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A NEW METAHEURISTIC ALGORITHM FOR LONG-TERM OPEN-PIT PRODUCTION PLANNING

NOWY META-HEURYSTYCZNY ALGORYTM WSPOMAGAJĄCY DŁUGOTERMINOWE 
PLANOWANIE PRODUKCJI W KOPALNI ODKRYWKOWEJ

Paper describes a new metaheuristic algorithm which has been developed based on the Ant Colony 
Optimisation (ACO) and its efficiency have been discussed. To apply the ACO process on mine planning 
problem, a series of variables are considered for each block as the pheromone trails that represent the 
desirability of the block for being the deepest point of the mine in that column for the given mining period. 
During implementation several mine schedules are constructed in each iteration. Then the pheromone 
values of all blocks are reduced to a certain percentage and additionally the pheromone value of those 
blocks that are used in defining the constructed schedules are increased according to the quality of the 
generated solutions. By repeated iterations, the pheromone values of those blocks that define the shape of 
the optimum solution are increased whereas those of the others have been significantly evaporated. 
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W artykule zaprezentowano nowy meta-heurystyczny algorytm oparty na zasadach optymalizacji 
mrowiska i zbadano jego skuteczność w zastosowaniach do planowania wydobycia w kopalniach. Uwzględ-
niono szereg zmiennych w każdym bloku schematu i przeanalizowano „ślady feromonów” które przedsta-
wiają „dążność” poszczególnych bloków w danej kolumnie do stania się najgłębszym punktem kopalni w 
trakcie określonego okresu prowadzenia prac wydobywczych. W ramach kolejnych iteracji generuje się 
kilka harmonogramów prowadzenia wydobycia. Następnie wartości poziomu feromonów przypisane do 
kolejnych bloków redukowane są do wielkości wyrażonych w procentach  a wartości poziomu feromonów 
przypisane do bloków wykorzystywanych do wygenerowania danego  harmonogramu zostają powiększone, 
zgodnie z wymogami odnośnie jakości uzyskanych rozwiązań. Drogą kolejnych iteracji, wartości poziomu 
feromonów przypisane do bloków generujących rozwiązania optymalne zostają powiększane podczas 
gdy wartości przypisane do bloków pozostałych zostają odpowiednio pomniejszone.
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1. Introduction 

Hard rock open pit mining is a mineral exploitation method by which the deposit is ac-
cessed by digging a large opening, called pit in the ground surface, to uncover the ore to air. The 
initial mining phase starts with a small pit, and then develops to a larger pit which encloses it. 
The process proceeds until a final shape of the mine called “ultimate pit limit” (UPL) is reached. 
These sequences of pits are known as mining sequences or push backs. Mining operations in each 
push back starts from the upper part and proceed towards its bottom.  The objective of long-term 
pit optimisation is to find the sequence that will maximise the economic rewards. The results 
of these calculations are used as a guide for short-term production planning which may be for 
a quarter, month or week. 

The last 30 years have seen a widely-publicised revolution in the application of numerical 
methods in the mining industry in order to produce better mine plans on more complicated and 
often lower grade deposits, and with staffing levels that would have been unthinkable prior to 
the early 1980s. Recent researches in the field of open-pit optimisation have been focused on 
developing new algorithms which are firstly less complex in terms of comprehensibility and pro-
gramming, secondly require shorter computing times in order to be applicable to the large deposits 
and finally allow the incorporation of real mining complexities such as variable slopes, working 
slopes, time value of money, quality and quantity of planned material and related uncertainties.

Almost all computerised hard rock open-pit mine planning methods are based on block 
models. A block model divides the whole ore body and surrounding waste rocks into 3D blocks 
adjacent to each other. The model may have millions of blocks depending on the size of deposit 
and the size of blocks. The average ore grade of each block is estimated using geostatistical ap-
proaches or conditional simulation methods. The long-term open-pit mine production scheduling 
problem can be defined as specifying the sequence in which the blocks should be removed from 
the mine as a certain material type, in order to maximise the total discounted profit from the mine 
subject to a variety of physical and economic constraints.

