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Abstract 

The paper presents the equalization problem of non-linear phase response of digital IIR type filters. An improved 

analytical method of designing a low-order equalizer is presented. The proposed approach is compared with the 

original method. The genetic algorithm is presented as an iterative method of optimization. The vector and 

matrix representation of the all-pass equalizer are shown and introduced to the algorithm. The results are 

compared with the analytical method. In this paper we have also proposed the use of an aging factor and setting 

the initial population of the genetic algorithm around the solution provided by the analytical methodology.  
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1. Introduction 

 

In the science of measurement, digital signal processing holds a strong position. A 

transition from measured physical properties to a representation which a computer can 

understand has been a subject of great interest for many years. Alongside such problems like 

the accuracy of measurement or the level of influence on the object by the fact of the 

measurement itself, lies the problem of additional unwanted signals which affects real values. 

In both analog and digital technologies, the mechanism of filtering is known to be 

indispensable. Practical knowledge suggests that those unwanted signals are characterized by 

a certain periodicity. Removing such interference is called filtering in terms of frequency. The 

designer of digital filters is armed with a vast variety of techniques to successfully accomplish 

his task. In his knowledge and experience lies the decision which one will be proper for an 

actual problem. Considering the more popular stationary model, it is crucial to choose 

between two types of possible designs. The first type of models called finite impulse response 

(FIR) is stable due to the lack of feedback and can be easily designed to achieve a linear phase 

response. On the other hand, its mathematical complexity can be significant. The second type 

of models called infinite impulse response (IIR) preserves the selectivity of the FIR systems 

with much less complex design. Unfortunately, choosing the IIR system one must remember 

to check the stability of the design. What is more, the phase response of IIR systems is non-

linear which may cause significant problems even in simple measurement systems.  

 As a solution to this problem (non-linear phase response) in the continuous-time domain 

many researchers proposed fine methods including, for example, genetic algorithms [1], 

adaptive filters [2] or all-pass-based equalization techniques [3]. In this paper we will propose 

an improved analytical methodology of designing a digital equalizer based on the approach 

described in [4]. Additionally, the proposed approach and procedures will be introduced to the 

genetic algorithm in order to improve its robustness in terms of designing the all-pass 

equalizers. 
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2. Group delay response 

 

A non-linear phase response of a discrete IIR filter means that the frequencies are delayed 

by a different amount of time. In signal processing it is often more convenient to use the 

group delay characteristic. Mathematically, the group delay )(Wt  is defined as a negative 

derivative of the phase response ( )WF  with respect to the frequency W : 

 
( )( )
W

WF
Wt

d

d
-=)( .           (1) 

 

As an example we will use a fourth-order low-pass elliptic filter with 60 Hz cut-off 

frequency. The pass-band ripple was set to 0.3 dB, the stop band ripple to 40 dB, and the 

sampling frequency to 1 kHz. Fig. 1 presents the magnitude and the group delay responses of 

this filter.  

 
Fig. 1. Magnitude and group delay response of the proposed fourth order elliptic filter. 

 

To show the consequences of a  non-constant group delay characteristic, we will introduce 

to the elliptic filter a testing signal created by the summation of five sinusoidal signals. The 

first sinusoid is set to 10 Hz, the second to 12 Hz, 14 Hz for the third, 52 Hz for the fourth, 

and 58 Hz for the fifth. The amplitude for all of them is set to 1. Fig. 2 illustrates the testing 

signal before and after filtering. 

Fig. 2. Comparison of the original signal (solid line) with the filtered one (dashed line). 

 

One needs to notice that all of the frequencies are in the filter’s pass-band. The difference 

in the time between the original and the filtered signal has been neutralized for easier 
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comparison. The amplitude losses can be caused by the allowed 0.3 dB ripple in the pass-

band. Unfortunately, not every difference can be explained by this phenomenon. Some parts 

of the losses, especially the marked phase shifts and amplifications, are caused by the 

intersymbol interference (ISI). The ISI effect is a known consequence of the filter’s non-linear 

phase response [5] or similarly, non-constant group delay. 

