue mRNA samples (i.e. they are
distributed along, or very close to the identity line), hence the data of all these genes is
uninformative with regards to the actual mechanisms behind tumorigenesis. This means
that a large amount of the gene expression information that is actually being sampled is
not used in further analysis.
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Fig. 3. Scatter-Plot of gene expression

Let us look at this in greater detail, in figure 4, we plotted an histogram of the log-
ratios or log-fold changes of gene expression intensity, i.e. base-two logarithms of the
ratio of the expression of a gene in the cancer samples (on average) to the expression
of the same gene in the normal samples. Within the biomedical community a usual
rule of thumb for considering a gene "interesting" or "important", is that its log2-ratio is
greater than 0.5 or 1 (corresponding to about 1.5-fold to twice the expression in a normal
condition) or lesser than -0.5 or -1 (i.e. 1.5-fold to twice the expression in a diseased
condition). Now, if we look at figure 4 we could notice that a vast majority of genes
sampled are considered uninteresting, since just the, say > 0.5 and < −0.5 right and
left tails of the distribution are further considered in the analyses. Expression fold-
change is not the only issue related to the actual compressibility of GWGE data, we
have to consider also the question of repeatability and coherence of the data between
different samples, an issue that is strongly related with noise and statistical significance.
If we define a way to know if a given log-fold change is statistically significant, a set
of statistical proofs need to be performed in the normalized gene expression matrix (see
Figure 1).
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Fig. 4. Histogram of differential gene expression

In the particular case of the 1191 sample study we are carrying-out, we have per-
formed common analysis of variance ANOVA, an improved version of the t-test (CyberT
by Baldi & Long), two-sample Bayes t-test, Local Pooled Error, as well as an Empiri-
cal Bayes Algorithm. In our particular case the best performing algorithm was Baldi &
Long’s CyberT although all of the methods (even the ANOVA) performed well. After
carrying out these statistical analysis we adjusted for multiple testing by means of Bon-
ferroni, False Discovery Rate (FDR) and The Family Wise Error Rate (FWER) proofs.
After all these calculations are done, it is possible to generate an Overabundance plot
that, in some sense will work as a further measure of compression-rate. In Figure 5
it is displayed the overabundance plot (number of statistically significant genes versus
confidence level) for the CyberT tested, FDR-corrected analysis.

It is noticeable that just about 6-7% of the genes (that is to say, some 2,350 genes)
comply with the p− value < 0.05 significance. This means that, in the end most of the
sampled data ends up not-being used. However, the very fact that this data was sampled
(and foremost was acquired, stored and processed) generated computational and logistic
costs that could be significantly reduced if a CS technique would be implemented in the
data-acquisition stage.
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Fig. 5. Overabundance plot

We have just sketched some hints so as to how compressed sensing or compressing
sampling techniques could be used as auxiliary tools to facilitate massive data handling
and analysis in the context of computational genomics. The level presented here is that of
a proof-of-concept, however, in order to outline a detailed algorithm or implementation,
further insight in biological data structure need to be attained by means of simulation
[13] or bootstrapping calculations [14]. Important limitations in this regard are due to the
reluctance of genomic analysis equipment producers to make public the data structure
of the binary files that constitute the output of the experimental procedures.

6. Methods and Materials

For the reported study we used a curated set of 1191 publicly available GWGE Mi-
croarrays corresponding to several independent experiments, all of them processed ac-
cording with the GPL96 protocol over Affymetrix HGU133A arrays. This set is part of a
computational analysis project that is being carried out in the Computational Genomics
department at INMEGEN. RMA preprocessing (background correction, normalization
and probe-summarization) was done by using [R] / Bioconductor, Statistical tests
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were performed on [R] and data-visualization was done using the FlexArray suite
developed by Genome Quebec. All pre-processing was done on a 128 Gb RAM 8-
Power5+ dual core-processor, symmetric multiprocessing (SMP) unit by IBM. Whereas
all Statistical tests were performed on a Dell Precision Series 8 Gb RAM QuadCore
Workstation. Both SMP unit and workstation running under Linux (RedHat and
Gentoo, respectively) and visualization was done in a Dell Optiplex Dual-Core, 4 Gb
RAM running under Windows XP.

7. Discussion

In the section above we have discussed at the proof-of-concept level the possibility of
application of compressive sampling techniques within the settings of real GWGE data.
We have shown by means of benchmarks and statistical tests, that a great amount of
the huge data sampled in this kind of experiments results discarded in some of the pre-
processing and/or statistical significance stages, i.e. before any biological hypothesis
could be tested on it. We also discussed the conditions that make CS plausible within
the actual settings. No-actual CS algorithm, however has been possible to apply since
data-acquisition for these experiments is made by proprietary software and algorithms
belonging to the technology vendors (in this particular case Affymetrix, Inc.) and no
open-formats are available.

Nevertheless by showing the plausibility of this strategy and the technical and eco-
nomical convenience of CS techniques we are in a position to approach genomic tech-
nology vendors (such as Affymetrix) to suggest them that their Bioinformatics and Infor-
mation Technology units consider the possibility of implementing computational tools
that allow CS to be an option for real-time (well, almost real-time in reality) exper-
imental data acquisition (doing this seem easier to do than suggest them to open the
formats of their proprietary software data-management suits). In fact, some two years
ago in the user’s meeting for a genomic technology company called Illumina, it was
presented a prototype system of real-time data-acquisition and pre-processing for geno-
typing/sequencing data.

We believe that it is still early time to implement such CS techniques, specially in
view of the up-coming super-high throughput NGS experiments and also the massive-
imaging proteomic spectrometric data that will in the near-future call out for opti-
mized data-acquisition and pre-processing methodologies. As a means of contrast, pre-
processing of the 1191 MicroArray dataset from raw data (.CEL files) involved the use
of 1766 processor-hours for the SMP unit (i.e. about nine and a half days in 8 processors)
and it was just about 21 Gb, just imagine processing times for 2 Tb sequencing experi-
ments or for long electrophysiological (about 1 Gb of data per hour per experiment as a
rule of thumb) or proteomic imaging studies (hundreds of thousands of high-throughput
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of spectral peak files) (Note: the pre-processing for sequencing data and for GWGE,
electrophysiological or proteomic data is different, so it is not just a matter of scaling
these figures). CS methodologies or its analogs will thus, very surely, be involved in
modern data acquisition / processing in computational biology and genomics.

In this paper we have discussed some instances for the applicability of Compres-
sive Sampling techniques for the near-optimal data reconstruction of high throughput
samples within the context of Computational Genomics, and in particular we outlined
an application to whole-genome gene expression analyses. The issue of compressive
sampling is extraordinarily rich and vast, and its applicability in signal processing and
data reconstruction has only been glimpsed up to this day. However, this techniques
seem very promising in the future to cope with problems of undersampling, complex
multidimensional signal-processing and also in problems like data-storing limitations,
for example in next generation sequencing and whole-proteome imaging settings.

Much is still to be explored with regards to reliability of the algorithm’s implemen-
tation, benchmarking against other data-compression/data-analysis techniques, etc., be-
fore CS could be established as a data-processing gold standard but the future seem
promissory.
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