
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.23 (2011), no. 2
pp. 97–106

DOI: 10.2478/v10179-011-0007-7

Scattered Context Grammars Generating Sentences Followed by
Derivation Trees

ALEXANDER MEDUNA, STANISLAV ŽIDEK

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
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Abstract: Propagating scattered context grammars are used to generate sentences of languages defined
by scatterd context grammars followed by the strings corresponding to the derivation trees. It is proved
that for every language defined by a scattered context grammar, there exists a propagating scattered context
grammar whose language consists of original language sentences followed by strings representing their
derivation trees.
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1. Introduction

Parsing performed in parallel represents an area of intensive research concerning
compilers today (see [2], [4] and [3]). As compilers are usually based on suitable formal
models, such as grammars, the investigation of various parallel grammars is of great
importance. Scattered context grammars are one of the intuitive yet very powerful types
of parallel grammars, so their use related to parsing definitely deserves our attention.

In this paper, we use the propagating scattered context grammars, which contain
no erasing productions, to generate sentences of languages defined by scattered context
grammars followed by the string representation of the corresponding derivation tree.
This approach extends the idea of generating sentences followed by their parses (see
[8], [11], [7])—instead of parses, we generate the derivation trees, which in our opin-
ion more exhaustively describes the derivation process. We demonstrate that for every
scattered context grammar G, there exists a propagating scattered context grammar that
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generates the sentences of the language L(G) followed by the string representation of
the derivation tree corresponding to the derivation of the sentence in grammar G. This
characterization of recursively enumerable languages is of some interest, because the
family of languages generated by propagating scattered context grammars is included
in the family of context sensitive languages, which is properly included in the family of
languages generated by scattered context grammars.

In Section 2., we introduce the preliminaries used throughout the rest of the paper.
Also, we define the key notion of our article. In Section 3., we present our results, i.e. the
algorithm taking a scattered context grammar and constructing the propagating scattered
context grammar, which generates input grammar’s sentences followed by the string
representation of derivation tree. Furthermore, the proof of the algorithm’s correctness
is given and various implications are discussed, too. In Section 4., we make some final
notes and suggestions regarding the future investigation.

2. Preliminaries and the definition

We assume a reader is familiar with the formal language theory (see [9]).
For an alphabet V , V ∗ denotes the free monoid generated by V under the operation

of concatenation, with the unit element ε. Set V + = V ∗−{ε}. For w ∈ V ∗, |w| denotes
the length of w and alph(w) denotes the set of symbols appearing in w. For U ⊆ V ,
|w|U denotes the number of occurrences of symbols from U in w.

A scattered context grammar (SCG, see [6]) is a quadruple, G = (V, T, P, S), where
V is a total alphabet, T ⊂ V is a finite set of terminal symbols (terminals; symbols
from V − T are called nonterminal symbols or nonterminals), S ∈ V − T is the starting
symbol and P is a finite set of productions of the form p : (A1, . . . , An) → (x1, . . . , xn),
where Ai ∈ V − T , xi ∈ V ∗ for all i : 1 ≤ i ≤ n and p is a unique production label.
For p : (A1, . . . , An) → (x1, . . . , xn) ∈ P , lhs(p) and rhs(p) denote A1A2 . . . An and
x1x2 . . . xn, respectively. A propagating SCG is a SCG G = (V, T, P, S) in which every
(A1, . . . , An) → (x1, . . . , xn) ∈ P satisfies xi ∈ V + for all i : 1 ≤ i ≤ n.

Let G = (V, T, P, S) be a (propagating) SCG, y = u1A1u2 . . . un Anun+1,
z = u1x1u2 . . . un xnun+1, y, z ∈ V ∗, p = (A1, . . . , An) → (x1, . . . , xn) ∈ P .
Then y directly derives z in the SCG G according to the production p, y ⇒G z [p]
(or simply y ⇒G z). Let ⇒+

G and ⇒∗
G denote the transitive and the reflexive-transitive

closure of ⇒G, respectively. To express that G makes the derivation from u to v by
using the sequence of productions p1, p2, . . . , pn ∈ P , we write u ⇒∗

G v [p1p2 . . . pn]
(or u ⇒+

G v [p1p2 . . . pn] to emphasize that the sequence is non-empty). The language
generated by G is denoted by L(G) and defined as L(G) = {w : w ∈ T, S ⇒∗

G w}. We
often abbreviate ⇒G to ⇒ when it is clear which grammar we refer to.

