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MODELING OF ACCURATE VARIABLE SLOPE ANGLES IN OPEN-PIT MINE DESIGN 
USING SPLINE INTERPOLATION

MODELOWANIE ZMIENNEGO KĄTA NACHYLENIA STOKU W PROJEKTOWANIU 
KOPALNI ODKRYWKOWYCH ZA POMOCĄ INTERPOLACJI FUNKCJAMI SKLEJAJĄCYMI 

(METODĄ SPLINE’ÓW)

In this paper a new method of modeling variable slope angles has been presented based on the spline 
interpolation method. Slope angle modeling and defining precedency of the blocks are the vital parts of 
almost any open pit optimization algorithm. Traditionally heuristic patterns such as 1:5 or 1:9 have been 
used to generate slope angles. Cone template based models were later employed in developing variable 
slope angles. They normally use a linear interpolation process for determination of slope angles between 
the given directions which leads to sharp and non-realistic pits. The other elliptical alternatives suffer 
from having limitations in defining slope angles in non-geographical directions. The method is capable 
to consider any number of slope angles in any desired direction as well as creating quite accurate and 
realistic pit shapes. Three major types of the spline interpolation including cubic, quadratic and cardinal 
are tested, however, the cubic form is preferred due to more realistic outcomes. Main steps of the method 
are described through a numerical case study.
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W pracy zaprezentowano nową metodę modelowania zmiennego kąta nachylenia gruntu w oparciu 
o metodę interpolacji funkcjami sklejającymi (metoda spline’ów). Modelowanie kąta nachylenia stoku 
i prognozowanie kolejności wybierania to kluczowe elementy algorytmu optymalizacyjnego. Tradycyj-
ne modele heurystyczne oparte o wzorce 1:5 lub 1:9 wykorzystane zostały do wygenerowania kątów 
nachylenia stoku. Do wygenerowania zmiennych kątów nachylenia wykorzystano modele stożkowe. 
Procedura taka zasadniczo zakłada wykorzystanie interpolacji liniowej dla określenia kąta nachylenia 
pomiędzy dwoma kierunkami, co prowadzić może do zaprojektowania bardzo stromych i nierealistycz-
nych kształtów odkrywek. Alternatywne rozwiązania, wykorzystujące modele eliptyczne, mają inne 
ograniczenia – mianowicie określają one kąty nachylenia w kierunkach innych niż geograficzne. Za 
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pomocą tej metody uwzględnić można dowolną liczbę kątów nachylenia w dowolnym kierunku a także 
wygenerować dokładne i realistyczne kształty odkrywek. Przetestowano trzy procedury interpolacyjne: 
z zastosowaniem funkcji sześciennych, kwadratowych i kardynalnych. Zdecydowanie najkorzystniejsze 
i najbardziej realistyczne wyniki uzyskuje się przy zastosowaniu funkcji sześciennych. Główne etapy 
stosowanej metody wyjaśnione zostały przy pomocy przykładu numerycznego.

Słowa kluczowe: optymalizacja odkrywki, zmienne kąty nachylenia stoku, interpolacja funkcjami 
sklejającymi (metodą spline’ów), planowanie wydobycia

1. Introduction

The extensive application of computers in the field of production planning of open-pit mines 
has engaged researchers to develop superior and comprehensible algorithms for answering the 
problem as fast as possible and requiring less computer and human resources. However even after 
about 40 years, the field still needs to develop more powerful methods to define Ultimate Pit Limit 
(UPL), optimum cut-off grade, optimum mine schedule, mine life and capacities. They also need 
to undertake all risks and uncertainties involved in estimation of geological grades and market 
condition. In early studies (Lemieux, 1979; Pana, 1965; Williams, 1974) developed the moving 
cone algorithm for designing the outline of the final pit shape. Several studies were carried out 
later to combine 2D sections into 3D pit shapes (Johnson & Sharp, 1971; Wright, 1987). (Koenigs-
berg, 1982) and (Wilke & Wright, 1984) succeeded in directly applying dynamic programming 
to solve a 3D pit design problem. Lerchs and Grossmann’s graph theory based algorithm (Lerchs 
& Grossmann, 1965) might be one of the most well-known and utilized algorithms in the field 
of open-pit optimization in order to formulate UPL problem. Attempts continued afterwards to 
develop more efficient algorithms for this problem (Hochbaum, 2001; Huttagosol & Cameron, 
1992; Yegulalp & Arias, 1992; Zhao & Kim, 1992). Subsequent studies focused on more gen-
eral problem rather than the UPL which was the production planning problem. This challenging 
problem tries to determine the excavation time and the destination of each exploited block. Early 
researches attempted to solve the mathematical model of the problem (Caccetta, Kelsey, & Gian-
nini, 1998; Dagdelen & Johnson, 1986; Ramazan, Dagdelen, & Johnson, 2005). Recently some 
studies have been reported on using metaheuristic algorithms too. (Denby & Schofield, 1996) 
tried to use genetic algorithm, (Kumral & Dowd, 2005) proposed another metaheuristic algorithm 
based on simulated annealing and newly (Sattarvand, 2009) presented a new algorithm based on 
ant colony optimization. Lately (Sayadi, Fathianpour, & Mousavi, 2011) used a new artificial 
neural network method for optimizing open pit production planning. 

