
 

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 307-320. 

________________________________________________________________________________________________________________________________________________________________________________ 

Article history: received on Dec. 6, 2011; received in revised form on March 18, 2012; accepted on March 27, 2012; available online on  

May 18, 2012; DOI: 10.2478/v10178-012-0026-7. 

 

METROLOGY AND MEASUREMENT SYSTEMS 

Index 330930, ISSN 0860-8229 

www.metrology.pg.gda.pl  

 

 

POWER SYSTEM FREQUENCY ESTIMATION ALGORITHM FOR ELECTRIC 

ENERGY METERING OF NONLINEAR LOADS    

 

Zhang Peng, Li Hong-Bin 

Huazhong University of Science and Technology, College of Electric and Electronic Engineering, Wuhan, China, 

( pzhill_108hust@yahoo.cn, +86 027 8754 8655, lihongbin@mail.hust.edu.cn, +86 027 8748 4147) 
 

Abstract 

In this paper, a discrete wavelet transform (DWT) based approach is proposed for power system frequency 

estimation. Unlike the existing frequency estimators mainly used for power system monitoring and control, the 

proposed approach is developed for fundamental frequency estimation in the field of energy metering of 

nonlinear loads. The characteristics of a nonlinear load is that the power signal is heavily distorted, composed of 

harmonics, inter-harmonics and corrupted by noise. The main idea is to predetermine a series of frequency 

points, and the mean value of two frequency points nearest to the power system frequency is accepted as the 

approximate solution. Firstly the input signal is modulated with a series of modulating signals, whose 

frequencies are those frequency points. Then the modulated signals are decomposed into individual frequency 

bands using DWT, and differences between the maximum and minimum wavelet coefficients in the lowest 

frequency band are calculated. Similarities among power system frequency and those frequency points are 

judged by the differences. Simulation results have proven high immunity to noise, harmonic and inter-harmonic 

interferences. The proposed method is applicable for real-time power system frequency estimation for electric 

energy measurement of nonlinear loads.  
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1. Introduction 

 

In recent years, the electric energy metering for nonlinear loads has drawn the attention of 

many researchers. For nonlinear loads, the total active power P can be described by (1), where 

fundamental active power P1 and harmonic active power PH are given by (2) and (3) 

respectively.   
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The standard IEEE1459-2000 [1] proposed that, for nonlinear loads, PH and P1 are 

separately metered, which helps to share power quality responsibility fairly between the 

consumer(s) and the electric power distributor [2].To measure P1 and PH, the fundamental 

frequency f1 needs to be measured firstly. However, the voltage signal collected for frequency 

estimation is usually composed of harmonics, inter-harmonics, and dc offset, due to the 

impact of nonlinear loads [3-5]. Moreover, almost all electrical devices are virtually sources 

of electromagnetic interference. The voltage signal is unavoidably corrupted by noise during 

measurement and transmits periods. The paper [6] studied the intensity and behavior of noise 
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in low-voltage distribution systems. Therefore, for electric energy measurement of nonlinear 

loads, the frequency estimator should be able to estimate the fundamental frequency f1 

accurately when the input signal is heavily distorted by harmonics, inter-harmonics, noise  etc. 

Take an energy meter of accuracy class 0.2 for example. The maximum error limit in energy 

registration is 0.2%, so the accuracy of fundamental frequency should be improved by two 

grades, i.e. class 0.05, and it means that the maximum allowable frequency error is 25 mHz 

for a 50 Hz power system. 

In the past several decades, a variety of algorithms [7-26] for frequency estimation have 

been reported. Generally, the performance of a frequency estimation algorithm can be 

evaluated through static and dynamic tests. Static tests study the effects of harmonics or noise 

on the frequency estimator, and dynamic tests study the frequency-tracking performance. 