 

3. Group delay equalizer 

 

 To counter the effect of non-constant group delay one can find fine methods that were 

used with continuous-time filters [6-9]. Unfortunately, the proposed approaches cannot be 

fully put to discrete systems using simple transformations (e.g. bilinear transformation) due to 

the warping effect in the phase response of the equalized analog filters. In this paper we will 

focus on designing an all-pass filter which will act as an equalizer of the IIR filter. Fig. 3 

presents the block diagram of such a system.  

 

 

 

 
Fig. 3. Equalized IIR filter. 

 

The transfer function of the all-pass filter is defined as: 
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where nc  is the n-th element of the coefficients vector c. 

One of the important property of all-pass filters is their constant magnitude response, i.e. 

 

 ( ) 1=WjeA .      (3) 

 

This means that the magnitude response of the equalized filter will not be affected. On the 

other hand, the phase response can be reshaped by choosing proper coefficients. Designing 

the system as in Fig. 3 the following equations become valid: 

 

 ( ) ( ) ( ) ( )WWWW j
f

jj
f

j
c eHeAeHeH =×= ,      (4) 

 

 ( ) ( ) ( )WtWtWt afc += ,      (5) 

where ccH t, refer to the whole system, ffH t, to the original filter, and aA t, describe the 

designed equalizer. Equation (4) means that the final magnitude response will not be affected 

by adding the equalizer and will preserve the shape of the magnitude response of the original 

IIR filter. Equation (5) means that the final group delay is a summation of group delays of 

both filters. 
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4. Pole placement method 

 

 By choosing a specific vector c the poles and zeros of the all-pass prototype are 

calculated. According to (4) and (5) only the group delay response can be modified. The 

problem of efficient equalization lies in selecting such placement of the poles and zeros that 

the final characteristic of the group delay is acceptable. In our studies we concentrated on 

providing a characteristic with the lowest difference between the maximum and minimum 

value of the group delay in the equalized filter’s pass-band. In [4] and [10] Petraglia and 

Quelhas approached this problem by combining analytical analysis with iterative optimization 

techniques. Our studies showed that in terms of low order (up to 8-th) analytical equalization 

their strategy can be improved by choosing a different methodology of calculating the all-pass 

equalizer. 

 The main idea of the method proposed in [4, 10] was to analyze an equalized IIR filter on 

the z-plane. The outermost pair of poles was considered in terms of their angle and radius. 

Then, according to specific strategies, the poles of the all-pass equalizer were calculated. 

Fig. 5 presents a graphical idea of the method. 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 4. Magnitude and angle between conjugated poles (a). Two strategies proposed in [4] (b),                                

(c); Poles marked by “x” are the outermost poles (conjugated) of the original IIR filter;                                              

The poles marked by “+” are the poles of the equalizer. 

 

 In our studies we come up with a new methodology of the pole placement that improves 

final group delay in terms of the difference between maximum and minimum values in the 

pass-band. We propose to alter the equations delivered by [4] and [10] with our solutions (6) -

 (9) and (11) - (14). The specific values of the coefficients were chosen based on the 

experimental tests and careful analysis of the all-pass filter behavior with different pole 

placement. As an initial approach the all-pass equalizer is calculated according to the 

following strategy: 

 
12

23.2

+
=

n
a

q
qD ,      (6) 

where aqD  is the angle between two conjugated poles (first strategy), n is the number of the 

second-order all-pass sections of the equalizer, and q  is the angle of the equalized filter 

outermost pole. 

 Starting from the outermost pole, the magnitudes of the first and second pair of poles are 

as follows: 

 ( ) 812.08.11 -= MP ,      (7) 

 ( ) 211.0)1(2.12 -= PP ,      (8) 

where P are the specific conjugated poles of the all-pass equalizer and M is the magnitude 

value of the equalized filter outermost pole. 



 

Metrol. Meas. Syst., Vol. XX (2013), No. 3, pp. 395–406. 

 

 

For the third and fourth pair of poles the magnitude can be expressed in the following form: 

 

 

 

( ) ( ) nqPqP 0025.0032.0197.0 -+-= ,      (9) 

where ]4 ,3[=q  is the third and the fourth pair of conjugated poles. 

