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Abstract 

In this paper, a modified form of the Gabor Wigner Transform (GWT) has been proposed. It is based on adaptive 

thresholding in the Gabor Transform (GT) and Wigner Distribution (WD). The modified GWT combines the 

advantages of both GT and WD and proves itself as a powerful tool for analyzing multi-component signals. 

Performance analyses of the proposed distribution are tested on the examples, show high resolution and cross-

terms suppression. To exploit the strengths of GWT, the signal synthesis technique is used to extract amplitude 

varying auto-components of a multi-component signal. The proposed technique improves the readability of 
GWT and proves advantages of combined effects of these signal processing techniques.  
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1. Introduction 

 
Time frequency representations (TFRs) are used for non-stationary signal analysis [1‒4]. 

TFRs are generally classified as linear TFRs and quadratic TFRs [2]. The linear TFRs provide 
cross-terms free representation but with low time-frequency resolution. The time-frequency 

resolution is improved by using quadratic TFRs. However significant efforts are made to 
define algorithms for cross-terms suppression, which appear due to the quadratic nature of 
these distributions [5‒7]. In our earlier contribution [7], we have discussed in detail merits 

and demerits of time representation of a signal, frequency representation of a signal, and the 
basic goal of a time frequency representation (TFR), linear time frequency representations 

(TFRs), quadratic TFRs and most widely used cross-term suppression techniques. This 
contribution [7] also includes a brief discussion on already proposed combination of GWT 

[8, 9] and exploits the strength of fractional Fourier transform [4‒8] to study GWT.  
In this paper, a new form of the GWT based on adaptive thresholding of GT and WD has 

been proposed (Section 2.1). This work has shown that the adaptive thresholding of GT and 

WD produces the GWT which combines good properties of GT and WD. Numerical 
examples show that the modified GWT has better resolution comparing to other GWT forms, 

as well as compared with WD and GT (Section 2.1.1). This work also shows the fusion of 
signal processing techniques (signal synthesis techniques) and image processing techniques 
(adaptive thresholding, segmentation and dilation) for cross-terms suppression (Section 3, 

3.1). The proposed method is applied to analyze multi-component signal’s auto-components 
extraction and to tackle the resolution problem faced by linear TFRs (Section 3.1.1, 3.1.2).   
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2. Gabor Wigner Transform 

 

The short time Fourier transform (STFT) [2], is the simplest linear time-frequency 
transform. If the Gaussian window is used, it is called the Gabor transform (GT) [8]. 

Mathematically, the GT of a signal ( )x t  can be written as:  

                                         
2( ) 2 ( 2)1

( , ) ( ) ( )
2

t j t

x
GT t e e x d

τ ω τ

ω τ τ

π

∞

− − − −

−∞

= ∫ .                               (1) 

The Wigner Distribution (WD) [1, 2] of ( )x t  is defined as: 

                                         ( , ) ( 2) ( 2) j

x
WD t x t x t e d

ωτ
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The formation of the GT and WD is termed Gabor Wigner Transform (GWT) [8]. The 
following forms of the GWT transforms are introduced:   

                                              ( , ) ( , ) ( , )
x x x

GWT t GT t WD tω ω ω= ,                                               (3) 
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Equations (3) to (6) show that there is no standard form of GWT and the appropriate 
choice of GT and WD is crucial for obtaining an optimal resultant transform.  

 

2.1.  Modified GWT 

 

The proposed GWT can be written in the form of an  algorithm based on the following 

steps: 

Step 1. Find ( , )
x

WD t ω  of the signal x(t) and its average value T , where: 

                                                     ( , )
x

T meanof WD t ω= .                                                         (7) 

Step 2. Classification of the transformed data into sub-classes ( , )
A

WD t ω and ( , )
B

WD t ω  as: 
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Step 3. Find averages of ( , )
A
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and ( , )

B
WD t ω  and update T [10] using the following 

relation:  
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This iterative procedure will go on until T does not change in two consecutive iterations. 
Step 4. The same steps 1 to 3 will be repeated for GT analysis of the signal x(t). 

