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Abstract 

This paper presents a novel strategy of particle filtering for state estimation based on Generalized Gaussian 

distributions (GGDs). The proposed strategy is implemented with the Gaussian particle pilter (GPF), which has 

been proved to be a powerful approach for state estimation of nonlinear systems with high accuracy and low 

computational cost. In our investigations, the distribution which gives the complete statistical characterization of 

the given data is obtained by exponent parameter estimation for GGDs, which has been solved by many 
methods. Based on GGDs, an extension of GPF is proposed and the simulation results show that the extension of 

GPF has higher estimation accuracy and nearly equal computational cost compared with the GPF which is based 

on Gaussian distribution assumption. 
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1. Introduction 
 

Possibly the most important problem arising in measurement activities is the representation 

and maintenance of uncertainty. The state of a system, whether measured or estimated, is 
rarely known exactly because (a) measuring instruments and processes have limited precision, 
and/or (b) estimates of dynamic systems are based on process models that fail to include all 

governing parameters. The uncertainty associated with a state estimate can be represented 
most generally by a probability distribution incorporating all information about the state. 

However, measurements of an evolving system generally imply that the number of parameters 
necessary to specify the state probability distribution will increase to infinity [1]. Considering 
the constraints of available resources, an approximation state estimation must be generated. 

The most common approach is to maintain a fixed number of moments of the state 
distribution. The most successful approach for fixed-moments estimation is the Kalman filter 

[2]. For linear systems, the Kalman filter provides the optimal solution for maintaining a 
consistent estimate of the first two moments of the state distribution: the mean and variance. 
However, the requirement that all measurement and process models be linear is rarely 

satisfied in nontrivial applications. 
In order to apply the mechanics of the Kalman filter to nonlinear problems, based on the 

concept of sequential importance sampling and the use of Bayesian theory, particle filtering is 
especially useful in dealing with nonlinear and non-Gaussian problems. The underlying 

principle of the methodology is the approximation of relevant distributions with random 
measures composed of particles (samples from the space of the unknowns) and their 
associated weights [3]. Recently, a special class of particle filters called Gaussian particle 

filter (GPF) that approximates the posterior distributions by single Gaussians has been 
introduced [4]. Although in their derivation it is assumed that all the relevant distributions are 

Gaussian, as is done with some other filters including the extended Kalman filter and its 



 

 X. Li, Y. Xie: STATE ESTIMATIO� BASED O� GE�ERALIZED GAUSSIA� PROBABILITY DE�SITY FU�CTIO�S 

 

variants, they are distinguishable in that the updating of the filtering and predictive 

distributions is accomplished by propagating particles. This entails advantages of easier 
implementation than is the case with the standard particle filters and improved performance 
over other Gaussian based approximation filters. 

However, all results derived from GPF are based on Gaussian assumption, especially for 
its propagating particles. According to the Central Limit Theorem, the limit behaviour of the 

stochastic variable is Gaussian. So the true Probability density function (PDF) in an actual 
situation is an approximation of Gaussian (or Gaussian-like) as a result of insufficient 
sampling points [5]. 

In this paper, a review of some the most popular tracking (state estimation) algorithms is 
shown. Several methods of parameter estimation for generalized Gaussian probability density 

functions are also presented. We employ Generalized Gaussian distributions (GGDs) to 
perform the particle propagation in a Gaussian particle filter. The effectiveness of the use of 
GGDs in place of the Gaussian assumption in GPF is elucidated.  

The method presented in this paper has two contributions. The first one is to improve the 
estimation accuracy of the conventional Gaussian particle filter. The second contribution is to 

maintain the nearly equal computational cost compared with the GPF. Two nonlinear system 
models are presented to illustrate our results, simulation results are provided to verify our 
analysis. This paper is organized in the following order. In Section 2, the most popular state 

estimation algorithms are outlined, and the method of parameter estimation for generalized 
Gaussian probability density functions is presented in Section 3. The GGDs based Gaussian 

particle filter technique is proposed in Section 4. Our method is validated by the simulations 
from two cases in Section 5. Important conclusions are drawn in Section 6. 
 

