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Abstract 

An active beam-pointing stabilization system has been developed for a high-power KrF laser system to 

eliminate the long-term drift of the directional change of the beam in order to have a stable focusing to a high 

intensity. The control of the beam direction was achieved by a motor-driven mirror activated by an electric 

signal obtained by monitoring the position of the focus of the output beam. Instead of large sized UV-sensitive 

position sensitive detectors a simple arrangement with scatter plates and photodiodes are used to measure the 

directionality of the beam. After the beam stabilization the long-term residual deviation of the laser shots is ~14 

µrad, which is comparable to the shot-to-shot variation of the beam (~12 µrad). This deviation is small enough 

to keep the focal spot size in a micrometer range when tightly focusing the beam using off-axis parabolic 

mirrors.  
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1. Introduction 

The stability of laser parameters is essential in the investigations of laser-plasma 
interactions, especially in case of tightly focused short pulse laser beams. The beam pointing 
stability is one of the most important requirements for high-power laser systems. Diffraction-
limited laser beams of short wavelengths can be focused into a very small spot [1]. Especially 
in case of beam focusing with off-axis parabolic mirrors, it is crucial to avoid the 
astigmatism. Excimer laser amplifiers have a low saturation energy; therefore, in order to 
obtain an intense radiation of an excimer-amplified UV radiation, long optical path-lengths 
and large beam diameters have to be used. The focusability of practical UV laser systems is 
dependent on eventual phase distortions and the shot-to-shot fluctuation – arising from 
mechanical vibrations of optical components, optical tables – which can be hardly 
eliminated. Moreover, a mechanical vibration of the temperature-induced mechanical 
deformations results in a long-term drift even for our modest-size, 100GW KrF laser system 
[2] which can well be corrected and stabilized by an active beam-pointing stabilization 
system.  

The present paper aims to develop a simple method for improving the directional, i.e. the 
spatial stability of the laser beam. It is well-known that besides the spatial drift, a long-term 
temporal drift is generally present in the time domain in pulsed gas lasers as well. This is 
because in case of the high voltage discharge pumping of the KrF laser amplifiers the 
switching time of thyratrons – called the anode delay – is not constant, due to the temperature 
modifications it has a long-term drift of a few hundred nanoseconds. Thus, in order to reduce 
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this jitter a precise time-synchronization was developed earlier to compensate this long-term 
drift of the anode delay [3].  

Several studies were carried out on the directional stabilization of different laser systems 
(cw, pulsed laser). Most of the control devices are based on four-quadrant photodiodes [4] 
and piezo-driven mirrors. S. Grafström et al [5] reported the stabilization of the output beam 
of a cw free-jet ring dye laser. An automatic beam alignment system using personal 
computers for the optimization was developed for pulsed infrared lasers [6]. Beam 
stabilization systems were also introduced to improve the direction properties of Ti:sapphire 
lasers. T. Kanai et al [7] built a system for the beam pointing stabilization of a high-power 
femtosecond laser operating at the repetition rate of 1 kHz. Stabilizing-monitoring both the 
near- and far-field distribution was realized for the single-shot operation or for repetition 
rates below 2 Hz by G. Genoud at al [8]. M. Mori at al [9] developed a beam-pointing 
stabilizer for improving the long-term pointing stability of a 10-TW laser system.  

Laser plasma experiments with high-intensity KrF lasers generally require tight focusing 
of the beam. The focusability of KrF excimer laser systems is generally very good, due to a 
short wavelength and the minimum optical distortion in the gaseous active medium [1]. The 
nearly diffraction-limited beam allows to generate focal spots of diameters less than 1 µm, 
which is - however - very sensitive to the beam pointing, especially in case of focusing by 
off-axis parabolic mirrors. Due to the earlier-mentioned low saturation energy density of the 
KrF amplifier the diameter of the laser beam is large. Most of commercially available 
position-sensitive detectors are produced for small-size beams of the infrared radiation of 
solid-state laser systems. Large-sized position-sensitive UV detectors are difficult to obtain 
and are very expensive. In our laboratory an active beam-pointing stabilization system was 
developed to compensate for directional drifts of the ultrashort excimer laser beam. Using 
photodiodes with a scatter plate instead of a quadrant detector is much less expensive and can 
easily be matched to the actual beam size. The position-sensitive detector monitors the 
position of the laser pulse in the focus. Basing on this information a feedback system with a 
motor-driven mirror aligns the laser beam to the adequate direction. 
 
