
1. Introduction

On account of growing demands towards structural 
materials, particularly those used in means of transport, further 
research must be conducted in order to analyse and identify 
numerous parameters of these materials. Due to environmental 
reasons and the nature of the work people perform in transport, 
a fair share of the material parameters studied is a set of 
vibration properties. Vibration propagation characteristics 
prove to be particularly important in this respect. In times when 
load bearing structures of automotive vehicles and other means 
of transport tend to be “trimmed down” more and more and at 
all costs, the range of materials used is constantly growing. It 
is therefore important that studies dedicated to assessment of 
vibration properties of new structural materials be conducted 
before they are implemented on a wide scale. The research 
undertaken by the authors in this field required extensive 
analyses and a multidisciplinary approach, which could only 
be ensured a widened team of researchers. 

Due to the deleterious effect of beryllium compounds 
typical of both production and processing, melting of copper 
beryllium alloys was banned in the European Union countries. 
Cu-Ti alloys are currently considered to be among materials 
which may prove as potentially the best substitutes of copper 
beryllium alloys. They are characterised by mechanical 
properties comparable with copper beryllium alloys, and 
electrical properties nearly as beneficial as those of the latter. 
A specific set of these properties is developed by choosing 
appropriate chemical composition, including particularly the 
Ti content, as well as conditions of mechanical working and 
final heat treatment [1]. 

Adding Co to Cu-Ti alloys improves their properties 

significantly. However, it also triggers certain grain 
breakdown, hardness and conductivity reduction compared to 
Cu-Ti alloys as well as a decrease in the values of temperature 
and time needed to attain maximum hardness under conditions 
of ageing. The function of cobalt is also to prevent the effect 
of overageing, which is the feature decisive of the similarity 
between Cu-Ti-Co alloys and copper beryllium alloys [2-4].

2. Material

The research material was an array of three-component 
Cu-XTi-Co alloys with the chemical composition assumed to be 
Cu-2Ti-1Co and Cu-6Ti-1Co (wt. %). The material was melted 
in the VIM 20-50 vacuum induction furnace manufactured by 
SECO–WARWICK. The charge material used included high-
purity oxygen-free copper, master alloy of Cu-30 wt.% Ti and 
cobalt of 99.99 purity. The material was melted in a magnetite 
crucible and poured into a graphite mould to form an ingot of 
40 mm in diameter and the length of ca. 350 mm.

TABLE 1
Chemical composition of research alloys

Chemical 
composition 

assumed

Element content, wt. %

Ti Co Cu

Cu-2Ti-1Co 1.4182 1.6674 BalanceCu-6Ti-1Co 3.5060 1.5524

Studies of the microstructure were conducted using the 
Nikon Epiphot 200 optical microscope. The qualitative and 
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quantitative microanalysis was performed by means of the 
Hitachi S-3400N scanning microscope featuring the EDS 
X-ray spectrometer manufactured by Thermo Noran. Hardness 
measurements by the Vickers method were conducted within 
a cross-section of ingots using the Zwick hardness tester and 
applying the load of 1 kG (hv1). Electrical resistivity was 
tested in accordance with a classical constant current four-
contact method.

The Cu-XTi-Co alloys produced in the induction furnace, 
in the as cast condition, were characterised by a dendritic 
microstructure (Fig. 1) with clear intermetallic phases 
scattered around interdendritic spaces. The morphology of 
these phases has been provided in Fig. 2. An analysis of the 
images obtained implies that as the content of Ti increases in 
the alloys studied, the surface share of these phases and their 
magnitude also increase. On Ti contents of ca. 6%, the phases 
distributed around the interdendritic spaces assume the form of 
a continuous lattice of precipitates (Fig. 1b).