2. State estimation methods − from the Kalman filter to particle filtering 

 
A large portion of the theory on measurement model is about measurement data (signals) 

and systems that are represented by state-space and observation equations, that is, equations 
of the form: 

                                                         
1

( , ),
t t t t
x f x u

−

=                                                              (1) 

     ( , ),
t t t t
y g x v=                                                                (2) 

where yt is a vector of observations, xt is a state vector, gt (xt,vt) is a measurement function, 

1
( , )

t t t
f x u

−

 is a system transition function, 
t
u  and 

t
v  are noise vectors, and the subscript t 

denotes a time index.  The first equation is known as state equation, and the second, as 
measurement equation. The standard assumptions are that the analytic forms of the functions 
and the distributions of the two noises are known. Based on the observation yt and the 

assumptions, the objective is to estimate xt recursively. 
The approach that has been investigated the most and that has been frequently used in 

practice is the Kalman filter. The Kalman filter is optimal in the important case when the 
equations are linear and the noises are independent, addition, and Gaussian. In this situation, 
the distributions of interest (filtering, predictive, or smoothing) are also Gaussian and the 

Kalman filter can compute them exactly without approximations. For scenarios where the 
models are nonlinear or the noise is non-Gaussian, various approximation methods have been 

proposed. Among these methods, the extended Kalman filter is perhaps the most prominent of 
all [6]. 

The particle filtering method has become an important alternative to the extended Kalman 
filter. With particle filtering, continuous distributions are approximated by discrete random 
measures, which are composed of weighted particles, where the particles are samples of the 
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unknown states from the state space, and the particle weights are “probability masses” 

computed by using Bayes’ theory. In the implementation of particle filtering, importance 
sampling plays a crucial role and, since the procedure is designed for sequential use, the 
method is also called sequential importance sampling. The advantage of particle filtering over 

other methods is in that the exploited approximation does not involve linearization around 
current estimates but rather approximation in the representation of the desired distributions by 

discrete random measures. 

 

2.1. Particle filtering 
 
As already pointed out, the main task of sequential measurement signal processing is the 

estimation of the state 
t
x  recursively from the observations 

t
y . In general, three probability 

distribution functions are of interest, and they are the filtering distribution 
0:

( | );
t t

p x y  the 

predictive distribution 
0:

( | ), 1;
t l t

p x y l
+

≥  and the smoothing distribution 
0:

( | ), .
t T

p x y T t>  All 

the information about 
t
x  regarding filtering, prediction, or smoothing is captured by these 

distributions, respectively, and so the main goal is their tracking, which is obtaining 
0:

( | )
t t

p x y  

from 
1 0: 1

( | ),
t t

p x y
− −

 
0:

( | )
t l t

p x y
+

 from 
1 0:

( | ),
t l t

p x y
+ −

 or 
0:

( | )
t T

p x y  from 
1 0:

( | ).
t T

p x y
+

The 

algorithms that exactly track these distributions are known as optimal algorithms. In many 

practical situations, however, the optimal algorithms are impossible to implement, primarily 
because the distribution updates require integrations that cannot be performed analytically or 

summations that are impossible to carry out due to the curse of dimensionality. 

For the joint a posteriori distribution of 
0 1
, ,...,

t
x x x , in case of independent noise samples 

which are assumed through the article, we can write: 

          
0: 0: 0 0 1

1

( | ) ( | ) ( | ) ( | ).
t

t t k k k k

k

p x y p x y p y x p x x
−

=

∝ ∏                            (3) 

It is straightforward to show that a recursive formula for obtaining 
0: 0:

( | )
t t

p x y  from 

0: 1 0: 1
( | )

t t
p x y

− −

 is given by: 

            1

0: 0: 0: 1 0: 1

0: 1

( | ) ( | )
( | ) ( | ).

( | )

t t t t

t t t t

t t

p y x p x x
p x y p x y

p y y

−

− −

−

=                         (4) 

Since the transition from 
0: 1 0: 1

( | )
t t

p x y
− −

 to 
0: 0:

( | )
t t

p x y  is often analytically intractable, it is 

necessary to resort to approaches that are based on approximations. 
In particle filtering, the distributions are approximated by discrete random measures 

defined by particles and weights assigned to the particles. If the distribution of interest is 

( )p x  and its approximating random measure is:  

       ( ) ( )

1
{ , }j j M

j
x wχ

=
= ,                                                         (5) 

where ( )j
x  are the particles, ( )j

w  are their weights, and M  is the number of particles used in 

the approximation, χ  approximates the distribution ( )p x by: 

( ) ( )

1

( ) ( ),
M

j j

j

p x w x xδ

=

= −∑                                                     (6) 

where ( )xδ  is the Dirac delta function.  