 Then, according to [4], the influence of the filter original group delay on the final response 

must be verified using the following relationship: 

 max,,
1 04.185.007.1 f

n
a

n tt q ×<+ ,    (10) 

where qt ,a  is the group delay value of the equalizer evaluated at the cutoff frequency and 

max,ft  is the maximum value of the group delay of the equalized filter in the pass-band. 

 If inequality (10) is not fulfilled then the poles of the all-pass filter must be calculated 

according to the following strategy: 
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0013.08.0

-

+
=

n
b

q
qD ,    (11) 

where bqD  is the angle between two conjugated poles (second strategy). 

Again, the magnitudes of the first and second pair of poles are as follows: 

 ( ) 805.08.11 -= MP ,    (12) 

 ( ) 2.0)1(2.12 -= PP ,    (13) 

and for the third and fourth pair of poles: 

 ( ) ( ) nqPqP 0028.003.0197.0 -+-= .    (14) 

 One must remember that the presented method is an analytical approach used to solve a 

complicated problem. Therefore, the obtained results should be doubly checked. As for the 

stability of the whole combined system, the method ensures stability as long as the equalized 

filter is stable. 

 

4.1. Simulations 

 

The proposed methodology of analytical equalization was tested on various examples of 

elliptic, Butterworth, and Chebyshev filters. Fig. 5 depicts the group delay response of the  

fourth-order elliptic filter mentioned in Sec. 2 equalized by means of the original 

methodology proposed in [4] and the one presented in this paper.  

Fig. 5. Comparison of the presented method of analytical equalization with the analytical part proposed in [4]. 
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 As one can notice, using the proposed method, the difference between the maximum and 

minimum value of the group delay is significantly decreased. Specific values along with other 

examples of both compared methods can be found in Table 1. The order of the equalizer was 

chosen arbitrarily to ensure a practical solution. 

 
Table 1.  Simulation results of the presented method of equalizing various IIR type filters. 

Analyzed filter )( cMax t  )( cMin t  cptD  

Elliptic; 4th-order; cw = 0.12; pR = 0.3 dB;  

sR = 40 dB; dt = 13.32; aN = 4 
34.51 (38.36) 30.84 (30.65) 3.67 (7.71) 

Elliptic; 3rd-order; cw = 0.3; pR = 1 dB;  

sR  = 30 dB; dt = 4.72; aN = 8 
21.71 (24.05) 20.09 (21) 1.62 (3.05) 

Elliptic; 5th-order; cw = 0.1; pR = 0.2 dB;  

sR  = 70 dB; dt = 18.65; aN = 8 
75.23 (75.62) 66.72 (63.4) 8.51 (12.22) 

Chebyshev I; 4th-order; cw = 0.17; 

pR = 1.3 dB; dt = 12.42; aN = 6 
36.79 (38.23) 33.56 (29.13) 3.23 (9.1) 

Chebyshev I; 4th-order; cw = 0.27; 

pR = 0.9 dB; dt = 7.46; aN = 8 
27.33 (29.73) 25.65 (25.26) 1.68 (4.47) 

Butterworth; 3rd-order; cw = 0.2; dt = 1.45; aN = 4  12.64 (15.85) 11.53 (13.1) 1.11 (2.75) 

Butterworth; 5th-order; cw = 0.32; dt = 3.01; aN = 6 15.19 (17.28) 15.02 (15.75) 0.17 (1.53) 

 

 The nomenclature in Table 1 is as follows: cw  is the normalized cutoff frequency, pR  is 

the allowed ripple in the pass-band, sR  is the demanded ripple in the stop-band, dt  is the 

difference between the maximum and minimum values of the original group delay in the 

filters pass-band, cptD  is the difference between the maximum and minimum value of the 

equalized group delay in the filters pass-band, aN  is the order of the all-pass equalizer. The 

values in brackets are calculated using the analytical part of the method proposed in [4].  

As one can notice, the proposed analytical method of compensation lowers the difference 

between maximum and minimum values of the group delay which is very important from the 

signal-processing point of view. Fig. 6 presents another example of equalization of the 5
th

-

order Butterworth filter ( cw = 0.32) with the 6th-order all-pass equalizer. 