For the complex analysis of material many properties 
have to be considered. Starting from metallurgical [5-7], repair 
(i.e. welding) [8-16] and finishing on wear properties [17-19].

a)  

b)  
Fig. 1. Microstructure of research alloys: a) Cu-2Ti-1Co and b) Cu-
6Ti-1Co as cast

Fig. 2. Precipitates in interdenditic spaces of alloys: a) Cu-2Ti-1Co 
and b) Cu-6Ti-1Co after casting

Both the qualitative and the quantitative analysis of the 
precipitates implies presence of Ti-enriched phases (20-35 wt. 
%) and a small number of spheroidal phases rich in Co (40 
wt%). Sample results of analysis of both alloys studied have 
been provided in Fig. 3. The intermetallic phases occurring in 
Cu-Ti-Co alloys are usually of the Ti2Co and TiCo type. 

As the titanium content increases, so does the hardness 
of alloys, and on the test contents of 2 and 6 wt. % of Ti, its 
average value is 150 and 278 HV1, respectively. What the Ti 
content increase also affects is the alloy uniformity reduction, 
this to be evidenced by distributions of harness examined 
along the ingot’s longitudinal section (Fig. 4).

Fig. 4. hardness distribution on the longitudinal section of ingots

Results of studies of electrical resistivity have been 
collated in Table 2. As one may have expected, an increase in 
the content of Ti within the range examined causes an increase 
in the electrical resistivity from the value of 1.5 up to 2.1 for 
alloys of the Ti content of 2 and 6 wt.%, respectively.
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TABLE 2
Electrical properties of research alloys

Alloy
Electrical resistivity, 

[Ω ∙ m]
Electrical conductivity, 

[Ω ∙ m] -1

Cu-2Ti-1Co 1.562×10-7 6402048.656
Cu-6Ti-1Co 2.106×10-7 4748338.082

3. Simulation studies of vibration properties 

The vibration properties of materials and mechanical 
systems become very important [20-25]. Also the current state 
of art presents many applications of vibroacoustics methods 
in material science and mechanical engineering [26-34]. 
Material samples assumed to be used in studies were formed 
by mechanical working. The sample shape envisaged for the 
studies has been depicted in Fig. 5. The figure also shows the 
points available for mounting of vibration acceleration sensors.

Fig. 5. Shape of test samples

Experimental studies of modal properties were conducted 
in two stages. On the first stage, for the sample shape assumed, 
simulation studies were performed to enable preliminary 
determination of a useful frequency band. The results thus 
obtained enabled determination of the form of potential 
mechanical deformations which may occur for the pre-set 
sample shape and the corresponding free vibration frequencies. 
Results of the simulation analysis obtained for the alloy 

designated with the working symbol of Cu-2Ti-1Co have been 
provided in Table 3. For the material designated as Cu-6Ti-
1Co, the respective results have been collated in Table 4. The 
initial five successive forms of free vibrations were selected 
for further analysis.

TABLE 3
Results of modal simulation analysis for the Cu-2Ti-1Co alloy

Item Vibration form Free vibration 
frequency [Hz]

1 5,895

2 7,711

3 12,559

 4 12,792

Fig. 3. Sample results of the EdS analysis of: a) Cu-2Ti-1Co (points marked in Fig. 2a) and b) Cu-6Ti-Co (points marked in Fig. 2b)
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5 15,375

TABLE 4
Results of modal simulation analysis for the Cu-6Ti-1Co alloy

Item Vibration form Free vibration 
frequency [Hz]

1 5,956

2 7,791

3 12,689

4 12,924

5 15,534

4. Experimental modal analysis 

Mechanical properties of the materials examined were 
assessed by application of experimental modal analysis. 
Based on previous simulation studies, it was found that free 
vibration forms of the samples tested displayed a high degree 

of similarly. Differences in the free vibration frequency values 
resulted directly from the properties of the materials studied. 
For the alloy with the Ti content of 6 %, one could observe an 
effect of the free vibration frequency increase for all vibration 
forms analysed. Another step in the research conducted was 
the study of real objects conducted in a free-free system.  Once 
the test samples had been mounted at the chosen measuring 
point of the vibration acceleration sensor, they were freely 
suspended (without any contact with the surrounding). Thus 
the test samples were deprived of any bonds, and so one could 
assume that, after being induced by an impulse of a force, their 
dynamic response would be closely associated with their shape 
and properties of the material they were made of. A sample 
prepared for the tests in question has been illustrated in Fig. 6.

