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CALCULATION OF THREE-DIMENSIONAL FIELDS
IN TASKS OF DEFECTOSCOPY
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Summary: The mathematical models of magnetic field, whidbvato determine. leakage field of defects
considering of a presenting the researched doneainrhagnetic cores of the magnetically sensitieenent
are considered in article. The models allow to at@aumeral calculation of an electromagnetic finldores
created by both the field of a defect, and thalfetcitation. The calculation allows to receiveagator the
rational arrangement of ferromagnetic cores, armb &b determine the transformation function of the
magnetically sensitive element.
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INTRODUCTION

In defectoscopy the solution of field tasks of cddtion of leakage field of
defects, forming of a field in cores of magnetisteyns etc. is the basic condition of
creation of highly effective inspection systems.eTlask of calculation of a
magnetostaticfield can be divided into three stagé the first stage the mathematical
formulation of a problem based on the Maxwell'sagiqun is developed and reduced to
getting the integral or differential equations #oconsidered boundary problem. At the
second stage the simplifications and assumptiodssinibution of fields and sources in
considered domains are entered. The third stagkevsted to getting of numerical
results.

According to the modern publications devoted tobpgms of the numeral
solution of magnetostatics tasks, three methodsh&renost common: finite difference
method (FDM), finite element method (FEM) and imegquation method (IEM).

In FDM the problem is initially formulated as difémtial equations in partial
derivatives [Demirchan K.S., Chechyrin V.L., 198Bin V.P., 1985; Marchyk G.I.,
1980; Samarskiy A.A., 1971]. In the researched doraaquantity of discrete points
associated with the set — grid, and functions afticmous argument associated with
functions, determined on a grid. For each meshtpdifferential difference equation
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associated with differential is written approximgtevhich consideration of boundary
conditions, make system of the algebraic equations.

The theory FEM for the solution of the elliptic eqions is expound in works
[Zenkevich O., Morgan K., 1986; Sil'vester P. FarR, 1986; Streng G. Fix J., 1977;
Norri D., de Friz J., 1981]. This method is redudedresearch of global function
representing the considered phenomenon in all pahinalyzed domain. The whole
domain is divided into final adjacent subareasaffielements), the sought global
function is drawing in parts on each of these elgme

The main drawback of FEM and FDM is the necessityirhit the calculated
domain which leads to more calculation errors. €h@r of results of calculation by
these methods can be determined by realizatioemdated calculation with increased
number of elements.

Recently IEM based on the theory of the potentialsarface or volumetric
distribution of field sources has been used wid€lsinberg G.A., 1962; Aleksandrov
G.A,, Fillipov E.S., 1983; Tozoni O.V., 1975]. Tidtion from differential equations of
the electromagnetic field to integral equations dene by the Green function.
Characteristic in IEM is the existence of the laugeiety of the integrated equations,
differed on properties of solution and of the forafswritting. Therefore the search of
economic mathematical models and constructiondfettere computing algorithms of
the solution of the integrated equations is ratirgent. The analysis of the references
on IEM shows, that its using is most expedient atcwation of three-dimensional
fields.

OBJECTSAND PROBLEMS

The magnetic field in homogeneous anisotropic @mwirent is created by
distribution of direct currents with densﬁy located in domaifV;, limited surfaceS.
The vector of inductancB and the field vectoH submit to the equations

rotH=49 1

divB =0 2)
in domainV; and to the equations )

rotH=0 3)

divB=0 (4)

in unlimited domain Ve, which is external in relation t&;. Choosing the Cartesian
system of coordinates, where datum limey, z are parallel to the main lines of tensor
of absolute permeabilityﬁa=u0uij, and let i, a diagonal tensor of relative

permeability, andp,,l,,l, to be its diagonal components (other componergs ar
equal to zero). Then
B =i ot Hx+ j tiotty Hy + K tio 1, H; . (5)
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Put vector potential by means of a correlatidr rotA . Granting thatH = 3 is
Ha

from (1) and we get the equation relative&o
rotérotﬂ = U0 (6)
a

Having entered new expression for vector potenti&i = [JA , assume
divAl =0. (That the given condition can be really execwsdt is established below).
Then, after replacement variables /|, X4, y=\/Eyl, z=4/U, 2, the equation
(6) can be written down as one vector Poisson'atétu