The next important concept used in particle filtering is the principle of importance 
sampling. Suppose we want to approximate a distribution p(x) with a discrete random 

measure. If we can generate the particles from p(x), each of them will be assigned a weight 
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equal to 1/M. When direct sampling from p(x)  is intractable, one can generate particles ( )j
x  

from a distribution ( )xπ , known also as importance function, and assign (nonnormalized) 

weights according to: 

     
*( ) ( )

,
( )

j p x
w

xπ

=                                                           (7) 

which upon normalization become: 

     
*( )

( )

*( )

1

.

j

j

M
j

m

w

w

w

=

=

∑
                                                         (8) 

Suppose that the posterior distribution 
0: 1 0: 1

( | )
t t

p x y
− −

 is approximated by the discrete 

random measure ( ) ( )

1 0: 1 1 1
{ , }j j M

t t t j
x wχ

− − − =
= . Note that the trajectories of particles ( )

0: 1

j

t
x

−

 can be 

considered particles of 
0: 1 0: 1

( | )
t t

p x y
− −

. Given the discrete random measures 
1t

χ
−

 and the 

observation yt, the objective is to exploit 1t
χ

−

 in obtaining 
t

χ . Sequential importance sampling 

methods achieve this by generating particles ( )j

t
x  and appending them to ( )

0: 1

j

t
x

−

to form ( )

0:

j

t
x , and 

updating the weights ( )j

t
w  so that 

t
χ  allows accurate estimates of the unknown of interest at 

time t . 

If we use an importance function that can be factored as: 

    
0: 0: 0: 1 0: 0: 1 0: 1

( | ) ( | , ) ( | )
t t t t t t t

x y x x y x yπ π π
− − −

=                                     (9) 

and if: 

 ( )

0: 1 0: 1 0: 1~ ( | )
j

t t t
x x yπ

− − −

                                                      (10) 

and: 

                                                       
( )

( ) 0: 1 0: 1
1 ( )

0: 1 0: 1

( | )

( | )

j

j t t

t j

t t

p x y
w

x yπ

− −

−

− −

∝                                                       (11) 

we can augment the trajectory ( )

0: 1

j

t
x

−

with ( )j

t
x , where: 

  ( ) ( )

0: 1 0:
~ ( | , )j j

t t t t
x x x yπ

−

                                                      (12) 

and easily associated with it an updated weight ( )j

t
w  obtained according to:  

  
( ) ( ) ( )

( ) ( )1
1( ) ( )

0: 1 0:

( | ) ( | )

( | , )

j j j

j jt t t t

t tj j

t t t

p y x p x x
w w

x x yπ

−

−

−

∝ .                                           (13) 

The sequential importance sampling algorithm can thus be implemented by performing the 

following two steps for every t . 

1) Draw particles ( ) ( )

0: 1 0:
~ ( | , )j j

t t t t
x x x yπ

−

, where j = 1,2,…,M. 

2) Compute the weights of ( )j

t
w  according to (13). 

The importance function plays a very important role in the performance of the particle 
filter. This function must have the same support as the probability distribution that is being 

approximated. In general, the closer the importance function to that distribution, the better the 
approximation. 

In the literature, the two most frequently used importance functions are the prior and the 
optimal importance function. The implementations of particle filters with prior importance 
functions are much easier than those with optimal importance functions because the prior 

importance functions have lower computational cost.   
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A major problem with particle filtering is that the discrete random measure degenerates 

quickly, that is to say, all the particles except for a very few are assigned negligible weights.  
The degeneracy implies that the performance of the particle filter will deteriorate. 

Degeneracy, however, can be reduced by using good importance sampling functions and 

resampling. 
Resampling is a scheme that eliminates particles with small weights and replicates particles 

with large weights. In principle, it is carried out as follows: 

Step 1. Draw M particles, *( )j

t
x  from the discrete distribution 

t
χ . 