2. Problem statement

2.1. Mathematical formulation 

Integer Linear Programming (IP) with binary variables can be effectively used to model this 
problem. The model has binary variables and its objective function could be expressed as the 
maximisation of the net present return by mining and processing of the blocks. This is subject 
to a variety of constraints. First of all the total tonnage of extracted material should be between 
a pre-determined upper and lower limit. Secondly the quantity of each material type should also 
be between the defined boundaries. Furthermore the average grade of each production element 
should be between pre-determined limits. Moreover the sequencing constraints are necessary 
to ensure that a block could only be removed if all overlaying blocks have been removed in 
the previous or current periods. Finally some reserve constraints are applied to mathematically 
guarantee that a block is mined only once.

Several approaches have been proposed in literature to solve this model. (Dagdelen & John-
son, 1986) and (Caccetta, et al., 1998) used lagrangian parameterisation in order to relax mining 
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and milling constraints into objective function. Consequently the problem could be handled by 
repetition of any Ultimate Pit Limit (UPL) algorithm such as (Lerchs & Grossmann, 1965) graph 
theory based algorithm.  In this process lagrange multipliers were utilised to omit the mining and 
milling constraints and solved the model using subgradient optimisation method. Later (Cac-
cetta & Hill, 2003) proposed a branch and bound technique to solve the formulated scheduling 
problem. (Dowd and Onur, 1992) and (Onur & Dowd. 1993) formulated the problem as a dy-
namic programming model. (Ramazan et al., 2005) described the application of fundamental tree 
algorithm to reconstruct the mining blocks and decrease the number of variables in scheduling 
problems without reducing the resolution of the model or optimality of the results. They defined 
the fundamental tree as any combination of the blocks such that they can be profitably mined 
respecting slope constraints. Recently (Ramazan & Dimitrakopoulos, 2004) have added a new 
aspect related to the uncertainties involved in estimation of geological block models. (Osanloo et 
al., 2008) published a comprehensive review of various open pit production scheduling approaches. 
Lately (Sayadi et al., 2011) have used a new 3D open pit optimization algorithm based on the 
artificial neural networks. Consideration of the optimum cut-off grade in production scheduling 
is one of the other issues which might add more complexity to the problem. (Azimi & Osanloo, 
2011) have studied a combination of nonlinear programming and genetic algorithm methods for 
finding of the optimum cut-off grade strategy.  

2.2. Metaheuristics

A metaheuristic is a set of algorithmic concepts that can be used to improve heuristic methods 
applicable to difficult problems. These concepts are usually inspired by biology and nature. The 
use of metaheuristics has significantly increased the ability of finding very high quality solu-
tions for hard combinatorial problems (that are often easy to state but very difficult to solve) in 
a reasonable time. This is particularly true for large and poorly understood problems. The family 
of the metaheuristics includes, but not limited to, genetic algorithm, simulated annealing, tabu 
search, ant colony optimisation, and particle swarm optimisation. Two research studies addressed 
so far in literature regarding the application of metaheuristic algorithms in long-term open pit 
mine production planning.

Denby and Schofield (1994) described the process of the application of Genetic Algorithm 
(GA) in optimisation of an open-pit mine production planning shown in Figure 1a. The main 
advantage of their method was in its ability to solve ultimate pit limit and long-term planning 
problems simultaneously. By choosing proper values for genetic parameters, the method was 
capable of producing good results for a small block model in an acceptable time. Later Denby 
and Schofield (1995) continued to consider risk assessment in their scheduling process. They 
also extended the algorithm from 2D to 3D (1996) and used it for a flexible scheduling opera-
tion (1998). 

Kumral and Dowd (2002, 2005) investigated solving of the open pit mine production 
scheduling problem by use of Simulated Annealing (SA) metaheuristic as shown in figure 1b. 
The main advantage of this routine is that it utilises a multi-objective function comprised of three 
minimisation components, on the other hand, the separate determination of UPL and production 
schedule would be counted as a disadvantage for this method.
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2.3. Ant colony optimisation

Ant Colony Optimisation (ACO) is one of the most successful metaheuristic algorithms 
developed by Dorigo and Stützle (2004). It is inspired by the foraging behaviour of ant colonies. 
In nature, ants walk randomly, and upon finding food return to their colony while laying down 
chemical trails called pheromone. The pheromone trail transmits a message to other members 
of the colony. The other ants are likely follow the trail instead of randomly traveling. If they 
eventually find food then reinforce the trail by depositing more pheromone. Over the time the 
pheromone trail starts to evaporate and reduce its attraction. Magnitude of the evaporation in 
longer paths is higher than that of shorter routes. Thus the intensity of laid pheromone on shortest 
path, by comparison, gradually increases up to the level that balances with the evaporation rate. 
This makes the shortest path to be marched and almost all of the ants to follow this route.

