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EVALUATION OF BLASTING PATTERNS USING OPERATIONAL RESEARCH MODELS

OCENA PLANÓW PRAC STRZAŁOWYCH W OPARCIU O METODY BADAŃ OPERACYJNYCH 

Blasting is one of the most important operations, which has a great technical and economical effect 
on the mining projects. Criteria such as fragmentation (operation ultimate objective) and ground vibration, 
flyrock, airblast, etc. (operation side effects) should be considered in the assessment of blasting operation. 
A suitable pattern should be able to provide both reasonable (required) fragmentation and blasting side 
effects. In order to evaluate blasting performance, operational research models such as multi attribute 
decision making technique (MADM) can be applied. Technique for order preference by similarity to an 
ideal solution (TOPSIS), a branch of MADM, is a strong method for pattern ranking. The other quantitative 
method which is applied in the evaluation of systems’ efficiency is data envelopment analysis (DEA) 
model. In this paper, an attempt has been made to develop a new hybrid MADM model for selecting the 
most appropriate blasting pattern in Chadormalu iron mine, Iran. In this regard, DEA method was utilized 
to select the efficient blast patterns thereafter TOPSIS was used to recognize the most suitable pattern 
amongst the selected patterns by DEA method. It was concluded that the patterns J, G and B are the most 
appropriate patterns for blasting operations in the Chadormalu iron mine.
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Prace strzałowe to jedne z kluczowych operacji w znacznym stopniu determinujące efektywność 
ekonomiczną wielu projektów górniczych. W planowaniu prac strzałowych uwzględnić należy podstawowe 
kryteria, takie jak rozdrobnienie skał (ostateczny cel operacji), wibracje podłoża, występowanie rozrzutu 
skał, i podmuchów powietrza (efekty uboczne). Odpowiedni harmonogram prac zapewnić powinien 
zarówno odpowiedni poziom rozdrobnienia (wymiary brył) jak i ograniczenie skutków ubocznych prac. 
Dla oceny skuteczności prac strzałowych zastosować można modele badań operacyjnych, np. modele 
oparte o wielokryterialną technikę decyzyjną MADM, a technika ustalania kolejności preferowanych 
rozwiązań oparta o podobieństwo do rozwiązania idealnego (TOPSIS), wywodząca się z MADM, jest 
skuteczną metodą ustalania rankingu wzorców. Inną metodą ilościową stosowaną do oceny efektywno-
ści systemów jest metoda analizy danych DEA. W niniejszym artykule dokonano próby opracowania 
hybrydowego modelu MADM do wyboru najbardziej korzystnego planu prac strzałowych w kopalni rud 
żelaza Chadormalu, w Iranie. W ramach badań wykorzystano metodę DEA do wyboru skutecznego planu 
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prac strzałowych, następnie zastosowano podejście TOPSIS dla rozpoznania najbardziej odpowiedniego 
wzorca spośród tych wybranych przy pomocy metody DEA. Stwierdzono, że wzorce oznaczone jako J, 
G i B są najodpowiedniejsze do zastosowania przy pracach strzałowych prowadzonych w kopalni rud 
żelaza Chadormalu.

Słowa kluczowe: rozdrobnienie skał, drgania podłoża, rozrzut skał, podmuchy powietrza, TOPSIS, DEA

Introduction

In the mining activities the prime aim of blasting operation is rock fragmentation that is 
necessary for subsequent processes such as transportation, crushing, etc. hence, achieving a higher 
efficiency (Bozich, 1998; Chakraborty, 2004; Latham et al., 2006; Mario & Ficarazzo, 2006; 
Ozkahraman, 2006; Shim et al., 2009)

As a matter of fact, the explosive energy is not fully utilized for rock breakage and only 
20-30% of the energy is practically consumed for the assigned purpose and rest of the energy is 
exhausted in the form of unwanted phenomena such as ground vibration, air blast, fly rock, etc 
(Singh et al., 2005). On the other hand, environmental constraints are increasingly concerned 
for mining activities, hence, there should be a great deal to control and eliminate the unwanted 
blast-induced environmental problems. An optimized blast design can satisfy both the techni-
cal and environmental issues. Normally, traditional empirical methods are used to design blast 
geometry. These methods are site specific and for general applicability require trial and error 
mechanism. In this way, once a blast is carried out, analyzing the obtained consequences would 
result in modification of the design parameters for the successive rounds (Lopez et al., 1995). 
This approach is time consuming and imposes extra costs to the operation. Moreover, many in-
vestigations have been performed for blast optimization. For example, Bajpayee et al. described 
several case studies regarding to flyrock and introduced causative factors for the event and 
proposed preventive measures (Bajpayee et al., 2004). In other research, Hyun-Jin Shim et al. 
tried to optimize fragmentation for a quarry mine (Shim et al., 2009). Also, airblast impact on the 
adjacent buildings annoying habitants was reduced (Kuzu et al., 2009). Moreover, several attempts 
have been done for attenuating ground vibration (Erarslan et al., 2008; Hakan & Konuk, 2008; 
Hakan et al., 2009; Khandelwal & Singh, 2006; Khandelwal & Singh, 2009; Khandelwal et al., 
2010). The main drawback of these investigations is considering only one of the blast criteria in 
optimization process. While because of interrelation exist amongst the blasting criteria, it must 
be tried to incorporate all of them simultaneously.