Step 5. Choose: 

                                    {
0 if ( , )

( , )
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Step 6. Multiply ( , )
x

WD t ω �and ( , )
x

GT t ω obtained in Step 5 as: 

                                                   
0.5( , ) ( , ) ( , ).

x x x
GWT t GT t WD tω ω ω=                                          (13) 

 
2.1.1. �umerical simulations 

 
We consider the example of a signal consisting of three quadratic components (Fig. 1, the 

sampling frequency is equal to 200 Hz and the time duration is from ‒1 to 1 second). As it is 
well-known, the WD suffers from cross-terms due to its quadratic nature (Fig. 1a). GT shows 

its linearity with low concentration of auto-terms (Fig.1b). By using different forms of GWT 
(3‒6) the time-frequency representation can be improved (Fig. 1c‒f). However, by applying 
the proposed algorithm, the best time-frequency representation will be achieved (Fig. 1g). 

Thus, it provides cross-terms elimination as in the GT and high resolution as by using the 
WD. The same example is tested for moderate to high SNR (> 3dB) cases. The modified 

GWT outperforms other forms of GWT as shown in Fig. 2.  The quality of the modified GWT 
is tested on the basis of entropy measures and ratio of norms [13, 14]. The proposed algorithm 

gives a maximum value for ratio of norms and minimum value of entropy as shown in 
Table 1.  Hence the modified GWT shows good energy concentration property as compared to 
other considered TFRs. Therefore our analysis proves that it combines good properties of both 

WD and GT.  

 
          a)                                           b)                                          c)                                         d) 

����� ����� �����  

             e)                                         f)                                           g) 

���� ����� ������  
 

Fig. 1. Three quadratic components: a) WD; b) GT; c) GWT (3); d) GWT (4); e) GWT (5);  

f) GWT (6); g) Modified GWT. 
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               a)                                        b)                                         c)                                        d) 

                

                 e)                                         f)                                          g) 

�������� ������� ������  

Fig. 2. Three quadratic components (SNR (> 3dB)): a) WD; b) GT; c) GWT (3); d) GWT (4);  

e) GWT (5); f) GWT (6); g) Modified GWT. 

 

Table 1. Performance measures (Test signal: Three quadratic frequency-modulated components). 
 

TFRs WD GT GWT (3) GWT (4) GWT (5) GWT (6) 
Modified 

GWT 

Entropy 16.7041 15.7187 16.1286 14.8550 14.9171 14.8538 13.2021 

Ratio 

of norms 
0.0251 0.0152 0.1419 0.0599 0.0735 0.1749 0.2371 

 

3. Signal synthesis 

 

The signal synthesis technique was proposed in [11]. This technique can be used for time 

varying filtering and signal separation. In this estimation technique, the signal is generated in 
such a way that signal’s TFR approximates the desired TFR. This method has the following 

main steps [11, 12]. Suppose ( ) ( , )
x t

TFR t ω  shows TFR of ( )x t . The objective is to find out 

( )x t
⌢

whose ( ) ( , )
x t

TFR t ω⌢ is close to ( ) ( , )
x t

TFR t ω . To achieve this goal we have to minimize

( ),e x  which is given as: 

                                        ( ) ( )( ) ( , ) ( , )
x t x t

e x TFR t TFR t dω ω ω

∞

−∞

= −∫ ⌢ .                                        (14) 

Equation (14) allows minimization for even (
e
x

⌢

) and odd (
o
x

⌢

) samples of x(t). Even 

(
even

M ) and odd (
odd

M ) matrices elements are given as: 

                                      ( 1, 1) ( , ) ( , )
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In (15) and (16), ( , )g i j  is the inverse Fourier transform of ( ) ( , )
x t

TFR t ω ,
odd
L is the length 

of 
e
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⌢

and 
even
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o
x
⌢

. 
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ϕ (odd)) is described as:  
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3.1. Algorithm 

 
The objective of this work is to design a TFR which should preserve the quality of auto-

components for the multi-component dynamic signals. The steps of the proposed method are 
given as: 

Step 1. Transform the given signal ( )x t  into GWT by using (3). 

Step 2. Adaptive thresholding and image segmentation [7, 10] of the process performed in   
step 1 and identification of auto-components.     

Step 3. Dilation [10] of the process performed in step 2. 
Step 4. Time varying filtering [11] by using step 3. 

Step 5. Subtraction of estimated auto-component ( )x t
⌢

from the original signal ( )x t .  