2. Description of the stabilization system 

The basic component of the beam-pointing stabilization system is the position-sensitive 
detector consisting of 4 photodiodes (BPW21R) positioned behind a quartz scatter plate, as 
illustrated in Fig. 1. The photodiodes are situated 35 mm behind a 2.5 mm thick scatter plate. 
Two rectangular metal plates of 0.8 mm thickness separate symmetrically the four diodes to 
form four spatial segments (13x13 mm each). The illumination is detected by these 
photodiodes when the laser pulse is focused onto the centre of the scatter plate. It is shown 
herewith that this arrangement is a suitable position-sensitive detector even with focusing the 
laser beam and thus using a small-sized detection system. 

 

 

Fig. 1. The spatially-sensitive detector, four segmented diodes behind a scattering plate.  
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The glass windows of the photodiodes were replaced by quartz windows to ensure the UV 
transparency. These photodiodes give signals proportional to the intensity, therefore the ratio 
of the diode signals is dependent on the position of the incident laser pulse. In our 
experimental arrangement the laser beam was focused onto the center of the scatter plate with 
a 56 µm diameter of the focal spot (FWHM). The distance between the scatter plate and the 
photodiodes was set to optimize the signal of the photodiodes.  

 

Fig. 2. The measured voltage on diode A and diode B as a function of the focal spot position                                             

on the scatter plate of the detector. 

 

In Fig. 2. the measured voltage on two photodiodes along the x axis are shown as a 
function of the focal spot position on the scatter plate of the detector. The zero is set to the 
position of the metal plate separating the two segments. It can be seen that moving from the 
center position by 10 µm results in significantly different voltage levels on the separate 
photodiodes. This is less than the diameter of the focal spot (the full width at half maximum, 
FWHM was ~56 µm) on the scatter plate surface, thus the sensitivity of the arrangement is 
accurate enough for aligning the beam to the initial position. However, it must be noted that 
the metal plate thickness is larger than the focal spot size. The photodiodes can detect the 
scattered laser pulse when the focal spot is in the centre of the position-sensitive detector 
because some part of the focused laser pulse can be reflected by the edge of the rectangular 
metal plate and re-scattered by the scattering plate. In that way, the combination of 
photodiodes with a scatter plate − instead of a quadrant detector − can well be matched to the 
actual beam size. 

The photodiode current is converted into the voltage by a TL071 amplifier. Then, a fast 
peak-hold circuit (OPA350) holds the voltage for further processing. Another part of the 
control system is a DC motor driver. It contains a slow peak hold (PKD01) catching the pulse 
after the fast peak-hold circuit. Then, with analog adding and substracting 4 signals of the 
diodes (A, B, C and D), two signals are generated 
( )()(),()( DBCAUDCBAU

yx
+−+=+−+= ) which determine the position of the light 

spot on the detector in both dimensions. Fig. 3 shows a block diagram of the electronic 
system. The microcontroller and the slow peak hold circuit are synchronised by optical fiber-
based trigger signals from the laser. Two DC motors − used for mirror alignment − are driven 
by pulse-width modulated square signals, where the filling factor and polarity of the signals 
are calculated based on the current of the photodiodes. Beyond 

x
U  and 

y
U , the sum of the 
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channels (
s
U ) can be used to measure the intensity of the incident beam. In case 

s
U < 0.8V 

and 
s
U > 3.5V an indicator LED flashes and the alignment of the mirror is suspended to 

avoid a noisy operation or saturation. 
 

 

Fig. 3. A block diagram of the electronics, the position-sensitive detector                                                                       

and the DC motor driver. 

 

3. Experimental results 

In the laser plasma experiment a high-quality off-axis parabolic mirror (F/2 or F/3) is used 
to produce relativistic intensities (up to 1019 W/cm2 [10]) in the ultraviolet regime. During the 
test of the beam-stabilization system a cares was taken to eliminate the astigmatism to obtain 
a stable high-intensity focus of the minimum size. The present tests were carried out using a 
subpicosecond hybrid, dye-excimer UV laser system which is based on a twin discharge 
EMG150 Lambda-Physik excimer laser [2]. The XeCl laser oscillator pumps a pulsed, 
femtosecond dye-laser chain operating at 497 nm, then - after the frequency conversion - the 
second harmonic is amplified by the KrF amplifier tube. After 2 passes of the off-axis 
amplification scheme the output beam has the pulse energy of 12 mJ and the 510 fs pulse 
duration at the 248 nm wavelength. It must be noted, that in the case of laser-plasma 
experiments a further amplifier is used, providing energies up to 80 mJ [2, 11], which was 
not used throughout these tests. 