A study was conducted in the Institute of Surface Mining and Drilling Technology, RWTH 
Aachen University, aiming of the application of ACO for optimisation of long-term open pit 
mine production planning, (Sattarvand, 2009). The process has the ability to optimise UPL and 
long-term planning problems simultaneously according to the multi-objective target and complex 
constraints by utilising a population of mine schedule solutions. Figure 2 shows the proposed 
process of long-term open-pit production planning. 

3. Steps of the new algorithm

The algorithm consists of saving P variables for each block of the model, τip, which represent 
the pheromone value related to the mining of i th block in pth period. The magnitude of saved phe-
romones represents the desirability of a block to be the deepest point of the mine in that period. 
The initial values of these variables are assigned based on a sub-optimal mine schedule generated 

Fig. 1. The process of open pit scheduling by genetic algorithm (a) and simulated annealing (b)

a) b)
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by the algorithms proposed by Lerchs and Grossmann (1965) and Wang and Sevim (1995). Then 
the random mining schedules are constructed according to the initial pheromones. These schedules 
deposit an extra pheromone proportional to their economic quality. This action along with pherom-
one evaporation leads the algorithm towards the optimum boundary of mining push backs.

3.1. Pheromone Initialisation 

Experiments showed that the calculation time increased dramatically using the uniform 
initial pheromone pattern. Therefore a sub-optimal solution for the problem of long-term open-
pit scheduling is firstly determined by means of Lerchs and Grossmann’s algorithm (1965) and 
the Wang and Sevim’s nested pits design algorithm (1995). Then, initial pheromone trails are 
assigned to the blocks according to this sub-optimal solution. Normally the shape of a desired 
pushback does not change drastically from a sub-optimal solution to the optimal one. Thus as-
signing of higher pheromones to a few numbers of blocks around the sub-optimal pit depth could 
be enough to lead the algorithm towards the optimal solution. During the process of pheromone 
initialisation, the pheromone values of the ore blocks close to the pit shape in initial solution (the 
highlighted blocks in Figure 3) are set to relatively higher values.

3.2. Construction of schedules

In order to construct a mine scheduling solution, a series of feasible pit shapes related to 
the different mining push backs should be created. Each one of these pits consists of a series of 
block columns. The shape of each pit could be defined by determination of the pit depth on the 
block columns. The pheromone value is the major element in determination of the pit depth on 

Fig. 2. The process of long-term open-pit production planning using ACO
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a column. Sometimes using heuristic information such as economic value of the blocks could 
also help the efficiency of the method. The probability with which ant k, chooses the block i is:
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Where τi is the pheromone value of block i, ηij is the heuristic information, α and β are two param-
eters which determine the relative influence of the pheromone trail and the heuristic information, 
and Ni

k is the feasible neighbourhood of ant k. 
A numerical example of depth determination process has been explained in Table 1. The 

upper and lower boundary of the permitted pit depth should also be available for the column in 
determination of the pit depth. The maximum allowed depth defines the deepest possible mining 
depth on that column; while, the minimum depth is determined according to the shape of the 
mine in earlier push back, Figure 4. 

It should be noted that the process of depth finding is done only for the columns containing 
at least one ore block. The depth of the pit in totally waste columns will be defined based on the 
neighbouring selected depths. Another important point is that the initial pheromones are assigned 
only to the ore blocks. Therefore, the selected depth will always coincide on an ore block. Simi-
larly, there will be no pheromone update (evaporation or deposition) for waste blocks.