These existing algorithms are mainly used for power system monitoring, control and 

protection. When the power system frequency changes sharply, it will severely endanger the 

survival of a power system. Therefore these algorithms aim to track fast variations of 

frequency, and frequency tracking ability is more important than its accuracy and noise-

immunity. However, in the fields of energy metering of nonlinear loads, accuracy and noise-

immunity of the frequency estimator are especially emphasized, in addition to its frequency-

tracking ability. 

The modified zero-crossing method [7] and the modified Least Error Squares (LES) 

algorithm [8] have improved harmonic-resistant performance compared to their original 

versions. However, those methods still have somewhat poor noise performance. The Kalman 

filter-based technique includes the extended Kalman filter method [9], extended complex 

Kalman filter method [10] and robust complex Kalman filter [11]. Researchers try to improve 

the speed of convergence for frequency estimation, reduce the effects of the neglected high- 

order terms in Taylor’s expansion, and enhance sensitivity and reliability for detecting a 

distorted signal. Those algorithms, including the discrete Fourier transforms method [12], 

transforming discrete Fourier transforms method [13], and Prony’s method [14, 15], suffer 

from inaccuracies due to more violent fluctuations in the measured signal [11]. The paper [16] 

introduced an orthogonal FIR-filter-based frequency estimator, which has two averaging 

filters at the input and the output respectively. The input filter aims to reduce the effects of the 

2
nd

-order and higher order harmonics. Similarly, the paper [17] studied an adaptive varying 

step-size Least Mean Square (LMS) method to improve immunity against noise disturbance. 

The proposed algorithm adopted a third-order Butterworth pre-filter with a crossover 

frequency of 200Hz to eliminate the effects of harmonics. For these algorithms in [16] and 

[17] it is a difficult task to design a filter to filter out the inter-harmonic component near to the 

fundamental frequency without degrading the algorithm’s performance. The phase lock loop 

(PLL)-based method was proposed in [18] and compared with the adaptive notch filter 

(ANF)-based method in [19]. Comparison results show that the ANF-based method has better 

frequency-tracking performance; however, its harmonic (or noise) immunity is worse. In [20], 

the author introduced a least-squares method. The main characteristic of this algorithm is its 

short response time; however, its noise-immunity or harmonic-resistant ability is worse than 

that of the PLL-based method. The demodulation-based methods [21, 22] used two 

modulating signals. The signal components in the modulated signals, which carry the 

information of fundamental phase and also around DC, are filtered out by the low-pass filter 

and used for estimation of phase angle and frequency. The inter-harmonic component near  

the fundamental frequency, however, is still difficult to be filtered out. Other algorithms, such 

as the modified LMS algorithm [23], the least mean phase (LMP) algorithm [24] and the 

multi-harmonic least-squares fitting algorithm [25] are also reported. Reference [26] presents 

reviews of the existing several methods, outlining strengths and weaknesses of each one.    
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In power systems, the fundamental frequency usually deviates from its nominal value 

(50Hz or 60Hz), due to unbalance between generators and consumption or power fault  

[27, 28]. According to the standard EN50160 [29], the 10-second mean value of the 

fundamental frequency should be within 49.5–50.5 Hz during 99.5% of a year. Sergei S. 

Smirnov [30] pointed out that, according to European requirements [31], the average 10-

minute frequency deviations should be within a ± 20 mHz range. And, based on field 

measurement, he reported that in Russia’s power systems the fundamental frequency variation 

was in the range ±10 mHz and the maximum deviation amounts to ±50 mHz, with the 

averaging 10-minute period. Normally the rate of frequency variation was ±10 mHz/min 

(about 1.7e
-4

Hz/s) and may reach ±25mHz/min. (about 4.2e
-4

Hz/s). It can be observed from 

Figs [28, 32, 33] (Fig. 7 in [28], Fig. 6 in [32], Fig. 2.6 in [33]) that the rate of frequency 

fluctuation was normally about less than 20mHz/s under normal operating conditions. 

According to the above descriptions, the frequency estimator used in the field of power 

measurement of a nonlinear load should be able to track the slowly-changing frequency.  