?A 0°A 0*A

- -
= = o Hy My 1O - (7)
6x12 6y12 6212 0Py

The solution of the given equation can be writtewd as

- 1 -
Auq = Hokbcky Hy 7 — [ og——- (8)
Viq

Passing to original coordinatex, y, z and function A, we receive for it the
following expression

- 6 \V/
Aq = Ho| Hx Hy Hy %W\J;l [ Rap 9)
where:
2 2 2
Ra = ba=x)", Ba=o)", (a=2) (10)

Hy Hy Hy

Granting thatA; = ZA , it is easy to notice, that a conditiaivA; =0, with the
help of which (6) received (7) is carried out, if

a

YA
dIVq\J; I = =0. (11)

If divd =vaZ+Db? in volumeV;, that follows from the equation (1), then the

equality (11) will be identity at anyone differeatie function, put on a pIacB;,‘1
[Tamm I.E., 1976]. Thus, the formula (9) really ggvthe solution of the equation (6),
through which vector® andH can be evaluated in equations (1) — (4). In paldic

rotA

for the field vectorH = we receive the formula

Ha
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A ! [ % 7] dv (12)

q= P
Ayt v RS
where: r = T(xq —xp) +](yq —yp) +R(zq —zp); and the functiorR, is determined

by the formula (10). For a linear current with feitdn the closed circuik the formula
(12) becomes

g [dip, T
Hy = .
Aty RS

]dvp . (13)

This formula evaluates the Biot-Savart-Laplace |fow homogeneous anisotropic
environment.
There is the formula similar to (9) that will beedsin construction of the integral

equations:
- 1 .- dSy
Aq = Mo~ Hx My Hy —~ﬂjlp—de ) (14)
4mis " Ra
where Tp is density of superficial currents.

The exceptional vector potential also needs thiasgatential for calculation of

a magnetic field in piecewise homogeneous anismrepvironment. The differential
equation for it, is got out from the equations &8y (4):
0° 0? 0°

S e P )

15
X ay? (13)

The fundamental solution of the given equatiorhéstnctiorR;il, whereR, is

determined by the formula (10). Considering, thatsbme domain of anisotropic
environmentV the volumetric magnetic charges with dengitgre located, doing the
same as at a formula construction (9), it is pdsgibfind:

1 de

g = [ Pp
AT [ttty Ra

— and the similar expression for potential of apdenlayer of charges distributed on a
surfacesS:

ds
1 o p

_477\/,Ux,uy//z[éﬁ PR,

9q (16)

Nothing, that potential (16) satisfies equation)(@®erywhere outside &.

Considering nowadays the technique of the construaif the integral equations,
we use the following model problem. The constamtenus with given densitys, are
located in unlimited domaiv, of anisotropic environment with diagonal tensor of
magnetic permeabilityl ., = Yol (fig. 1).
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S

Fig.1.

The internal limited domaiiv; is also filled with anisotropic environment with
the diagonal tensor of magnetic permeabilfiy; =uoH; (H; #H.). The constant

currents are located in domaigdV, . The vectorsH;, He of a secondary field
caused by secondary sour@&sshould submit to the equatiorid, — equation (1) in
domainV, and equation (3) in domaif - Vy; a vectorI:|i — equation (3) in domain
V.. The vectorB should satisfy with the equation (2) in all spa@e;ludingS.

On environment interface the conditions of a caritintangential components of
making complete field vectors should be carried ddft=H;+Hg;, Hs =Hgs+Hge .
The vectorHg; of a field of the given currents is determinedyoiri domainV; on
conditions that all space is filled of homogenearssotropic environment with
tensofl,; , similarly the vectoH, is determined only in domaW, on conditions that
all space is filled of homogeneous anisotropic emment with tensqi,,.. According

to the given representation of an external fiedshgential components of vectors of a
secondary field should submit to a boundary cooditi

|:ﬁ,|:|e—|:|i:|=|:ﬁ,|:|0i—|:|oe:|. (17)
Besides on a surfac® the normal components of the induction of a coteple
field B/, B} should be continuous. It will give one more bouydzondition
(ﬁa[/e He— /4 Hi)z(ﬁlﬂi Hoi~ fe I:|Oe)- (18)