The slope angle of open pit mine is one of the most essential features during whole mine 
planning and design process. It strongly affects the final shape of the mine and the best layout of 
the access roads, waste and low grade ore dumps, stockpiles, processing plant, and other surface 
facilities. Consequently the minable reserves and the amount of ore and waste to be removed dur-
ing mine life are highly dependent to the slope angles; and almost all of the open pit production 
planning algorithms are somehow connected to the definition of the slope angles. For example 
the well-known Lerchs and Grossmann’s graph theory based algorithm uses a list of blocks which 
have to be removed prior to mining of a certain block. This list is normally determined according 
to the proposed slope angles. Similarly, most of the mathematical scheduling algorithms have 
a sequencing constraint in their optimization modeling structure that is also defined based on 
the slope angles. 
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One of the characteristic features of the open pit mining is that the material, which is bil-
lions of years old, has been affected by different pressures, displacements, temperatures, chemi-
cal processes and tectonic forces cannot be expected to show homogenous stability behavior 
in all directions. In other words, every small part of the deposit and surrounding rocks would 
behave quite differently. Authors distinguish two types of the variation in slope angles’ pattern 
of a deposit. The first form, called variable slope angles, considers a set of different slope angles 
in several horizontal directions. This pattern supposed to be similar for all blocks of the model. 
Whereas in second type, called multiple variable slope angles, the slope pattern is considered to 
be individually different for each block of the model based on the rock type. In this paper a new 
interpolation method has been proposed for accurately modeling of the variable slope angles in 
open pit planning and design.

2. Review of slope angle modeling approaches

Early modeling routines were based on the special block configurations such as 1:5 or 1:9 
patterns, i.e., any given block is considered accessible if 5 or 9 blocks on top have been removed 
before. These approaches were suffering from the creation of higher and lower slope angles than 
desired. Later (Lipkewich, 1969) proposed a knight move pattern to estimate the conical exten-
sions on the surface by proposing to use a 1:5:9 pattern which was able to create enhanced slopes. 
However the major disadvantage of all routines was that the created slope angle was dependent 
to the block dimensions. 

The problem has been partly overcome by introduction of the idea of cone template. Nowa-
days cone template is the most frequently used routine in modeling of the variable slope angles. It 
could be defined as a cone that is constructed above a certain mining block, containing all blocks 
which have to be removed before extraction of that block. (Chen, 1976) attempted to insert variable 
slope angles concept within Lerchs and Grossmann algorithm by using this concept. (Dowd & 
Onur, 1993) utilized the cone template concept in their proposed algorithm. Whittle has repeat-
edly reported the incorporation of the variable pit slopes by linear interpolation, (Alford, Whittle, 
& 1986). The basic concept of incorporation of the variable slopes into Lerchs and Grossmann 
algorithm has been addressed plainly by (Khalokakaie, Dowd, & Fowell, 2000). They assumed 
that the slope angles are defined in four principal directions (north, south, east and west) and then 
using an elliptic equation for connecting cone corners on each level a smooth cone template is 
generated. However, in real cases it is almost unpractical to use only four slope angles in four 
principal directions. It gets even more unreliable when the orientation of the block model does not 
coincide the geographical principal directions. Current paper describes a new variable slope angles 
modeling method using the spline interpolation theory. This method is based on the conventional 
cone template technique and has the capability to consider unlimited number of variable slope 
angles in different directions. It defines the cone template by outlining its horizontal sections in 
each level of block model as a set of closed spline curves. Each spline curve attempts to connect 
the corners of the slope lines on a level with the best fitted spline function, Figure 1b. Following, 
after description of the basic theory of polynomial interpolation and spline function, the results 
of the application of the proposed method on a case study has been presented.
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3. Basics

As described, the modeling of variable slope angles of open pits could be expressed as 
defining a smooth 2D curve over intersection points of the slope lines in different azimuths. 
These points are employed as data points to construct an interpolation curve by passing the curve 
through them, (Salomon, 2006).