Wavelet transform is one of time-frequency techniques and has been applied in a wide 

variety of research areas such as transient analysis, harmonic analysis and power quality 

monitoring [34-38].Wavelets are oscillating waveforms with zero mean and start out at zero, 

increase and then decrease, which have zero amplitude at both ends. The basic idea 

underlying wavelet analysis involves expressing a section of a signal as a linear combination 

of a particular set of wavelet functions, and the coefficients represent how closely the wavelet 

function correlates with the signal in that section. These wavelet functions are obtained by 

shifting and dilating a mother wavelet. The discrete wavelet transform (DWT), as the digital 

representation of the continuous wavelet transform, decomposes a signal into different 

frequency components, and provides a logarithmic division of the frequency domain. 

In this paper, the authors introduced a DWT-based approach to power frequency 

estimation. Similar with the methods [21, 22], the proposed method in this paper is also 

demodulation-based, using modulating signals (sin(2fkt),cos(2fkt)and sin(2fkt)+cos(2fkt)). 

The difference between these two methods is that this approach is based on multi-level DWT. 

Estimation of fundamental frequency is achieved using wavelet coefficients in the lowest 

frequency band. 

The multi-level DWT is implemented using a multistage filter bank with the wavelet 

function as the low-pass (LP) filter and its dual as the high-pass (HP) filter. Outputs of the LP 

filters are down-sampled by two for the next stage. To achieve Mallat's fast algorithm [34], 

the chosen mother wavelet should be orthogonal (or biorthogonal) and compactly supported. 

Among the commonly-used wavelets, wavelets that meet these requirements include 

Daubechies, Coiflets, Symlets and biorthogonal families. In comparison with a classical low-

pass filter and a decimator that are used in most publications dealing with demodulation 

methods, the use of the discrete wavelet transform makes this algorithm show strong 

harmonic-resistance and noise-immunity. Here the ‘harmonic’ includes odd- and even-order 

harmonics, inter-harmonics, and sub-harmonics. 

The paper is organized as follows. The concept of the proposed frequency estimator is 

explained in Section II. Section III evaluates the estimator performance under various 

conditions. Discussions about the proposed estimator are present in Section IV. Section V 

summarizes the main conclusions of the paper. 

 

2. The proposed algorithm 

 

In this section, the DWT-based algorithm for frequency estimation under nonlinear loads is 

introduced. The proposed frequency estimator employs N successive samples within a 0.2 

second period (10 times the fundamental period for a 50 Hz system) to estimate the power 
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system frequency. Suppose the power signal (voltage signal or current signal) is band-limited 

such that a frequency component at or above 1500 Hz can be neglected. According to the 

Nyquist-Shannon sampling theorem, a 3200 Hz sampling frequency is chosen. The window 

size is 0.2 second, and the 640 successive samples within the window are decomposed by 

DWT at seven levels, and there are five wavelet coefficients in the lowest frequency band  

(0-12.5 Hz).  

The main idea is as follows. Since the power system frequency f1 usually fluctuates within 

a narrow frequency range (49.5 - 50.5 Hz for a 50 Hz power system) in normal operation, we 

can predetermine a series of frequency points within this interval, and find out the nearest 

frequency point (denoted as fa) and the second nearest frequency point (denoted as fb) to f1 by 

some means. The mean value of fa and fb is considered as the approximate evaluation of f1, i.e., 

f1 ≈ 0.5(fa+fb). Two problems arise here. The first one is how to set up these frequency points. 

The second one is how to judge the similarity between these frequency points and f1.  