To construction of the integral equations in theegitask it is necessary to apply
the domain separated method, according to whichdihmainsV;, V., the special

representations for field vectok, He should used. In domaM, a sought vector we

shall present abl = rotAe , WhereAe we shall determine by the formula (14). In result

A= m—[ip’ re]dSp, (19)

g~ 3
4rmg s R3e
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where: M, = /UM M,; Rge is determined by the formula (10) at
Hx = Hyes uyzuyel Mz =Hzer X=Xgy ¥Y=VYer 2=Z,.
In domainV; vectorl:li is determined as gradient of potential (16):

o0 =5

471“! mj s Rgu

iq (20)

where: M = MU M, ; Ry is determined by the formula (10) at

Mx =Hyeir Hy =Hyis Bz =Hz0 X=X, Y=Y, 257

In expressions (19), (20) vectohq, He are determined outside &. To use
boundary conditions (17), (18), it is necessaryfind limiting value of expressions
[ﬁ,ﬁe], [ﬁ,Hi], (ﬁ,[/e He), (ﬁ,[/i Hi) on a surface S. Considering that the paojnt
is normal to a surfac8 in domainV, (outside ofS). According to it S as a Lyapinov
surface [4], we shall take up expression

~ Agl iy, T
el C e
Using the formula[a[b c” (a b) where a,b,é are an arbitrary

vectors, reduce (21) to assume:

[q' } Eﬁ'( )p

In this expression at|1S the second part is improper integral, that is jibs$o show
with the help of the theory of potential [GunterWN, 1953]. In the first part we shall

Xe .yj_: ye.Z]_: Ze,

[ﬁ 1p (nqul) dSp1,
R

U‘jre( a)sp. (22)

4rmeg & Rge

make replacement of variableg; = with the result

that it looks like

where: index "1" indicate on using coordinates;, Yy, 2z;; and

2 2 2 . : .
Ry =\/(x1q —xlp) +(y1q —ylp) +(zlq —zlp) . This expression is normal
derivative of potential of a simple layer with dEylsTlp. Its limiting value on S is
known [Gunter N.M., 1953]:
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Uﬁ 1p (nlq,sRl) dSpq = ; +_ Uj Ep (nlq,sRl) ds,. (23)
R1 a_s, R

Coming back to variables,, ye, ze and substituting the received expressions in
(22), we shall receive, that &

[ﬁq,ﬁeq]:rﬁ+ 1 m[ﬁq[i—p’ Feﬂo|sp. (24)

2 4mmg g Rge

The limit of expressior[ﬁ,l:h] on a surfac&, where the vectoH; is submitted

by the formula (20), is singular integral existing the principal value [Mixlin S.G.,
1977]. In result, substituting the received expmssfor [ﬁ,ﬁi], [ﬁ,ﬁe] in boundary

conditions (17), we receive first of the soughegral equations:

- Ag| ip: T o
iq +2n:::neus‘]|: q[;ge ei|:| P ZWemIUSj p[Rgl :|dS =2 [ﬁq'HOiq_HOqu(25)

For construction of the second integral equatiorisitnecessary to calculate
limiting value onS with the expressior(ﬁ,[/i Hi), where H, is determined by the

formula (20). Doing the same as at a formula costrn (23), we shall receive, that on
S

B g, 1 g,
(n ,uH) 7p+4nmi Sap(Rgl )dS (26)

The limit of expression(ﬁ,ﬂe I:Ie) on a surfaceS, where the vectoH, is

submitted by the formula (19), is singular integtal result, substltutmg(n aH )and

(24) in boundary conditions (18), we receive secofithe sought integral equations:

p ' 3
2nm| S ai Mg S Rae

1 Fig T 1 \RqA|ip % I
(o} +—m0'p|:(:—3l)—k1]dsp+2 Dj( |: :Ddspzz(nq”uﬁ HOi_:ueHOe)'(27)
The equations (25), (27) form sought system ofdrak equations are for the
solution of the following model problem. The comstl, is added to a nucleus of first
integral that is equivalent to execution of a ctindi

flopds, =0, (28)
S

which is necessary for unique system solution (25)).
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Fig. 2.