We also assume that the reader is familiar with graph theory. By a tree, we will
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automatically mean a labeled ordered tree. Let Υ be a tree, Θ be a set of nodes of
Υ, θ ∈ Θ, n be a nonnegative integer. Then, root(Υ) denotes the root node of the
tree, child(θ) denotes an n-tuple of node’s child nodes (zero-tuple for leaf nodes), and
lab(θ) denotes a label of the node θ. Sometimes, we will generalize the notion of lab to
n-tuples, lab((θ1, . . . , θn)) = (lab(θ1), . . . , lab(θn)).

Let G = (V, T, P, S) be a SCG and p = (A1, . . . , Ai, . . . , An) →
(x1, . . . , xi, . . . , xn) ∈ P , xi = a1 . . . am, m ≥ 0, aj ∈ V for all j : 0 ≤ j ≤ m.
The production tree of the i-th component of the production p, denoted by pt(p, i), is an
elementary tree Υ such that lab(root(Υ)) = Ai and

lab(child(root(Υ))) =
{

λ if m = 0
(a1, . . . , am) otherwise

Consider a SCG G = (V, T, P, S) and a derivation S ⇒ w1 ⇒ . . . ⇒ wm in G. The
derivation tree corresponding to this derivation, denoted by S = w0 ⇒ w1 ⇒ . . . ⇒
wm [[Υ]], is a labeled tree Υ constructed as follows:

1. Create a root node, lab(root(Υ)) = S.

2. Set j = 0.

3. Repeat until j = m:

(a) Let wj = u1A1 . . . Anun+1, wj+1 = u1x1 . . . xnun+1, Ai ∈ V − T ,
xi ∈ V ∗ for all i : 1 ≤ i ≤ n, p : (A1, . . . , An) → (x1, . . . , xn) ∈ P ,
θ1, . . . θn be a leaf nodes of Υ in this order (considering preorder tree traver-
sal), lab(θi) = Ai. Add child nodes to θ1 through θn so that it holds that
subtree rooted at θj is a pt(p, i).

(b) Increment j.

A left-bracketed representation of a derivation tree Υ, denoted by lbr(Υ), is defined
recursively as follows:

1. If child(root(Υ)) = (), then lbr(Υ) = lab(root(Υ)).

2. If child(root(Υ)) = (θ1, . . . , θn), then

lbr(T ) = lab(root(Υ))〈lbr(Υ1) . . . lbr(Υn)〉,
where Υi is a subtree rooted at θi for all i: 1 ≤ i ≤ n (see 1).

Definition 2.1. Let G = (V, T, P, S) be a SCG. Then GN denotes a set of SCGs gen-
erating sentences of G followed by their derivation trees in the left-bracketted represen-
atation, that is

GN =
{
G4 : L(G4) = {w lbr(Υ) : S ⇒∗

G w [[Υ]], w ∈ T ∗}}
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3. Results

This section demonstrates that for every SCG G, there exists a propagating SCG
G4 ∈ GN.

Algorithm 1. Construction of G4 ∈ GN

Input: a SCG G = (V, T, P, S)
Output: a propagating SCG G4 = (V4, T4, P4, S′′) ∈ GN

Method: Let T4 = V ∪ {〈, 〉, λ}, Φ4 = {A4 : A ∈ (V − T )}, Φ′T = {a′ : a ∈ T ∪
{〈, 〉, λ}}, Φ′N = {A′ : A ∈ V −T}, Φ′ = Φ′T∪Φ′N , Φ = {$,@,#}, N4 = Φ4∪Φ′∪Φ,
and V4 = T4 ∪N4. Without loss of generality, assume that Φ4, Φ′, Φ, {〈, 〉, λ} and V
are pairwise disjoint.

Let h be a coding h : V ∗ → (
(Φ′T − {〈′, 〉′, λ′}

) ∪ Φ4)∗ such that h(a) = a′ for
every a ∈ T and h(A) = A4 for every A ∈ (V − T ).
Let g be a function g : V ∗ → (

(Φ′T − {〈′, 〉′}) ∪ Φ4
)∗ such that:

g(x) =
{

λ′ if x = ε
h(x) otherwise

Construct P4 as follows:

1. For each p : (S) → (x) ∈ P , add 1x : S′′ → $g(x) to Ξ1. Add contents of Ξ1 to
P4.

2. For each p : (A1, . . . , An) → (x1, . . . , xn) ∈ P , add

2p : ($, A14 , . . . , An4) → ($, A′1〈′g(x1)〉′, . . . , A′n〈′g(xn)〉′)

to Ξ2. Add contents of Ξ2 to P4.

3. Add 3 : ($) → (@#) to P4.

4. (a) For each A ∈ (V − T )∪ {〈, 〉, λ}, add 4A′ : (@, #, A′) → (@, A,#) to Ξ4.
Add contents of Ξ4 to P4.