3.1. Parametric Curves

Ordinarily curves are represented implicitly in form of F(x, y) = 0. In practical applications 
where the complex curves are needed and the function is unknown, a curve would be expressed 
parametrically as P(t) = (f(t), g(t)). In this representation, the functions f and g are the x and y 
coordinates of any point on the curve depending on the variable t that varies over a certain in-
terval, normally [0, 1]. The slope of a two-dimensional parametric curve could be expressed as 

( )
( )

( )

t
y

t
x

P tdy dy dx

dx dt dt P t
� �  , (Salomon, 2006).

3.2. Polynomial interpolation

A polynomial of degree n in x is the function:

 

2
0 1 2

0

( ) ...

n
i n

n i n
i

P x a x a a x a x a x
�

� � � � � ��  (1)

where ai are the coefficients of the polynomial. The function has n + 1 coefficients.

The cubic polynomial is the simplest curve that would fit complex shapes and has the form 
of P3(t) = At3 + Bt2 + Ct + D. The function would be determined by finding its four unknown 

Fig. 1. Cone template constructed by (a) linear and (b) spline interpolation

a) b)
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coefficients using four equations based on the four known quantities denoted here by G1 through 
G4. Therefore a cubic polynomial segment could be expressed as the product:
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where M is the basis matrix that depends on the employed method and G is the geometry vector, 
consisting of the four given quantities (Salomon, 2006).

3.3. Hermite curve

Hermite interpolation is a polynomial interpolation that is based on two points and two 
tangent vectors. In other words, it is a parametric curve that computes the curve segment which 
starts at P1, going in direction P1

t and ends at P2 moving in direction P2
t. For a cubic polynomial 

the function and tangent vectors could be algebraically represented as:

 ( )( )3 2 3 2( ) , , ,1 , , , ( )T
P t at bt ct d t t t a b c d T t A� � � � � �  (3)

 Pt(t) = 3at2 + 2bt + c (4)

Now the known conditions could be used to construct equations for defining the four un-
known coefficients a, b, c and d as following:

 P(0) = P1 (5)

 P(1) = P2 (6)

 Pt(0) = P1
t  (7)

 Pt(1) = P2
t (8)

The solutions are easily obtained as:
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Substituting these values into Equation (3) gives:
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Which could be rearranged in matrix notation as:
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where the matrix H is called the Hermite basis matrix, (Salomon, 2006). Hermite basis matrices 
could be found similarly for higher degree polynomials.

4. Spline Interpolation

A spline is a set of polynomials of degree k (Hermite curves) that are smoothly connected 
at certain data points. Smoothly connection of the curve segments at each data point implies that 
their tangent vectors (first derivatives) to be equal on these points, (Salomon, 2006). Having n 
data points, numbered from P1 to Pn, there will be n – 1 segments in the model; however, a closed 
spline has an extra curve segment from Pn to P1 that closes the curve. It is usually convenient to 
define two additional points Pn + 1 = P1 and Pn + 2 = P2 to define a closed spline. The degree of 
polynomial (k) is normally considered as 2, 3 or 5 corresponding to quadratic, cubic and quantic 
splines respectively. Other degrees are not recommended due to adding unnecessary complexity 
to the calculations. 

The cubic spline k = 3 that was originally introduced by (Ferguson, 1964) ends to the equa-
tions system as:
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By separately substitution of x and y coordinates in P1 to Pn variables and solution of the 
system, the values of P1

t to Pn
t could be found and subsequently inserted in formula (10) to reach 

following equation, (Salomon, 2006):

 ( ) ( )( ) ( )( )2 3
1 1 1 13 2 2
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x and y coordinates of the spline curve points could be determined by giving different values to 
the t from distance of [0, 1]. For a quadratic spline curve, the geometrically representation of 
segments are as (Salomon, 2006):
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Whose required parameters could be found by solution of following matrix similarly. 
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The cardinal spline is another popular spline interpolation which normally supplies a series 
of local regulators to control the tension of the curve by modifying the magnitudes of the tangent 
vectors. The cardinal spline of n given points could be considered as a series of segments, each 
is defined based on four points. Therefore to construct a cardinal spline, the set of points should 
be organized into n − 3 overlapping groups of four consecutive points as following:

 [ ] [ ] [ ] [ ] [ ]1 2 3 4 2 3 4 5 3 4 5 6 3 2 1 1 2 3, n n n n n n n nP P P P P P P P P P P P P P P P P P P P� � � � � �, , , , , , , , , , ,..., , , , , , ,,...,  (16)

Hermite interpolation is then applied to construct a curve segment P(t ) for each group as:
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Where s is a parameter that controls the magnitude of the spline tension. Spline curve cor-
responding to s = ˝ is called the Catmull – Rom or zero tension spline (Catmull & Rom, 1974). 
Decreasing s from 1/2 to 0 leads to reduction in the magnitude of the tangent vectors and resulting 
straight segments. In contrast increasing s from 1/2 to 1 results in a curve with more slack at the 
data points (Salomon, 1999).