Step 2. Let ( ) *( )j j

t t
x x= , and assign equal weights 1/M to the particles. 

In summary, the procedure of particle filtering involves the following steps: 
Step 1. Description of the problem by a discrete state-space model as in (1) and (2). 
Step 2. Selection of proposal function for particle generation. 

Step 3. Derivation of a proposal functions for the weight update. 
Additional issues are the choice of resampling algorithm and the schedule for resampling. 

 

2.2. Gaussian Particle Filtering  
 

A major disadvantage of particle filters is the computational complexity, a large part of 
which comes from resampling. The Gaussian particle filter (GPF) is quite similar to the 

particle filter by the fact that importance sampling is used to obtain particles. However, unlike 
the particle filters, resampling is not required in the GPF, and the GPF only propagates the 
mean and covariance of the posterior distributions. This results in a reduced complexity of the 

GPF as compared with the particle filter with resampling and is a major advantage. 
The GPF measurement updates and time updates steps are summarized as follows: 

GPF – measurement update algorithm. 

1) Draw samples from the importance function 
0:

( | )
t t
x yπ  and denote them as ( )

1
{ }j M

t j
x

=
. 

2) Obtain the respective weights by: 

                   
( ) ( )

( )

( )

0:

( | ) ( ; , )
,

( | )

j j

j t t t t t t

t j

t n

p y x � x x
w

x y

µ

π

= Σ
=                                     (14) 

where 
t

µ  is the mean, and the covariance is the positive definite matrix 
t

Σ . ( )( ; , )j

t t t t
� x x µ= ∑  is 

the Gaussian distribution. 
3) Normalize the weight as: 

                   
( )

( )

( )

1

.

j

j t

t M
j

t

j

w

w

w

=

=

∑

                                                    (15) 

4) Estimate the mean and covariance by : 

                   

( )

1

( )

1

,

( )( ) .

M
j j

t t t

j

M
j j j H

t t t t t t

j

w x

w x x

µ

µ µ

=

=

=

Σ = − −

∑

∑

                              (16) 

GPF – time update algorithm. 

1) Draw samples from ( ; , )
t t t

� x µ Σ  and denote them as ( )

1
{ }j M

t j
x

=
. 

2) For  j = 1,…,M, sample from 
1

( | )j
t t t

p x x x
+
=  to obtain ( )

1 1
{ }j M

t j
x

+ =
. 

3) Compute the mean 
1t

µ
+
 and covariance 

1t+
Σ  as: 
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1 1

1

1 1 1 1 1

1

1
,

( )( ) .

M
j

t t

j

M
j j H

t t t t t

j

x
M

x x

µ

µ µ

+ +

=

+ + + + +

=

=

Σ = − −

∑

∑

                              (17) 

 

3. Parameter estimation for Generalized Gaussian distributions 

 

Precisely modeling unknown Probability density functions (PDFs) of data are very 
important for the efficient design of modern signal processing and controlling systems. The 

parametric family of densities coming from the Generalized Gaussian distribution (GGD) are 

known to model successfully a large number of different signals and systems [7−12], where 
the GGD model has been shown to provide , in most cases, a fairly accurate representation of 

the unknown distributions. 

For any zero-mean ( 0µ = ) signal x R∈ , the PDF of a Generalized Gaussian distribution 

with standard deviation σ  is defined as [7]: 

     
( , )

( ) exp{ [ ( , ) | |] },
1

2 ( )

v

v

v v
p x v x

v

η σ
η σ

⋅
= − ⋅

⋅Γ

                                    (18) 

in which: 

                                                        

1/2

1 (3 / )
( , )

(1/ )

v

v

v

η σ
σ

 Γ
=  Γ 

                                                   (19) 

and ( )vΓ  is the Gamma function, i.e., 1

0

( ) , 0.
z t

z t e dt z

∞

− −

Γ = >∫  Since ( ) ( 1)!,n nΓ = −  when v =1 a 

Laplacian law is obtained, while v = 2, yields a Gaussian distribution. As the limit case, for 

0v→ , ( )
v
p x  becomes an impulse function, yet having flat tails and thus nonzero 2