(b) For each a ∈ T , add 4a : (@,#, a′) → (a@, a, #) to P4.

5. Add 5 : (@, #) → (S〈, 〉) to P4.

Lemma 3.1. Algorithm 1 is correct, i.e. G4 ∈ GN.
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Proof

Basic Idea G4 makes the derivation of string w lbr(Υ), such that S ⇒∗
G w [[Υ]], by

productions introduced in 1 through 5 in this order. It starts by applying a production
from Ξ1. Then, it simulates the construction of the derivation tree of grammar G in
the left-bracketted representation. More precisely, it simulates the construction of the
production tree of every

p : (A1, . . . , An) → (x1, . . . , xn)

by using
2p : ($, A14 , . . . , An4) → ($, A′1〈g(x1)〉, . . . A′n〈g(xn)〉).

Construction of the derivation tree ends by applying the production introduced in (3),
after which the sentential form of G4 has the form

@#a′1a
′
2 . . . a′n,

where S〈a1a2 . . . an〉 = lbr(Υ). By using productions from (4), it goes through the
derivation tree and transforms every a′ ∈ Φ′ to a ∈ T4 while copying every a ∈ T in
front of non-terminal @ (using productions introduced in (4b)). Before the final step, the
sentential form has the form

w @a1a2 . . . an#

Finally, G4 uses production 5 to turn nonterminals @ and # into the root of derivation
tree and missing top level brackets.

To be more compact, whole derivation can be expressed as follows:

S′′ ⇒G4 $ g(x) [1x]
⇒∗

G4 $ y [ρ]
⇒G4 @ # y [3]
⇒∗

G4 w @z # [σ]
⇒G4 w S〈z〉 [5] ,

where x ∈ V ∗, 1x ∈ Ξ1, ρ ∈ Ξ∗2, y = a′1a
′
2 . . . a′m, z = a1a2 . . . am, m > 0,

a1, a2, . . . , am ∈ T4, σ ∈ Ξ∗4, w ∈ T ∗, S ⇒∗
G w [[Υ]], S〈z〉 = lbr(Υ).

Formal Proof We estabilish Lemma 3.1 by Claims 3.2 through Claim 3.4 stated below.

Claim 3.2. G4 generates every w4 ∈ L(G4) in the following way:
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S′′ ⇒G4 $g(x) [1x]
⇒∗

G4 w2 [ρ]
⇒G4 w3 [3]
⇒∗

G4 w4 [σ]
⇒G4 w4 [5] ,

where w2, w3, w4, w4 ∈ V4, x ∈ V ∗, 1x ∈ Ξ1, ρ ∈ Ξ∗2, σ ∈ Ξ∗4.

Proof. First, let us make these two observations:

• Since the only productions with S′′ on their left-hand sides are the productions in-
troduced in (1), the derivation must surely start with a derivation step made by one
of these productions. Furthermore, S′′ /∈ rhs(p4), for any p4 ∈ P4, so these pro-
ductions cannot be used during the rest of the derivation. The derivation ends by
applying the production 5, because it is the only production without nonterminals
on its right-hand side. Thus, S ⇒+

G4 w4 can be expressed as

S′′ ⇒G4 $g(x) [1x]
⇒∗

G4 w4

⇒G4 w4 [5] .

• For each 1x ∈ Ξ1, 2p ∈ Ξ2, 4a ∈ Ξ4, the constructed productions satisfy

1 = |rhs(1x)|{$} = |lhs(2p)|{$}
= |rhs(2p)|{$} = |lhs(3)|{$}
= |rhs(3)|{@} = |lhs(4a)|{@}
= |rhs(4a)|{@} = |lhs(5)|{@}

and

0 = |rhs(1x)|{@} = |lhs(2p)|{@}
= |rhs(2p)|{@} = |lhs(3)|{@}
= |rhs(3)|{$} = |lhs(4a)|{$}
= |rhs(4a)|{$} = |lhs(5)|{$}

Based on these observations, notice that G4 generates every sentence in the way de-
scribed in Claim 3.2.

Claim 3.3. Consider the derivation from Claim 3.2. In its beginning,

S′′ ⇒G4 $g(x) [1x]
⇒∗

G4 w2 [ρ]
⇒G4 w3 [3] ,
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every sentential form s in $g(x) ⇒∗
G4 w2 satisfies

s ∈ {$}{Φ′ ∪ Φ4}+,
w2 ∈ {@}{Φ′}+ .

Proof. By the definition of g, g(x) ∈ {Φ′ ∪ Φ4}+. Since productions from Ξ2 rewrite
symbols from Φ4, every sentential form s in $g(x) ⇒∗

G4 w2 satisfies

s ∈ {$}(Φ′ ∪ Φ4)+.