To achieve a global evaluation some aspects (criteria) such as fragmentation, ground vibra-
tion, flyrock and airblast must be considered (Lopez et al., 1995). Hence, due to presence of 
various blasting effects (consequences) selection of the best applied alternative is not an easy 
task. For this, rather new mathematical based methods such as technique for order preference by 
similarity to an ideal solution (TOPSIS), a branch of multi attribute decision making (MADM) 
can be employed. However, in circumstances when the number of alternatives is too high it is 
better to limit the search space by omitting inefficient alternatives and considering only efficient 
ones, the work can be performed using methods such as data envelopment analysis (Jahanshahloo 
& Khodabakhshi, 2007).

DEA is a non-parametric method for evaluating the relative efficiency of decision-making 
units (DMUs) on the basis of multiple inputs and outputs (Cooper et al., 2006). It can also be 
used to generate local weights of alternatives from pair-wise comparison judgment matrices 
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in the analytic hierarchy process (AHP) (Ramanathan, 2006).This method has been applied in 
different field of science and engineering (Athanassopoulosa et al., 1999; Hermans et al., 2009; 
Kao & Liu, 2009). It has been extensively applied in performance evaluation and benchmarking 
of schools, hospitals, bank branches, production plants, etc. (Cooper et al., 2006). 

TOPSIS, the most practical method of MADM, is a practical technique for ranking a number 
of relevant alternatives and selecting the best one considering certain decision criteria. This tech-
nique has been applied for solving many complicated problems in the various fields of science 
and technology (Chen &Tzeng, 2004; Lin et al., 2008; Monjezi et al., 2010; Yang & Chou, 2005).

In this study, the most efficient applied blast patterns of Chadomalu iron mine were selected 
using DEA method. Thereafter, among the selected patterns, the most suitable pattern was chosen 
with the help of TOPSIS. 

DEA 

Data envelopment analysis (DEA), a linear or non-linear programming based model, was 
developed in 1978 by Charnes et al (Post & Spronk, 1999) based on the earlier work of Farrell 
(1957). The linear programming is appropriate when dealing with imprecise data (Despotis & 
Smirlis, 2002).This model is applied for evaluating relative efficiency of comparable decision 
making units (DMUs) by considering multiple inputs and outputs (Sowlati et al., 2005). Also, 
this technique in combination to TOPSIS technique can be implemented in benchmarking the 
performance of service operations using a ranking mechanism (Cooper et al., 2006). As a whole, 
DEA models can be divided in two groups, i.e. input-orientated and output-orientated. The first 
group are the models in which input quantities can be proportionally reduced without chang-
ing the outputs quantities produced, whereas in the second group the output quantities can be 
proportionally expanded keeping the input quantities unchanged. Selection of the method is 
depending on the nature of problem to be solved (Allen & Thanassoulis, 2004; Bal et al., 2010).

The efficiency is indicated as a ratio of the weighted sum of outputs to the weighted sum 
of inputs. The relative efficiency (wo) of particular DMUs is obtained by solving the following 
fractional programming problem, wo = 1 means that DMU0 is efficient while wo < 1 shows inef-
ficiency of the DMU under evaluation:
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 ur ≥ 0, r = 1, 2, ..., s 

 vi ≥ 0, i = 1, 2, ..., m 

where j is the DMU index, j = 1, ..., n; r is the output index, r = 1,..., s; i is the input index, 
i = 1,..., m; yrj is the value of the r-th output for the j-th DMU, xij is the value of the i-th input for 
the j-th DMU, ur is the weight given to the r-th output; vi is the weight given to the i-th input.
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The fractional program (1) can be converted into a linear programming problem (2) by 
forcing the weighted sum of the inputs to 1. This model which is the first applicable type of 
DEA models is called Charnes, Cooper and Rhodes (CCR) model. In this technique, all probable 
combinations are proportionally scaled up or down. Solution of the problem can be made with 
constant return to scale (CRS).
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The second type of DEA models are Banker, Charnes and Cooper (BCC) model. Unlike to 
CCR model, in the BCC approach, the solution is made with variable return to scale (VRS). The 
BCC model can be given as follows:
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,  j = 1, 2, ..., n 