Step 6. Highly readable TFR is obtained as follows: 

                                                 0.5( , ) ( , ) ( , )
x x x

GWT t GT t WD tω ω ω= ,                                           (21) 

                                                   ( , ) ( , ),
k
x

TFR t GWT tx
k

ω ω= ∑                                             (22) 

where: k = no of reconstructed auto-components. 
The proposed algorithm works in an iterative nature, and normally the number of iterations 

is equivalent to the number of auto-components. In case of weak auto-components the number 
of iterations is gradually increased. 

 
3.1.1. �umerical simulation 

 
To show the strength of the proposed algorithm, consider the following example (23).  

                         

3 3

3 2

( ) 0.4exp( 2 (6 50 )) 0.6exp( 2 (6 30 ))

0.8exp( 2 (6 15 )) 0.7exp( 2 (75 ))exp( 15 ),

x t j t t j t t

j t t j t t

π π

π π

= − + + − + +

− + + − −

                    (23) 
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First auto-components are isolated (Fig. 3a‒d).  By applying the proposed algorithm step 

by step, the effect of time-varying filtering is shown in Fig. 3e (cross-terms free TFR). The 
proposed technique extracts successfully all auto-components and gives a highly readable 

TFR. This algorithm also proves that the combined effect of signal processing and image 
processing techniques (Fig. 4d) gives solution of cross-terms of WD (Fig. 4a), blurring faced 
by GT (Fig. 4b) and low readability and missing component of GWT (3) as shown in Fig. 4c. 

 
                            a)                                            b)                                           c) 

             

                                    e)                                           f) 

                                       
Fig. 3. Three quadratic-components and a Gaussian atom: a) Fist isolated auto-component;  

b) 2nd isolated auto-component; c) 3rd isolated auto-component; d) 4th isolated auto-component;  

e) TFR obtained by signal synthesis. 

 
                                                          a)                                       b) 

      

                                                         c)                                          d) 

      
 

Fig. 4. Three quadratic-components and a Gaussian atom: a) WD; b) GT; c) GWT (1);  
d) GWT (by using the signal synthesis technique). 
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3.1.2. Performance analysis  

 

The performance of a TFR is normally evaluated on the basis of ratio of norms, entropy 
measures and the Ljubisa measure [13‒16]. If a TFR has a maximum value of ratio of norms 

and minimum value of entropy and Ljubisa measure then it is considered as a concentrated 
and high resolution TFR. The proposed technique has a minimum value of entropy and 

Ljubisa measure and maximum value for ratio of norms (except modified fractional GWT [7] 
and Nabeel [6]) as shown in Table 2.  Hence the proposed TFR fuses the merits of signal 
processing techniques and image processing techniques.  

 

Table 2. Performance analysis (Test signal: 3 quadratic-components and a Gaussian atom). 

TFRs 
Shannon  

Entropy 

Renyi 

Entropy 

Ratio of Norms 

(× 1.0e‒003) 

Ljubisa 

(× 1.0e+009) 

WD 16.1481 15.1764 0.0495 1.4116 

GT 15.9242 15.0367 0.0532 1.5082 

GWT (3) 14.7101 13.9063 0.2066 0.2782 

GWT (4) 14.8139 13.8828 0.1355 0.2811 

GWT (5) 14.7700 13.4737 0.1871 0.3052 

GWT (6) 14.6396 13.3426 0.4077 0.3678 

Nabeel [6] 14.2968 13.1015 0.2320 0.2675 

Modified Fractional GWT [7] 13.8139 12.3426 0.4663 0.2460 

GWT (by using signal 

synthesis) 
14.3266 13.4046 0.2163 0.2790 

 

4. Conclusions 

 

This work demonstrates the advantages of the proposed modified GWT in the analysis of 

time-varying multi-component signals. The proposed combination of GT and WD leads to the 
resultant GWT, eliminates cross-terms while keeping the resolution of auto-components as in 

the WD. Moreover, the proposed distribution provides better concentration of auto-
components compared with other GWT forms. In this work, GWT’s strengths are exploited 

by using  the signal synthesis technique. In our proposed methodology, we have introduced a 
novel scheme to obtain a high-resolution TFR. The performance analysis of the proposed 
method reveals it outperforms other TFRs (WD, GT and GWT forms) as described in Table. 

2. Hence the proposed TFR fuses the merits of the signal processing technique and image 
processing techniques. The proposed algorithm can be furnished by applying advanced signal 

synthesis techniques and image segmentation techniques for the analysis of more complicated 
signals and  to cater low resolution of linear TFRs, which may be a topic of future work. 
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