Only productions 2p ∈ Ξ2 satisfy

alph(lhs(2p)) ∩ Ξ4 6= ∅.
Therefore, to generate w4 ∈ T4, productions labeled with 2p have to be applied until

s ∈ {$}Φ′+.

Furthermore, observe that every production from Ξ2 simulates the construction of pro-
duction tree in left-bracketted representation; more precisely, every production 2p ∈ Ξ2

has the form,

p : ($, A14 , . . . , An4) → ($, A′1〈′y1〉′, . . . , A′n〈′yn〉′),
and satisfies that for every i : 1 ≤ i ≤ n,

yi ∈ Φ4 ∪ Φ′T .

Finally, the production 3 is used, so

w3 ∈ {@}Φ′+,

and the claim holds.

Claim 3.4. In

w3 ⇒∗
G4 w4 [σ]

⇒G4 w4 [5] ,

of the derivation from Claim 3.2, every sentential form s in w3 ⇒+
G4 w4 can be ex-

pressed as
s ∈ T ∗{@}T ∗4{#}Φ′∗,

and
w4 ∈ T ∗{@}T ∗4{#}.

In greater detail,
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w3 = @ #a′1a
′
2a
′
3 . . . a′m

⇒G4 f ′(a1)@ a1#a′2a
′
3 . . . a′m [4a1 ]

⇒G4 f ′(a1a2)@ a1a2#a′3 . . . a′m [4a2 ]
⇒m−2

G4 f ′(a1a2 . . . am)@ a1a2a3 . . . am# [σ′]
⇒G4 f ′(a1a2 . . . am)S 〈a1a2a3 . . . am〉 [5],

where a′i ∈ Φ′, ai ∈ T4, σ′ ∈ Ξ∗4 and f ′ is a function T4 → T , such that

f ′(a) =
{

a if a ∈ T
ε otherwise

Proof. In every derivation step of w3 ⇒∗
G4 w4, the first symbol a′ ∈ Φ′ following non-

terminal # is replaced by a ∈ T4 and positions of a and # are swapped. Additionally, if
a ∈ T , then @ is also changed to a@, therefore constructing a sentence of G by preorder
traversal of derivation tree. More precisely, every sentential form s in w3 ⇒∗

G4 w4 has
the form

s ∈ T ∗{@}T ∗4{#}Φ′∗,
w4 ∈ T ∗{@}T ∗4{#}.

Note that if G4 uses a production p ∈ Ξ4 to replace any other nonterminal than the first
one following the #, there is no way to replace the skipped nonterminal by some termi-
nal symbol, so the derivation cannot lead to any sentence. Therefore, all nonterminals
from Ξ′ are processed in the order they were generated, otherwise alph(w4) ∩ Ξ′ 6= ∅
and the derivation cannot be successful.

Left-bracketted representation produces the pre-order tree traversal. Since we
“copy” only leaf nodes, which contain marked terminal symbols, to the front of the sen-
tential form and ignore other symbols, we construct precisely the sentence of grammar
G in front of the string representation of its derivation tree.

Finally, after every occurence of a′ ∈ Φ′ is removed, G4 applies the production 5 to
change the remaining nonterminals (@ and #) to the missing root of derivation tree and
to the top-level brackets.

From Claims 3.2 through 3.4, it follows that grammar G4 produced by Algorithm 1
generates sentences of input grammar followed by their derivation trees in left-bracketed
representation.

By Algorithm 1, we can convert any scattered context grammar G to propagating
scattered context grammar G4 ∈ GN, that is, to the grammar generating setences of G
followed by the left-bracketted representation of their derivation trees.

Theorem 3.5. For every SCG G = (V, T, P, S), there exists a propagating SCG G4
such that G4 ∈ GN.
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Proof. Since Algorithm 1 is correct, it follows that we can construct a propagating SCG
G4 ∈ GN for any SCG G (see Lemma 3.1).

4. Concluding Remarks

Let us conclude with some final notes.
First, note that similar results can be estabilished for propagating scattered context

languages generating sentences preceded by their derivation trees.
Second, the algorithm could be altered to generate the derivation tree with differ-

ent terminal symbols, which are not present in the original language, e.g., instead of
aS〈a〉, we could generate aS〈a′〉. This approach would allow us to characterize the
original grammar’s language by using operation of right quotient with respect to lan-
guage ({〈, 〉, ε} ∪ (V − T ) ∪ {a′ : a ∈ T})∗.

Finally, there remains a question whether the presented transformation of scattered
context grammars is possible in terms of other (parallel) rewriting mechanism, possibly
producing the rewriting mechanism that is known to define the language family properly
contained in the family of languages generated by the original mechanism.
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