 (3)

 ur ≥ 0, r = 1, 2, ..., s 

 vi ≥ 0, i = 1, 2, ..., m

where, C0 indicates returns to scale (RS) and is free in sign

When there is more than one efficient DMU, a complementary concept has to be utilized 
to recognize the most efficient alternative. One of the applicable concepts is TOPSIS technique 
which can identify the most efficient DMU using a ranking mechanism.

TOPSIS

TOPSIS model which was first introduced by Yoon and Hwang (1981) is one of the most 
practical techniques in MADM. In this mathematical model selection of the best alternative is 
performed on the basis of various influential criteria or decision makers’ ideals. According to This 
technique the best alternative has the shortest Euclidean distance from the positive ideal solution 



885

(PIS) and the farthest Euclidean distance from the negative ideal solution (NIS) (Kim & Choi, 
2001; Li et al., 2009; Shih et al., 2007; Triantaphyllou et al., 1998; Xu, 2008). 

Normally, in all of the MADM techniques, a decision matrix has to be formed in the first 
step. The matrix is composed of competitive alternatives row-wise and their attributes’ scores 
column-wise. Each alternative is compared and evaluated with all other present attributes. 

Decision matrix, D, which refers to “n” alternatives and “m” criteria, is defined as:
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where xij denotes the evaluations of the i-th alternative with respect to the j-th criterion.

Since each of the attribute has its own dimension, comparison is possible only after normali-
zation of the decision matrix to make it dimensionless. During normalization process, the scores 
are really conformed or reduced to a norm or standard to convert them in to a positive normalized 
value within range [0, 1]. The normalized value of an element, rij, can be calculated as follows:
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Weighted normalized value of rij, vij, can be obtained by:

 vij = wj rij, j = 1, ..., m; i = 1, ..., n 

In the next step, a set of weights is defined to produce weighted normalized decision ma-
trix V, keeping a constraint Σwi = 1 for the weights.
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The ideal solution or alternative can be hypothetically defined and in case of presence of 
an alternative identical to the defined hypothetical alternative, decision is easily made. How-
ever, presence of an alternative exactly identical to the ideal solution is rarely occurred. On the 
contrary, the anti-ideal alternative is also a hypothetical alternative in which all attribute values 
correspond to the worst level. However the ideal alternative, A+, and the anti-ideal alternative, 
A−, can be denoted as follows:
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and

      1 2, , ,...,ij ij mi i
A mi nv j J m a xv j J i n v v v            

where J and J' are the attribute sets of the larger-the better type (such as benefit) and the smaller-
the better type (such as cost), respectively.

To recognize the distance of each solution from the ideal solution, di
+, and negative ideal 

solution can be calculated by Euclidean method, as follows:
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Finally, to select the best solution relative closeness (Ci) to the ideal solution has to be 
determined for all the alternatives. The best alternative is the one that has the greatest relative 
closeness. The relative closeness is determined as below:

 

i
i

i i

dC
d d



 
  

, i = 1,2, ..., n
 

Since di
+ ≥ 0 and di

− ≥ 0, then, clearly, Ci
+  [0,1].

In the last step, all of the alternatives are listed according to their calculated relative close-
ness. Tong and Su 1997; Parkan and Wu 1999

Case study

The Chadormalu iron mine is situated 180 km northeast of Yazd province, Iran, between 
30.55 longitudes and 17.32 latitudes. In the blasting operation of ore faces blastholes of 250 mm 
diameter are drilled in a staggered pattern. ANFO is used as the main explosive whereas pento-
lite is used for priming and detonating cord for initiating. Also drill cuts are used as stemming 
materials. Figure 1 shows a view of blasting operation in the mine. The other blasting design 
parameters of the mine are listed in Table 1.

TABLE 1

Blasting parameters of the Chadormalu iron ore mine

Parameter Value
Burden 5-7 (m)
Spacing 6-8 (m)

Stemming 5-6 (m)
Bench height 15 (m)
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Input and output parameters for DEA model

In this study, a database of blasting patterns of Chadormalu iron mine including 78 different 
patterns has been collected and implemented in the DEA model.