5. Implementation of the spline function

Major steps of an accurate cone template construction procedure for a given set of azimuths 
and slope angles are demonstrated in Figure 2. In this process, the shape of a cone template is 
defined by determining its horizontal intersections (Figure 1). Figure 2 shows that each intersection 
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of the cone template on upper levels of block model is defined by a splines curve. Construction 
of each spline is accomplished through the following stages:

• For each slope direction an imaginary slope line is considered and the coordinates of its 
intersection points on each level of the block model are determined by simple trigono-
metric relations. These points are thus called corner points.

• Spline interpolation matrices are generated and solved for the set of corner points on each 
level. 

• Giving values from zero to one to the variable t in the obtaining geometrical functions, 
coordinates of a series of points on each spline segment could be calculated. They are 
called border points in this paper. This is done separately for x and y coordinates.

• Border points are sorted according to their azimuth from 0° to 360°. Then all blocks of 
the desired level are checked to be inside or outside of the cone template by comparing 
their distance from the cone apex to that of the border point in their direction.

procedure Determining of pit shape

input azimuths and slope angles

for i = 1 to level number do

Find corner points

Create spline matrix and solve

Calculate the border points

Find in-cone blocks

End-for

end-procedure

Fig. 2. Process of creating splines

A computer program is developed in visual studio (C#) 2010 express edition programming 
environment for implementation of the calculations. Results of the application of the algorithm 
with cubic, quadratic and cardinal spline (with s = 1) on six given corner points are shown in 
Figure 3. Examinations show that the results of quadratic and cardinal splines do not reveal 
realistic in most of the cases, see Figure 3. Nevertheless, cubic spline is, indeed, able to produce 
perfectly smooth and representative curves between points. 
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6. Case study

In order to test the process, a hypothetical block model containing 31×31×9 blocks with 
block dimension of 10×10×10 m parallel to the principle geographical directions is considered. 
Slope configuration is also considered to be as Table 1. A sample block is considered in the mid-
dle of the lowest level of the block model and accurate cone template is generated using cubic 
spline interpolation. 

Initially the set of corner points are defined on each level and spline matrix is constructed 
and solved for each set. For example the coordinates of the corner points on first level could be 
expressed as Table 2. The matrices of spline interpolation for these corner points are as following.

TABLE 1

Input data set

Point 1 Point 2 Point 3 Point 4 Point 5
Azimuth 12 93 128 145 280

Slope angle 44 43 44 41 40

TABLE 2

Corner points on the first level of the case study

Point_Number P1 P2 P3 P4 P5
X value (m) 2.1530 10.7090 8.1601 6.5982 –11.7365
Y value (m) 10.1290 –0.5612 –6.3754 –9.4233 2.0695

For x coordinates, equation (12) becomes:
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Fig. 3. Example results of a) quadratic spline b) cardinal spline c) cubic spline

a) b) c)
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this equation is solved with the values of Table 2, thus we have:
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Similar equation is written for y coordinate and its solution becomes:
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Substitution of the solution in the geometrical formula (i.e. equation (13)) of the spline 
results in:
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Giving different values to variable t from the distance of [0,1], border points of the spline 
are determined and converted to the polar coordinate system to produce the distance of border 
points from center block. Selected numbers of the results are indicated in Table 3 for azimuth 
distances of 10 degrees. Final result is shown in Figure 4.

TABLE 3
Distance of the border points from center block in different azimuths

Azimuths Radius Azimuths Radius Azimuths Radius Azimuths Radius
0 10.22 90 10.64 180 11.50 270 12.28
10 10.33 100 10.98 190 11.73 280 11.91
20 10.36 110 10.88 200 11.91 290 11.49
30 10.27 120 10.51 210 11.95 300 11.01
40 10.13 130 10.40 220 11.91 310 10.55
50 10.02 140 11.24 230 11.94 320 10.19
60 10.024 150 11.50 240 12.05 330 9.98
70 10.14 160 11.40 250 12.22 340 9.95
80 10.37 170 11.35 260 12.34 350 10.04
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7. Conclusion

Presented algorithm is potentially able to enhance the quality of generated pits in almost 
the entire of open pit production planning procedures. Customarily linear regression method is 
used in current commercial software for finding of the unknown slope angles between the given 
directions that leads to non-realistic polygonal shapes of the pit. In fact, the proposed procedure 
substitutes the sharp polygonal intersections of the cone templates by a set of smooth spline 
curves on the block model levels. It can consider any number of slope angles in any direction. 
Considering the fact that the cone template construction is only done one time for each slope 
region of the model during whole open pit optimization process, increasing the calculation time 
due to the application of the presented algorithm will be negligible (only some milliseconds). 
The process is also capable to be utilized in all open pit optimization algorithms for designing 
ultimate pit limits or production scheduling.
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