Fig. 6. Comparison of the presented method with the one proposed in [4] for the 5th-order Butterworth filter. 
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 An analytical equalization unfortunately does not provide an optimal solution. Due to the 

nature of the equalization problem and the need to achieve an as flat as possible characteristic 

of the group delay, one might need to turn to iterative methods of compensation. There are 

fine techniques of optimizing the placement of the poles but the higher the order of the 

equalizer, the higher the risk of ending in one of the local minima. In our studies we proposed 

a technique based on genetic algorithm with new approaches regarding the use of matrix 

representation of the optimized all-pass filter. 

 

5. Genetic algorithm 
 

 Evolutionary algorithms (EA) gained a strong position in optimization theory. Genetic 

algorithms (GA) are the most popular among the EA. They are widely used thanks to their 

natural and intuitive procedures. Concisely stated, a genetic algorithm is an attempt to copy 

natural and biological aspects of evolution expressed in a chosen programming language [11], 

[12]. 

 Given an optimization problem to solve, the GA is introduced with a set of generated 

solutions (population of candidates) and a fitness function. The first set of solutions usually is 

generated randomly, but it can also be fixed with a priori knowledge to focus on a specific 

area. The fitness function is a metric which can evaluate each candidate in a quantitative 

manner. Considering a randomly generated population, some of the candidates may not work 

in terms of stated problem boundaries. Those candidates must be deleted as they host no hope 

of finding useful solution. The candidates are reproduced to form a second-generation 

population. The process of reproduction can be characterized with a variety of techniques in 

terms of choosing the right candidate itself and the changes it can undergo. To introduce a 

small rate of variety to the population, a mutation process can be conducted to the newly 

generated unit. The process now repeats itself for several hundreds or thousands generations. 

The candidate which will be at the top of the final generation (due to generations limit or no 

significant improvement) can be considered as the optimal solution in terms of a given fitness 

function [13]. Fig. 7 illustrates a simplified graphical representation of the GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7. Simplified graphical representation of the genetic algorithm. 
 

 Analyzing the way the genetic algorithm works, one can easily point out a few important 

strengths of this method. First of all the computation is parallel in terms of searching through 

the solutions space. Most methods working in a serial manner must abandon all the previous 

work if the algorithm returned only a local extremum, for example because of the poorly 

selected starting point. Following that, the fitness function can be more complex, i.e. may 
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have many local extrema or discontinuities [14]. Another quality which is extremely valuable 

is that the GAs are very efficient in terms of solving multivariable problems [15]. 

 Of course, as any other optimization method, genetic algorithms are not free from  

limitations. For example the performance of the algorithm strongly depends on the fitness 

function. If the problem is complicated it might by difficult to write a proper function 

ensuring the outcome will be in the expected manner [16]. Additionally, for a practical 

reason, one must decide about the size of population, crossing techniques and the generations 

number to maintain a reasonable time of computation. 

 

5.1. Equalizer design using Gas  

 

 The position of each pole and zero has influence on the group delay value in every part of 

the characteristic. In other words, one can imagine that by changing the magnitude or angle of 

even one pair of poles, the whole group delay is affected. Analyzing the complexity of the 

problem of minimizing the difference between the maximum and minimum value of the 

group delay, the potential solution space is expected to be rich with local minima. The genetic 

algorithm due to its ability to avoid those minima can be a very powerful tool in terms of 

designing or optimizing a proper equalizer. 

 Similarly as in Sec. 3, let us consider the all-pass filter given by (2) as an equalizer 

prototype. One of possible representations of such prototype are the pairs of angles and 

magnitudes for each pole and zero on the z-plane. To create the initial population for the 

genetic algorithm, one must characterize a single candidate. Due to the need of maintaining 

constant magnitude response given by (3) of the all-pass filter, the zeros can be calculated on 

the basis of the pole placement. As the pairs of the poles are conjugated, it is only crucial to 

know the angle and magnitude of the one pole (of each pair) to calculate the other. By that 

fact, to reduce the complexity of each candidate while still being able to rebuild the all-pass 

filter, we consider only the angles and magnitudes of one pole of each pair. Fig. 8 depicts one 

of the candidate's possible vector representation of the all-pass equalizer prototype. 

 

 

 

 

Fig. 8. First candidate representation where np  is the n-th pole of the all-pass prototype. 