Fig. 3. Pheromone initialisation of the blocks

Fig. 4. Maximum and minimum depth definition in the process of depth determination
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TABLE 1

An example of depth determination process

Block Column Pheromone* Heuristic 
Information*

Selection 
possibility**

Cumulative 
Possibility

0 0 0.0000 0.0000

280 8 0.0285 0.0285

0 0 0.0000 0.0285

0 0 0.0000 0.0285

330 6 0.0297 0.0583

540 7 0.0930 0.1514

0 0 0.0000 0.1514

670 6 0.1227 0.27424

890 8 0.2889 0.5631***

750 9 0.2308 0.7939

0 0 0.0000 0.7939

870 5 0.1725 0.9664

350 6 0.0335 1.0000

0 0 0.0000 1.0000

* without unit

** based on 
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 formula (α = 1 and β = 1)

*** selected depth according to the random number (0.6328)

3.3. Normalisation 

Normally the consequence of independent depth determination in each column is not 
always feasible due to the required slope angles; therefore, a normalisation stage based on the 
selected depths is necessary in order to generate a feasible pit shape. The normalisation step is 
implemented after determination of depths to ensure that the constructed pit shape covers all of 
the determined depths as well as the outline of earlier push backs. The feasible pit shape shown 
in Figure 5b is constructed based on the set of determined depths and the shape of earlier period 
displayed in Figure 5a.

Finally individual normalised pits which have been created for different mining periods are 
combined together to produce a mine schedule, Figure 6.

3.4. Pheromone update

Constructed mine schedules are manipulated by the ACO module in two steps as a series 
of decreases and increases in pheromone values of the blocks. The first step, called Pheromone 
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Evaporation, consists of a uniform reduction in the value of all pheromones in order to help the 
ACO model disregard the bad solutions. In this stage, the pheromone value of all blocks cor-
responding to all production schedules should be decreased by a certain percentage. The next 
step, Pheromone Deposition, consists of adding additional pheromone to the blocks which have 
contributed in the construction of the schedules. It should be noted that the deposition action is 
applied only to the ore blocks. In cases where the pit depth falls on a waste block, the additional 
pheromone is assigned to an imaginary block on the ground surface. This action creates an 
imaginary block to compete against the other ore blocks which have not really contributed in 
construction of the schedules.

4. Case study

To evaluate the applicability of the proposed algorithm for long-term planning of open-pit 
mines, a computer program has been developed in the Visual Studio 2005 programming environ-
ment for the implementation of calculations. In order to test the program, a hypothetical block 
model of an iron ore deposit containing 1000 blocks was created and the grades of Fe and SiO2 
were randomly assigned to all ore blocks. The grades of Fe and SiO2 varied from 45 to 65 and 
from 5 to 15 percent respectively. The calculated UPL by the Lerchs and Grossmann’s graph al-
gorithm contained 455 ore and 161 waste blocks which led to 681 monetary units of undiscounted 
economic value. Then mining push backs were generated by the alternative to parameterisation 
algorithm of Wang and Sevim (1995). Through this, nine uniform push backs with the size of 70 
blocks were constructed. Considering an annual interest rate of 10 percent and the mine life of 
20 years, the discounted economic value of the constructed initial schedule was calculated as 323 
units. As a simple scheduling condition, the values of mining and processing rates are considered 

Fig. 5. Generation of feasible pit according to the selected depths (Normalisation)
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Fig. 6. Combination of generated pits to produce a mine schedule
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from 59 to 64 and from 47 to 53 blocks per period respectively. The average allowed grades of Fe 
and SiO2 supposed to be between 54 and 56 and between 9 and 11 percent respectively. Anything 
exceeding these limits has been considered to have 1 currency unit of penalty cost for each of 
the extra or fewer blocks. Consequently the value of the constructed initial scheduling solution 
received 79 currency units of penalty costs and its economic value dropped to 244 units.

4.1. Comparison of ACO variants

The efficiencies of different ACO variants are tested on the hypothetical block model in order 
to find the best method and the most favourable parameter values. Table 2 shows the quality of the 
solutions provided by each variant of ACO as well as the time spent for computation on a PC.

Ant system (AS) is the simplest ACO system in which all ants have the ability to deposit 
pheromone proportional to the quality of their constructed schedule. The results showed that AS 
has the ability of improving the quality of the initial solution, however it does not reach to the 
higher solutions by reasonable computing resources. 

The Elitist Ant System (EAS) was the second tested variant in which a strong emphasis is 
considered to the best-so-far solution and it is allowed to deposit as much pheromone as that of 
several normal ants. The elitist ant strategy has eliminated the scattering behaviour of the AS, 
but still it suffers from the early stagnation in local optimums. 