The setup of the beam-stabilization system is shown in Fig. 4. A quartz plate is used as a 
beam splitter to send part of the beam onto a UV-sensitive CCD camera; the rest goes onto 
the position-sensitive detector. The combination of a positive lens with the 300 mm focal 
length and a negative lens with the -140 mm focal length is used to generate a beam of a 
finite (small) numerical aperture over a small distance. 
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Fig. 4. The detailed setup of the beam-stabilization system. 

 

The output beam of UV lasers suffers from the shot-to-shot fluctuation and from the long-
term walk-off. The shot-to-shot variation of the laser pulse position in the focus was 
measured using a CCD camera. Figures 5a and 5b show the shot-to-shot fluctuation of the 
focal spot in the vertical and horizontal directions without using a beam-stabilization system. 
Here, the center of the beam is assigned and the width of the profiles obtained from 100 shots 
corresponding to a deviation of ~12 µrad (FWHM) with a standard error of 14% when fitting 
Gaussians onto the measured positions.   

The beam stabilization system is tested against the long-term drift of the beam which was 
equal to 19 µrad in one day and 61 µrad in six days. The feedback stabilization system was 
tested by slight misaligning the beam with mirror 1, thus simulating a long-term drift. The 
results of the correction were detected after 1 minute of the laser operation with the 1 Hz 
repetition rate, and then the position of the spot on the camera was saved. Figures 5c and 5d 
show the results of the beam stabilization for 100 shots. It is seen that the residual deviation 
is ~14 µrad (FWHM) for both X and Y directions, with a standard error of 15%. It means that 
the beam stabilization eliminates the long-time walk-off, and the directional instability 
remains as low as ~14 µrad. The bandwidth of the feedback loop is 1 kHz for our 
stabilization system. 

Next, these results are compared with the divergence of the beam and with the 
requirements for tight focusing using off-axis parabola mirrors. From the width of the 0th 
order of the focal spot, a diffraction-limited divergence of ~15 µrad ±7% is found. The long-
term directional drift of the beam was 19 µrad in 24 hours. When the stabilization system 
was switched on, the direction of the beam was readjusted with an accuracy of ~5 µrad. After 
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6 days when the direction of the beam was changed with 61 µrad without a stabilization, the 
system corrected this deviation with the same precision. When focusing by a parabolic mirror 
with a small F-number, the tolerance of the misalignment of the parabolic mirror is given by 
[12], as 
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where w0 is the radius of the focal spot of the laser beam for the optimal adjustment, wA is the 
radius of the focal spot of the laser beam for a nonoptimal adjustment, λ is the wavelength of 
the laser pulse (in our case 248 nm), ϕ is the angle of incidence of the laser beam, f0 is the 
effective focal length of the parabolic mirror. For our Janostech off-axis parabola, ϕ=30°,  
f0=100.45 mm, the input beam diameter is 35 mm. Allowing a 25% increase of the focal spot 
size the tolerance of the misalignment of the parabola is ±123 µrad. It is seen that the 
directional stability provided by the beam-stabilization system is nearly an order of 
magnitude better than the one required for optimum focusing by an F/3 parabolic mirror. In 
our previous experiments [13] this requirement for the tight focusing is confirmed even 
without using the stabilization system. 

 

 

         a)       b) 

 

         c)       d) 

Fig. 5. The directional distribution of the focal spot without (a, b) and with (c, d) the beam-stabilization                  

system for the X (a, c) and Y (b, d) directions. 
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4. Conclusion 

An active beam-pointing stabilization system has been built for a high-power KrF laser 
system. The control of the spatial position of the ultrashort laser beam was achieved by a 
feedback loop consisting of a special position sensitive detector, a DC motor driver, and a 
motor-driven mirror. With this beam stabilization a long-term stability of ~14 µrad for the 
directional distribution is obtained, which approximately corresponds to the shot-to-shot (not 
predictable) directional fluctuation of the pulse. To our knowledge this device is the first 
beam stabilizing system for high-power KrF laser systems. The most important advantages of 
our instrument are its low cost and easy insertion into the laser setup. Using photodiodes with 
a scatter plate instead of a quadrant detector can easily be matched to the actual beam size. 
These results show that similar setups can well be used at large facilities with high-energy, 
high-power laser systems when the beam diameters are significantly larger.  
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