• Input parameters
Considering blast design parameters indexes specific charge (CE), the quantity of explosive 

necessary for fragmenting 1 m3 or 1 ton of rock, and specific drilling (Sd), the drilled hole vol-
ume or drilled hole length drilled per volume unit of rock, were calculated for all of the blasting 
rounds. Table 2 shows details of the calculated indexes.

TABLE 2

Details of the calculated indexes

Index Minimum Maximum Average
specifi c charge (Kg/m3) 0.56 1.27 0.87
specifi c drilling (m/m3) 0.018 0.038 0.03

• Output parameters
The blasting effects of fragmentation, ground vibration, flyrock and airblast were estimated 

using relevant empirical methods. Details of calculation of each parameter are given in the fol-
lowing:

– Fragmentation
Estimating rock fragmentation can be performed using Kuz-Ram model, Bond-Ram model, 

EBT model and Kuznetsov-Cunningham-Ouchterlony (KCO) model (Latham et al., 2006). Since 
the Kuz-Ram model is widely adopted, it is preferred to be used for fragmentation estimation. 
This model is a combination of Kuznetsov and Rosin-Rammler. Mean fragment size (Xm) is 

Fig. 1. A view of blasting operation in the Chadormalu mine
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calculated using kuznetsov equation (Eq. 4) and and fragmentation distribution (R) is calculated 
using Rosin-Rammler equation (Eq. 5): 
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 (4)

where Xm = mean fragment size (cm), A = rock factor (8-12), K = specific charge (kg of explo-
sives/m3 of rock), Qe = mass of explosive being used (kg), SANFO = relative weight strength of 
the explosive relative to ANFO (ANFO = 100).

 ( / )nX XcR e  (5)

where X = screen size (cm), Xc = characteristic size (cm), e = base of natural logarithms (2/7183), 
n = index of uniformity (0.8-1.5).

Since the Kuznetsov formula gives the screen size Xm for which 50% of the material would 
pass, substituting X = Xm and R = 0.5 into Eq. (6) one finds that:
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The exponent n for the Rosin-Rammler equation is estimated as follows:
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where B is the blasting burden (m), S the blasthole spacing (m), D the blasthole diameter (mm), 
W the standard deviation of drilling accuracy (m), L the total charge length (m), and H the bench 
height (m).

– Ground vibration 
Scaled distance equation widely suggested for cylindrical charges was used for prediction 

of peak particle velocity (Kahriman, 2004; Erarslan et al., 2008). The general form of this equa-
tion is given below:

 
0.5/ dSD R W  (8)

where SD = scaled distance; R = distance between the shot and the station (m); Wd = maximum 
charge per delay (kg). 

– Air blast
Airblast overpressure for confined blasthole was estimated using the following equation:
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where P = pressure (Kpa), w = mass of explosive (Kg), D = distance from the explosive (m). 
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– Flyrock
Lundborg empirical model was used for predicting flyrock. This model is applicable for 

hard rock blasting (Lopez et al., 1995). According to the Lundborg model, the maximum throw 
(L) is a function of hole diameter (d) and specific charge (q) and is given as below:

 L = 143d (q – 0.2) (10)

where d = hole diameter (ins), q = specific charge (Kg/m3), L = maximum throw (m).

Selection of the most efficient blast pattern 

In this study, in the first step the most efficient blasting patterns were recognized with the 
help of DEA model and in the second step, the best pattern was selected using TOPSIS technique.

Recognizing the most efficient blast patterns using DEA

DEA-BCC output oriented model has been applied to recognize the most efficient blast 
patterns in the collected database. For this, considering the relevant inputs and outputs, the 
most efficient blast patterns were determined using software DEA solver (Table 3). It should 
be mentioned that the unwanted environmental related outputs which have intrinsically minus 
values must be converted to a positive value by deducting from a constant number, greater than 
the maximum recorded value. For example if the maximum value for flyrock is 1435 then all 
the flyrock values should be deducted from 1500. After running the software, the patterns with 
efficiency 1 were considered efficient and the rest of the patterns with efficiency less than 1 were 
considered inefficient. As it is seen in the Table 3, fourteen patterns were recognized as efficient. 

After contracting the search space by DEA, to include expert’s experiences TOPSIS was 
utilized for selecting the best alternative.