Fig. 6. Suspension of the sample prepared for testing of dynamic 
properties of the material

The experiments conducted in order to establish dynamic 
properties of the materials studied consisted in inducing 
vibrations of the test sample by means of an impulse of a force 
while simultaneously measuring and recording the course of 
the input function and of the vibration response. The inducing 
instrument used was a PCB modal hammer of an appropriately 
pre-set frequency band. The test sample’s dynamic response 
was measured by means of a piezoelectric sensor manufactured 
according to the ICP standards. A two-channel dSP module by 
SIGLAB was used to record time courses of the input function 
and of the test sample’s response. A follow-up analysis of 
the results thus obtained was conducted in the MATLAB 
environment.  

Modal parameters of the material samples tested were 
estimated by application of the Frequency Response Function 
(FRF). Firstly, the Fourier Transform was applied to establish 
frequency spectra of the recorded time courses of the input 
function and of the vibration response:

(1)

where: 
Px (ω) – input signal spectrum 
Py (ω) – response signal spectrum 
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Next, own spectra of the input signal, designated as 
Pxx(ω), as well as mutual spectra of the input and vibration 
response signals, designated as Pxy(ω), were determined and 
identified as follows:

(2)

where: 
Px*(ω) – conjugated complex spectrum of the input signal
Py*(ω) – conjugated complex spectrum of the response signal
∗ – complex conjugate of the signal 

What followed was the determination of Frequency 
Response Functions:

(3)

Since the FRF determined was a complex function, in 
order to establish the amplitude and frequency spectrum, 
moduli of the former were calculated. Results of the 
experimental modal analysis of the material samples studied 
have been provided as Frequency Response Functions 
in Fig. 7. On account of the large range of dynamics of 
the amplitude values established for the free vibration 
frequencies determined, precluding their analysis in a linear 
range, the study results obtained have also been provided in 
a logarithmic scale in the figures below.

a)       
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Fig. 7. Frequency Response Function established for the 
sample marked as Cu-2Ti-1Co, assuming the input impulse of 
a force in a direction transverse to the sample axis: a) in the 
linear scale, b) in the logarithmic scale
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Fig. 8. Frequency Response Function established for the sample 
marked as Cu-2Ti-1Co, assuming the input impulse of a force in 
a direction concurrent with the sample axis: a) in the linear scale, b) 
in the logarithmic scale
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Fig. 9. Frequency Response Function established for the sample 
marked as Cu-6Ti-1Co, assuming the input impulse of a force in 
a direction transverse to the sample axis: a) in the linear scale, b) in 
the logarithmic scale
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Fig. 10. Frequency Response Function established for the sample 
marked as Cu-6Ti-1Co, assuming the input impulse of a force in 
a direction concurrent with the sample axis: a) in the linear scale, b) 
in the logarithmic scale

5. Conclusions 

The article provides a discussion concerning the 
comprehensive research on vibration properties of new 
copper-titanium alloys. It comprised material analyses, 
simulation studies and experiments conducted on real objects. 
What this approach enabled was a multi-criterion assessment 
as well as verification of the results obtained and a dedicated 
procedure of drawing conclusions. The article provides 
preliminary research results obtained for Cu-2Ti-1Co and Cu-
6Ti-1Co alloys, the mechanical properties of which are very 
prospective. An additional advantage of the method proposed 
is the capability of identifying alloy types by application of 
non-destructive vibratory methods.

Having applied a method thus devised, one could 
determine that, for the Cu-2Ti-1Co alloy, slightly lower values 
of free vibration frequency could be observed, similarly to the 
simulation studies. It made it possible to distinguish between 
types of materials the samples were made of. Depending 
on the direction in which the vibration inducing force was 
acting, higher amplification occurred for those types of 
the test sample deformations where the main deformation 
direction corresponded to the force impulse direction of action. 
According to the authors, this method may be proposed as 
a supportive means for assessment of correctness of properties 
established for the given structural material examined. What 

was assumed for purposes of the research method developed 
was the invariability of geometrical dimensions of samples and 
input points as well as of the vibration response measurement. 
Hence the conclusion that differences between the results 
obtained were due to diversified properties of the new materials 
studied.
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