σ  

variance, whereas for v→∞ , ( )
v
p x  approaches a uniform distribution having variance 2

σ  as 

well. The shape parameter v  rules the exponential rate of decay: the larger the v , the flatter 

the PDF; the smaller the v , the more peaked the PDF. Fig. 1 shows the trend of the GGD 

function for different values of the v. 
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Fig. 1. The probability density function of the generalized Gaussian plotted for different values of the shape. 

parameter v = 0.6, 1, 2 and 10, respectively. All distributions are normalized to unit variance 

(σ 2 = 1) and have zero mean. 
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Many methods exist for parameter estimation of a GGD. The state of the art is summarized 

in the work by Varanasi and Aazhang [13], which focuses on evaluation of accuracy of 
estimates for both large and small samples, and compares classic statistical methods, like the  
moment method, the maximum likelihood (ML), and the moment estimator. The ML method 

turned out to be the most efficient for 1.v <  Its theoretical formulation [13, 10], and 

numerical solution, however, make it unsuitable for real-time applications. 

Here, we use the scheme first proposed by Mallat [14] to implement the parametric 
estimation of GGD. Mallat’s method substantially falls into the category of moment methods, 

being based on matching the moments of the data set with those of the assumed distribution, 
in order to find out its variance value and shape factor. For a GGD, the ratio of mean absolute 

value to standard deviation is a steadily increasing function of the v: 

        
(2 / )

( ) .
(1/ ) (3 / )

M

v
F v

v v

Γ
=

Γ ⋅Γ

                                             (20) 

Given a group of � i.i.d. zero-mean random variables, 
1 2

{ , ,..., }
�

x x x  , following a GGD 

( )
v
p x  , let 

1

1

1
| |

�

i

i

m x
�

=

= ∑  be the estimate of the mean absolute value and 2 2

1

1
ˆ

�

i

i

x
�

σ

=

= ∑  the 

sample variance. The parameter v  is estimated by inverting (20), that is by solving:  

           1 1ˆ ( ).
ˆ

M

m
v F

σ

−

=                                                         (21) 

 

4. GGD based Gaussian particle filtering − an extension of the GPF 

  
Applying GGD to improve the performance of the Gaussian particle filter is rather routine 

if we have got an estimate of v  from (21). From the description in Section 2, we give an 

extension algorithm of the Gaussian particle filter as follows. The density function chosen is 
the only difference in algorithm between the extension of the GPF and the GPF; in the former, 

it is GGD and in the latter, it is Gaussian density. 
The extension algorithm of the GPF – measurement update algorithm. 

1) Draw samples from the importance function 
0:

( | )
t t
x yπ  and denote them as ( )

1
{ }j M

t j
x

=

. 

2) Obtain the respective weights by: 

                                                 
( ) ( )

( )

( )

0:

( | ) ( ; , )
,

( | )

j j

j t t v t t t t

t j

t n

p y x p x x
w

x y

µ

π

= Σ
=                                        (22) 

where the 
t

µ  is the mean, and the covariance is the positive definite matrix 
t

Σ . ( )
v
p x  is the 

Generalized Gaussian distribution. 

3) Normalize the weight as: 

              
( )

( )

( )

1

.

j
j t

t M
j

t

j

w

w

w

=

=

∑

                                                         (23) 

4) Estimate the mean and covariance by:  

                

( )

1

( )

1

,

( )( ) .

M
j j

t t t

j

M
j j j H

t t t t t t

j

w x

w x x

µ

µ µ

=

=

=

Σ = − −

∑

∑

                                 (24) 
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The extension algorithm of the GPF – time update algorithm. 

1) Draw samples from ( , , )
v t t t
p x µ Σ  and denote them as ( )

1
{ }j M

t j
x

=
. 

2) For j = 1,...,M, , sample from 
1

( | )j
t t t

p x x x
+
=  to obtain ( )

1 1
{ }j M

t j
x

+ =
. 

3) Compute the mean 
1t

µ
+
 and covariance 

1t+
Σ  as: 

           

1 1

1

1 1 1 1 1

1

1
,

( )( ) .