TABLE 2

Comparison of different ACO variants

Fitness value of the best solution Calculation time
Ant System 265.13 50
Elitist Ant System 274.10 200
Ranked based Ant System 279.06 90
Max-Min Ant System 284.53 200
Wide Max-Min Ant System 294.55 270
Ant Colony System 279.00 60

Another variant was the rank based ant system (ASrank) in which only a series of ranked 
ants and the best-so-far ant are permitted to deposit pheromones. Study revealed that the rank-
ing strategy increases the exploration potential and prevents the algorithm from stagnating even 
after a hundred iterations and reach to high quality solution. It suffers from the large amount of 
required memory. 

Max-Min Ant System (MMAS) was one of the most effective variants. In MMAS only the 
iteration-best ant or the best-so-far ant is allowed to deposit pheromones. The pheromone trail 
values are also limited to a certain interval and are initialised to the upper pheromone trail limit. 
The pheromone evaporation rate is very small in this variant and pheromone trails are reinitialised 
each time the system approaches stagnation or when no improved tour has been generated for 
a certain number of consecutive iterations. The main power of MMAS comes from its explorative 
nature which lets the program use higher perturbation distances (wide MMAS) which may lead 
to better solutions. However this will take more calculation time and higher scattering iterations 
before primary improvements are noticed. 
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The other successful variant was the Ant Colony System (ACS). In q percentages of the 
cases ACS ants choose the node with the highest pheromone and heuristic information (selection 
probability) and for the rest of the cases (1-q percentage), it uses the same routine as AS for the 
selection.  In ACS only the best-so-far ant is allowed to add pheromones after each iteration and 
the evaporation process only applies to the arcs of the best-so-far tour. The ants use also a local 
pheromone update rule in which they apply immediately after having crossed an arc during the 
tour construction of ACS. Results of using ACS have shown that the calculation time of each 
iteration has been drastically reduced because of the reduction in the number of ants. Another 
factor that helps the speed of the ACS algorithm is the fact that pheromone evaporation and 
deposition happen only on the arcs of the best so far solution. Consequently, when compared to 
the other variants of ACO, ACS could reach much better solutions in a given time of calculation 
which is very beneficial when dealing with the large block models.

5. Conclusion 

The analysis revealed that the ACO is able to improve the value of the initial mining schedule 
generated by the Lerchs and Grossmann algorithm and parameterisation by up to 34 percent in 
some cases in a reasonable computational time. Despite the fact that this is mainly contributed 
to the consideration of the penalties to the deviations of the capacities and the production quali-
ties from their permitted limits, the magnitude of the pure improvements was also considerable. 
It was also proved that the MMAS variant is the most explorative variant, while ACS is the fast-
est method. These two variants also count as the only variants which could be applied to a large 
block model in respect to the amount of memory needed. 

The proposed ACO algorithm is able to consider any kind of objective functions in the op-
timisation process. Variable slope angles can be modelled with ease in the generated schedules. 
It is also possible to consider working slope angles by supposing different values for the slopes 
of the inner periods and the most outer phase. The calculation time of the algorithm is highly 
dependent on the number of mine schedules being constructed in each iteration which is usually 
considered equal to the number of block columns in the model. In other words the calculation 
time is not very sensitive to the size of the model and for a double sized block model in each 
direction (eight times more blocks) is expected to be only four times longer. The memory usage 
in MMAS and ACS where only the best schedule needs to be saved during calculations is very 
low. For a block model with one million blocks, the capacity of 4MB will be sufficient for the 
MMAS and ACS variants, for example.

On the other hand there are drawbacks related to the process. At the outset, the process is 
not mathematically proven to always reach the best schedule. Moreover the efficiency of the 
ACO algorithm is highly dependent on the parameters like number of ants, evaporation rates 
and deposited pheromones in each iteration. The found combinations of these parameters for 
this case study are not essentially the best combination for all deposits and block models. Hence 
a trial and error process might be necessary at the beginning to set the relevant combination of 
parameters for each individual case. Finally it is necessary to consider a relatively small perturba-
tion distance during construction of the initial schedule in order to control the size of generated 
push backs. This lets the constructed solutions to be very close to the initial solution. Therefore 
the optimum solution will not always be reachable by all variants of the ACO if it would be far 
from the initial solution.
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