TABLE 3
Efficient blast patterns recognized by DEA Solver

Pattern Specifi c charge 
(m/m3)

Specifi c Drilling 
(Kg/m3)

Xmean
(cm)

(100 – R)
%

Scale 
distance

Air Blast 
(Kp)

Fly rock 
(m) Effi ciency

A 0.58 0.018 47.6 25.7 93 0.0078 537 1
B 0.70 0.021 41.2 30.7 86 0.0084 699 1
C 0.56 0.018 49.3 25.3 96 0.0077 503 1
D 1.22 0.038 26.0 48.2 91 0.0080 1435 1
E 1.15 0.034 27.9 44.6 92 0.0079 1335 1
F 0.91 0.029 30.9 41.6 102 0.0073 1007 1
G 0.73 0.029 34.3 41.1 124 0.0062 750 1
H 0.93 0.028 30.9 42.0 95 0.0077 1028 1
I 1.19 0.037 26.5 47.3 91 0.0080 1404 1
J 0.73 0.024 36.9 36.8 96 0.0077 742 1
K 0.90 0.029 30.6 41.2 97 0.0076 988 1
L 1.27 0.038 26.0 48.1 84 0.0085 1055 1
M 0.83 0.024 36.7 33.6 81 0.0088 890 1
N 0.92 0.026 33.8 35.9 84 0.0085 1017 1
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Selection of the best pattern using TOPSIS

The DEA outputs were considered as inputs for TOPSIS by which the decision matrix was 
constructed. Here, there are fourteen alternatives and seven attributes. Using expert’s experience 
a weight was assigned to each of the attributes, the more important the attribute, the bigger is the 
assigned weight. To do so, local priority for each pair of attributes was separately determined by 
experts. Then, using Eigen vector method, a part or branch of analytic hierarchy process (AHP) 
was applied to determine the final weights, Table (4).

TABLE 4

Weights of criteria

FlyrockAirblastScaled 
distance

Fragmentation 
distribution

Fragment 
size

Specifi c 
drilling

Specifi c 
chargeCriteria

6.2%6.2%9.1%6.6%24.6%21.8%25.5%Weight

Considering the obtained weights, the decision process was set to run in the Microsoft Excel 
software environment. The ranked alternatives are shown in the Table 5. As it is seen from this 
Table,   patterns J, G and B are getting the highest ranking therefore are selected as the most ap-
propriate patterns for blasting operations in the Chadormalu iron mine.

TABLE 5

Final ranking of patterns by TOPSIS

R
an

ki
ng

Pa
tt

er
n

B
×S

 
(m

×m
)

St
em

m
in

g 
(m

)

Sp
ec

ifi 
c 

ch
ar

ge
 

(m
/m

3 )

Sp
ec

ifi 
c 

D
ri

lli
ng

 
(K

g/
m

3 )

X
m

ea
n

(c
m

)

(1
00

 –
 R

) 
%

Sc
al

ed
 d

is
ta

nc
e

A
ir

 b
la

st
 

(K
p)

Fl
y 

ro
ck

 
(m

)

J 1220 7×8 6 0.73 0.024 36.9 36.8 96 0.0077 742
G 1248 7×8 6 0.73 0.029 34.3 41.1 124 0.0062 750
B 1304 7×8 6 0.70 0.021 41.2 30.7 86 0.0084 699
A 1328 6×7 6 0.58 0.018 47.6 25.7 93 0.0078 537
C 1302 7×8 6 0.56 0.018 49.3 25.3 96 0.0077 503
M 1190 6×7 6 0.83 0.024 36.7 33.6 81 0.0088 890
K 1204 6×7 6 0.90 0.029 30.6 41.2 97 0.0076 988
F 1258 6×7 5 0.91 0.029 30.9 41.6 102 0.0073 1007
H 1227 6×7 5 0.93 0.028 30.9 42 95 0.0077 1028
N 1298 6×7 5 0.92 0.026 33.8 35.9 84 0.0085 1017
E 1287 5×6 5 1.15 0.034 27.9 44.6 92 0.0079 1335
I 1224 5×6 6 1.19 0.037 26.5 47.3 91 0.0080 1404
D 1300 5×6 6 1.22 0.038 26.0 48.2 91 0.0080 1435
L 1192 5×6 6 1.27 0.038 26.0 48.1 84 0.0085 1055
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Conclusion

Combination of TOPSIS and DEA can efficiently be utilized for blasting pattern ranking and 
selection. In this paper, 78 blasting patterns operated in the Chadomalu iron mine were assessed 
to recognize the patterns satisfying (providing) required fragmentation and minimizing operation 
unwanted phenomena such as flyrock and airblast. In this regard, in the first step, using DEA 
method fourteen efficient patterns of various categories were recognized and in the second step, 
the identified efficient patterns were ranked by TOPSIS so as to reach a more realistic outcome 
by incorporating the experts’ experience in the selection process. According to the obtained re-
sults, the patterns J, G and B with the highest ranting score were selected as the most appropriate 
patterns for blasting operations in the Chadormalu iron mine. 
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