 

 As mentioned before, one unfortunately placed pole can affect the performance of the 

whole prototype. By that fact, we proposed a second possible representation which allows to 

introduce additional crossover techniques. Fig. 9 depicts a matrix design of such candidate. 

 

 
 

 

 

 

 

Fig. 9. Second candidate representation where || npnM =  and ( )npn Ð=q . 

 

 The crossover process is usually characterized by three standard techniques: single point 

crossover, two point crossover, and uniform crossover. These techniques are responsible for 

switching the poles between two candidates (vector representation) in order to acquire another 

generation. In the case of the second, the matrix representation, we developed a crossing 

method preserving the ability to switch the poles as a whole (column) or just one of the poles 
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value. Additionally, such approach allows to perform the mentioned standard techniques at 

rows affecting only the magnitude or angle set.  

 The main intention of such an approach is to avoid eliminating the candidate with 

promising poles placement, unfortunately evaluated very poorly by the fitness function due to 

one single faulty value. 

 The mutation process, naturally with a small chance of occurrence, changes one of the 

candidates feature. In the case of the first representation, a single pole can be randomly placed 

within the chosen boundaries. This means that the mutation will probably affect both the 

magnitude and angle of such pole. The second representation allows to preserve one of the 

pole values, e.g. the angle, while the magnitude can have random changes. 

 During our studies we also introduced an aging factor (expressed as a percentage value) to 

the mutation probability and allowed boundaries. The main idea was to apply a larger 

diversity to the population if there is no improvement for a significant amount of generations. 

The aging factor is defined as follows: 

 
19/1.0 kefactoraging ×= ,    (15) 

where k is the number of generations since the last overall improvement. Fig. 10 depicts the 

proposed aging factor as a function of the number of generations k. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Proposed aging factor on the span of 100 generations without improvement. 
 

 Assuming the initial mutation rate at 1%, the 2% rate will be achieved after 45 generations 

without improvement. After 100 generations the mutation probability will reach 20.31%. Of 

course if the best solution improves, the aging factor resets itself. 

 

5.2. Simulations 

 

 One of the often discussed problem concerning genetic algorithms is a proper choice of 

the population size and the rates of possible crossover and mutation. A population too large 

will demand a more powerful processing unit to deliver a solution in a reasonable time. On 

the other hand, a too small population might not be able to solve a complicated problem at all. 

The fitness function evaluating each candidate was chosen as a difference between the 

maximum and minimum value of the group delay characteristic in the filters pass-band. 

During our experiments a half of the best population is always kept and allowed to reproduce. 

The selection for the crossover of the remaining candidates is conducted on the basis of the 

equally spaced roulette-wheel technique. This means that all of the candidates have the same 

chance to take part in the mating process restricted only by the probability factor (crossover 
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rate). As for the crossover and mutation rates, scientists report respectively 50% - 100% for 

the crossover and 0.5% - 1% for the mutation rate as the most promising values [17], [18]. 

 Fig. 11 presents the group delay response of the fourth-order elliptic filter (mentioned in 

Sec. 2) equalized with the all-pass prototype designed using the genetic algorithm approach. 

The fitness function aimed at achieving the lowest difference between maximum and 

minimum group delay value in the pass-band.  

Fig. 11. Group delay compensation with the use of the genetic algorithm. 
 

The GA1 final group delay characteristic was achieved with the use of the pole representation 

(Fig. 8). The GA2 characteristic was achieved by designing the equalizer with the second 

representation, i.e. the magnitude and angle representation of the prototype (Fig. 9). In Table 

2 the values of the difference between maximum and minimum of the group delay in the pass-

band are pointed out along with the number of the computed generations. 

 
Table 2.  Simulation results of the group delay equalization with the use of the genetic algorithm 

(Random population size = 60; Crossover rate = 90%; Mutation rate = 1%; Without aging factor). 

Analyzed filter cptD GA1 GA1 gen.  cptD GA2 GA2 gen. 