M
j

t t

j

M
j j H

t t t t t

j

x
M

x x

µ

µ µ

+ +

=

+ + + + +

=

=

Σ = − −

∑

∑

                                   (25) 

 

5.  Experimental tests of an extension of the GPF algorithm  

 

The extension of the GPF proposed in this paper is applied now to two different systems. 
In Example 1, a nonlinear time series model is chosen which comes from economy. Here the 

measurement noise is considered to be  Gaussian noise. And in Example 2, another nonlinear 
model, which has been used extensively in the literature for benchmarking numerical filtering 

techniques [15], is presented in the presence of Gaussian noise. The performance of the 
proposed algorithm was compared with a conventional SIS filter (particle filter) and GPF. 

 

5.1. Case 1 
 

Here, we present the result for one model: the short-term variations and long-term 
dynamics model [16], which is popularly used in econometrics. We choose this model 
because it is highly nonlinear. The DSS equations for this model can be written as: 

              
1

,

exp( ) ,

n n

n n

x a x w

y c x v

−

= ⋅ +

= ⋅ +

                                                (26) 

 

where 2
~ (0, )w � b , 2

~ (0, )v � d . We assume that the parameter [ , , , ]a b c dθ =  are known 

quantities. We want to obtain estimates of the state process X given observations from the 
data vector Y. 

To compare the performance of the estimation routines of the particle filter, the Gaussian 

particle filter and the extension of the Gaussian Particle Filter, we apply these procedures on a 

simple nonlinear model where [0.6,0.2,2,0.2].θ =  (26) is used to simulate 100T =  

observations under θ  to obtain X and Y from the time update process and measurement 

systems.  

We apply the particle filter, Gaussian particle filter and the extension of the Gaussian 
particle filter using n = 100 particles to re-estimate X. We then test how well each estimation 
procedure fits the initial simulated unobserved time-series X. 

We use the Root Mean Square Error (RMSE) to evaluate the estimation accuracy, which 
is defined as: 

        

1/2

2

1

1
ˆ( ) ,

T

n n

n

RMSE x x
T

=

 
= − 
 
∑                                           (27) 

where ˆ
n
x  is the mean of particle estimates, T is the number of iterations, in time steps. 

From Fig. 2, we can see that each method is able to do a reasonable job in re-estimating 

1:T
X , but the extension of GPF gives a better estimation of the system state than the others. 
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Fig. 2. Case 1: this figure compares the plots of simulated state represented by the solid black line, to that   

      of the estimated state vector X̂ , represented by the dotted asterisk, circle and square lines. These correspond                               

to the particle filter, Gaussian particle filter and the extension of the Gaussian particle filter with v = 0.18.  

The number of particles is 100. 

 

From Fig. 2, we can see that each method is able to do a reasonable job in re-estimating 
X1:T, but the extension of GPF gives a better estimation of the system state than the others. 

What is not easily seen in Fig. 2, is a comparison with respect to both performance and 

efficiency. We refer to Table 1 to illustrate this comparison. The extension of GPF with v  

having a proper estimation provides an appreciable improvement in the error when compared 
with both the particle filter and GPF; for example, for the case v = 0.18, the mean squared 

error (MSE) (where 2
MSE RMSE= ) of the Gaussian particle filter is 0.0089 while that of the 

extension of GPF is 0.0044. The extension of GPF with a proper v  also outperforms a little 

the GPF in time cost; for example, for the extension of GPF with v  = 0.18, the time cost is 
0.0450s while that of the GPF is 0.0458s. 

The MSE of each filter was subsequently computed. Fig. 3 shows the MSE of each filter 
with 100 particles for 50 Monte Carlo runs. The comparison of the average MSE over the 50 

times samples among the filters, in terms of the number of a particle, is shown in Fig. 4. The 
average MSE was compared for the number of particles 50, 100 and 500, respectively. Even 
for a small number of particles the extension of GPF performs significantly better than GPF. 

An increase in the number of particles reduces the MSE further for the extension of GPF. The 
performance of the extension of GPF becomes very close for the number of particles 500 and 

100. The performance of the extension of GPF appears to be better than the other filters taken 
here for comparison. 

 

Table 1. Case 1: comparison of particle filters (3 iterations). 
 