If the sources of an external field are locatedr@aV;, the sought system of the
equations can be constructed on the same waye&Vatensity of a secondary field is

determined al = 0%

— , where:
Ha
- - ds
Ai = ~1 ip P
ArflbeMi 5 Rai
There is this are¥, H, = -0¢, , where:
1 ds
Pe = []j ’

The formulas for defined valu{ﬁ,ﬁi] and (ﬁ,[/e I:|e) onS are

A= _i% * 4nlmi Usi[nq [:éi ' dSp (29)
(7. e Fle) = —% " 47711“8 fo (r:;:) ds, (30)

After substitution of expressions f(ﬁlo, He in boundary conditions (17), (18)

and using the correlations (29), (30) the followsygstem of the equations similar on
structure to system (25), (27) will turn out:

- m[nq[lm riﬂdsp+

27m; g R3;

o, [ﬁq’Fest =2 [figHoi~Hoe | (31)

- P p
2MheMe 5~ R3e

1 (Ag) 1 (ﬁq v F'J) Lo s
ds, ds, =2(n,,Hpi—H 32
Tp ¥ 27mg @Jp RS, P 2Mime g RS P (nq o Oe) (32)

This system has the unique solution, if akgas one connected system. The
integrated operator rather in the second equation does not need updatinghes
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integrated equation of an external Neumann's pnoliias the unique solution. If the
areaV; is biconnected and limited by surface of a torbfgpe, it is necessary to use an
additional condition as

§(i.Ae a1 =0,

|

e

where: |, is closed circuit laying on the external part®f i is the unit vector of
normal tolg, laying in a flatness, which is tangentSo(fig. 2). The given condition

provides equality to zero of circulation of a varcllEle on any circuit covering the
surfaceS. After multiplication onkqn, it should be added to the equation (31), that will
supply the unique system solution of (31), (32).

CONCLUSIONS

The offered technique of construction of the intdgd equations allows to
calculated leakage fields of defect consideringa giresenting the researched domain
ferromagnetic cores of the magnetically sensitieanent. As the cores deform a field
of defect and they are sources of an electromagfield, so exact definition of size of
a field of defect necessary for the subsequennitiefn of the size of defect, needs the
joint solution of system of the equations descbas a field of the core, as a field of
defect on a surface of test object.
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PACYET TPEXMEPHBIX MATHUTHBIX ITOJIEN B 3ATAYAX TE®EKTOCKOITAA

Bagum Mupomnukos, Hukonaii Kapmanos,
Cepreii Koctun, Hataaba MapTbIHeHKO

AHHOTanus: B cTaThe paccMaTpHBAaIOTCS MAaTEMaTHYECKHE MOJEIH IO, KOTOPBIEC MO3BOJIAIOT OMPEIEIATh
HoJjie paccesHus AedeKTa ¢ y4eToM HAaXOXACHHsA B pacdeTHOH o0sacTH (heppOMArHHUTHBIX CEPICYHUKOB
MarHUTOYyBCTBUTCIBHBIX ~ JJIEMEHTOB. MOJEIN IMO3BOJSIIOT — BBINONHATH  YHCICHHOE  BBIYHCICHHE
3JICKTPOMArHUTHOTO TIONS B 3JIEMEHTAX, CO3/IaHHBIX KaK 00NacThio Ae(eKTa, TaK M IMOJeM BO30YKJICHHEM.
BblunciieHnst TO3BONSIOT TI0Ty4aTh JAHHBIC I PAlOHAIBHOTO MCIIONB30BaHUA (EeppOMAarHUTHBIX
CEepICYHNKOB, a TAKXKE UL ONPEICICHHS IePeJaTOYHOH (yHKIMH MarHUTOUYBCTBUTEIBHBIX JJIEMEHTOB.

Ki1roueBble cji0Ba: MarHUTHOE T0JIe, 001acTh AedeKTa, NedeKTOCKOHs.