Elliptic; 4th-order; cw = 0.12; pR = 0.3 dB;  

sR = 40 dB; dt = 13.32; aN = 4 
3.5 649 1.57 527 

Elliptic; 3rd-order; cw = 0.3; pR = 1 dB;  

sR  = 30 dB; dt = 4.72; aN = 8 
1.29 711 0.05 601 

Elliptic; 5th-order; cw = 0.1; pR = 0.2 dB;  

sR  = 70 dB; dt = 18.65; aN = 8 
0.58 628 0.21 599 

Chebyshev I; 4th-order; cw = 0.17; 

pR = 1.3 dB; dt = 12.42; aN = 6 
2.09 589 2.09 506 

Chebyshev I; 4th-order; cw = 0.27; 

pR = 0.9 dB; dt = 7.46; aN = 8 
1.01 587 0.97 540 

Butterworth; 3rd-order; cw = 0.2; dt = 1.45; aN = 4  0.08 140 0.07 70 

Butterworth; 5th-order; cw = 0.32; dt = 3.01; aN = 6 0.08 133 0.05 82 

 

Both simulations started with randomly generated sets of populations. The stop condition was 

set to 100 generations without improvement. As one can notice, the iterative (GA) method of 
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compensation reached a better performance in terms of designing a proper equalizer than the 

analytical method presented in Sec. 4. Unfortunately, such performance is occupied by a quite 

significant number of needed iterations to provide such solution. What is also worth 

mentioning, the second representation of the all-pass prototype managed to achieve equally or 

slightly better performance in both the final group delay difference and needed generations. 

 As a second part of our studies on the GA, we concentrated on increasing the robustness 

of the computation. We achieved that by introducing to the algorithm the aging factor 

mentioned earlier. We also fixed the initial population around the analytical solution provided 

by the improved method described in Sec. 4. Table 3 presents the improvement of the 

robustness of the GA in the case of magnitude and angle representation as, during our studies, 

it proved to be superior. 

 
Table 3.  Simulation results of the group delay equalization with the use of the genetic algorithm 

(Fixed population size = 60; Crossover rate = 90%; Mutation rate = 1%; With aging factor).  

Analyzed filter cptD  GA2 GA2 gen. 

Elliptic; 4th-order; cw = 0.12; pR = 0.3 dB;  

sR = 40 dB; dt = 13.32; aN = 4 
1.57 238 (527) 

Elliptic; 3rd-order; cw = 0.3; pR = 1 dB;  

sR  = 30 dB; dt = 4.72; aN = 8 
0.05 220 (601) 

Elliptic; 5th-order; cw = 0.1; pR = 0.2 dB;  

sR  = 70 dB; dt = 18.65; aN = 8 
0.21 202 (599) 

Chebyshev I; 4th-order; cw = 0.17; 

pR = 1.3 dB; dt = 12.42; aN = 6 
2.08 189 (506) 

Chebyshev I; 4th-order; cw = 0.27; 

pR = 0.9 dB; dt = 7.46; aN = 8 
0.97 177 (540) 

Butterworth; 3rd-order; cw = 0.2; dt = 1.45; aN = 4  0.07 51 (70) 

Butterworth; 5th-order; cw = 0.32; dt = 3.01; aN = 6 0.05 66 (82) 

 

 As one can notice, the generations number needed to compute the solution was 

significantly reduced (earlier values in brackets). 

 

6. Conclusions 

 

 The non-constant group delay characteristic of IIR filters can be responsible for the 

unwanted amplitude losses. From the metrological point of view such losses are added to the 

total error of the measurement procedure and can be significant even in simple systems. To 

eliminate this problem we have proposed an all-pass filter as an equalizer. Our studies aimed 

at achieving the lowest difference between the maximum and minimum value of the group 

delay characteristic in the filters pass-band. As the analytical method of finding proper 

coefficients, we have improved a known solution based on the pole placement of the original 

filter. The method was tested on various digital filters and the results were presented. 

 As the iterative method we have used the genetic algorithm to compute optimal 

coefficients. We have proposed two representations of the all-pass prototype: the pole 

representation and the magnitude-angle matrix representation. To compare the iterative 

method with the analytical one, we have presented the results for the same sets of examples. 

To improve the robustness of the genetic algorithm we have introduced the aging factor to 

increase the mutation rate and boundaries if there is no improvement over generations. We 
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have also presented the results when the initial population is set around the solution calculated 

by the proposed analytical solution. Combining the iterative method with the initial condition 

provided by the analytical solution proved to be an efficient tool to compensate the non-

constant group delay characteristic of the IIR type filters. 
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