Filter type 1 2 3 

Particle filter 

MSE 

Time/s 

 

0.0117 

0.0375 

 

0.0099 

0.0388 

 

0.0105 

0.0395 

Gaussian particle filter 

MSE 

Time/s 

 

0.0089 

0.0458 

 

0.0077 

0.0487 

 

0.0073 

0.0472 

The extension of Gaussian particle filter 

MSE 

Time/s 

0.18v =  

0.0044 

0.0450 

0.19v =  

0.0039 

0.0484 

2.2v =  

0.0049 

0.0470 

73



 

 X. Li, Y. Xie: STATE ESTIMATIO� BASED O� GE�ERALIZED GAUSSIA� PROBABILITY DE�SITY FU�CTIO�S 

 

0 5 10 15 20 25 30 35 40 45 50
-0.005

0

0.005

0.01

0.015

0.02

0.025

Time

M
e
a
n
 S
q
u
a
re
 E
rr
o
r

 

 

PF

GPF

Extension of GPF

1 2 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of Particles: 50-100-500

M
e
a
n
 S
q
u
a
re
 E
rr
o
r

 

 

PF

GPF

Extension of GPF

 
            Fig. 3. Case 1: MSE for 50 Monte Carlo runs                 Fig. 4. Case 1: average of MSE for over time 

            (the number of particles is 100), with v = 0.19                samples with the number of particles 50, 100    

            for the extension of  Gaussian particle filter.                   and 500, respectively (for 50 Monte Carlo runs). 

                                                                                                The v of the extension of  Gaussian particle filter   

                                                                                                is 0.19. 
 

5.2. Case 2 
 
In this section we apply the extension of GPF to estimate the state of another nonlinear 

time series. The continuous time dynamics of the system are: 

       

1

1 2

1
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0.5 25 8cos(1.2( 1)) ,
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t t t

t

t

t t

x
x t u
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−

−

−

= + + − +

+

= +

                            (28) 

where Gaussian distribution noise ~ (0,1)
t
u � , ~ (0,1)

t
v � . The simulation was carried out for 

100 time samples. The performance of the extension of GPF has been compared with the PF 
and GPF. 

From Fig. 5, it is easily seen that each method is able to do a reasonable job in estimating 
the state of the system, but the extension of GPF gives a better estimation of the system state 
than the others. 
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Fig. 5. Case 2: this figure compares the plots of simulated state X1:T, represented by the solid black line,  

to  that of the estimated state vector X̂ , represented by the dotted asterisk, circle and square lines.  

These correspond to the particle filter, Gaussian particle filter and the extension of the Gaussian particle 

filter with  v = 0.6. The number of particles is 100. 
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Fig. 6 and Fig. 7 show the MSE with 100 particles and the average MSE in filtering while 

using a different number of particles from 50 to 500. It is clear that the estimation accuracy of 
the extension of GPF is the best of all even while using smaller size, especially when the 

particle number 100
s

� > . This is because that it is easier to show insufficient diversity of 

particles when the number of particles is small, and our approach will benefit more from 

using the support particles which come from a more proper prior PDF ( )
v
p x . 

The processing time of 1000 iterations when using the number of particle is 50 is given in 

Table 2. The result shows that our approach has cost nearly equal processing time compared 
with the GPF. 
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Fig. 6. Case 2: MSE for 50 Monte Carlo runs (the number of particles is 100), 

with v = 0.6 for the extension  of  Gaussian particle filter. 
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Fig. 7. Case 2: average of MSE for over time samples with the number of particles 50, 100 and 500,    

 respectively (for 50 Monte Carlo runs ). The v of the extension of  Gaussian particle filter is 0.6. 

 

Table 2. Case 2: Performance comparison of particle filters (1000 iterations). 

Filter type PF GPF Extension of GPF (v = 0.6) 

Processing time/s 0.1565 0.5633 0.5621 

 

6. Conclusions 

 

This paper studies a model of state estimation based on Generalized Gaussian distributions. 

Effective applications in non-linear system state estimation using an extension of the 
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Gaussian particle filter are discussed. Simulations on estimating the system state illustrate the 

benefits of the extension of Gaussian particle filter against the Gaussian particle filter (GPF) 
method. The results compared with the Gaussian particle filter algorithm show that the 
extension of Gaussian particle filter algorithm has better performance of state estimation and 

nearly equal computational cost. 
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