The first problem is easy to solve. When the proposed frequency estimator is initially 

started, eleven frequency points are 49.5 Hz, 49.6 Hz,…, 50.4 Hz and 50.5 Hz respectively, 

equally-spaced in the interval [49.5 Hz, 50.5 Hz]. In the following estimation, the interval is 

limited within the neighborhood of the previous estimated frequency (denoted as fx), i.e.,  

[fx-0.05 Hz, fx+0.05 Hz]. Choice of 0.05Hz is based on the following considerations. In the 

first estimation, the interval between adjacent frequency points is 0.1 Hz. Assume the actual 

fundamental frequency is between the frequency points 49.9 Hz and 50.0 Hz, and the 

estimated frequency will be 49.95 Hz. The difference between the actual frequency and its 

estimated value is less than 0.05 Hz. The modified frequency range is obviously narrower 

than the initial range and the interval between adjacent frequency points is decreased to  

0.01 Hz ((fx+0.05 Hz)-(fx-0.05 Hz)/10=0.01 Hz). This fact helps to increase estimation 

accuracy. Meanwhile, modification of the frequency range realizes the frequency-tracking 

capability when the power system frequency fluctuates.  

The second problem is exactly how to find out the frequency points fa and fb from these 

frequency points. A detailed approach is as follows: use these predetermined frequency points 

as the frequencies of a series of modulating signals, and the power signal is modulated by 

these modulating signals. Those frequency components in the modulated signals whose 

frequencies equal the difference between the power system frequency f1 and these frequency 

points, are separated out using DWT, and the corresponding wavelet coefficients are obtained. 

Denote the difference between the maximum and minimum coefficients in the lowest 

frequency band as Df. For each modulated signal, one corresponding Df value is obtained. The 

frequency point corresponding to the minimum Df value is considered as the frequency point 

nearest to f1, .i.e., fa.  

Assume the power signal v(t) is represented by : 

 1 1 1

2

( ) sin(2 ) sin(2 )
M

k k k

k

v t V f t V f t   


    . (4) 

Here f1, V1 and θ1 (or fk, Vk and θk) represent the frequency, amplitude and initial phase 

angle of the fundamental component (or the h
th

 harmonic component) respectively. fk equals 

kf1, and M is the highest harmonic order.  Generate a modulating signal am(t), defined by (5). 

The frequency fm is selected from these frequency points.  

 ( ) sin(2 )m ma t f t . (5) 

Multiply v(t) by am(t) , the modulated signal va(t) is obtained:  
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where 
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It can be seen from (7) that the frequency components in the signal va(t) can be represented 

as (fk –fm) or (fk+fm), and k varies from one to M.  Usually f1 is in the frequency range of 49.5 

to 50.5 Hz, and fm also belongs to this range, so the lowest frequency component is  

Δf1(=|f1 - fm|), Δf1 ∈[0 Hz,1 Hz].  

Using multi-level DWT, va(t) is decomposed into wavelet coefficients of individual 

frequency bands. The lowest frequency band is (0－Wb) Hz, and Wb is denoted as the 

frequency band width. To separate out the frequency component Δf1, Wb should be less than 

50Hz when va(t) is only composed of a fundamental component and integer harmonics. 

However, if inter-harmonics exist in v(t) , frequency component |finter – fm| in the signal va(t) 

may be less than  25 Hz. Here finter is the inter-harmonic frequency. In such case, Wb should be 

further decreased in order to separate out Δf1. In the following evaluation section, Wb is  

12.5 Hz.  

After obtaining the wavelet coefficients, Df is calculated. Using eleven different frequency 

points as the frequency fm respectively, eleven Δf1 and the corresponding eleven Df values are 

obtained. 

Apart from signal am(t), two different modulating signals bm(t) and  cm(t) are also studied, 

given by (8) and (9). 

 ( ) cos(2 )m mb t f t . (8) 

 ( ) ( ) ( )m m mc t a t b t  . (9) 

Studies show that Df has a certain relationship with Δf1, when Δf1 belongs to the interval  

[0 Hz, 1 Hz]. When the initial phase angle θ1 belongs to a certain interval (discussion below), 

Df monotonically grows with the increase in Δf1. This interval is called a monotone interval, 

or in other words, the corresponding modulating signal is considered to be monotonic in this 

interval. Fig. 1(a) shows the monotone and non-monotone intervals corresponding to the 

modulating signals am(t), bm(t) and cm(t) respectively. It is observed that there are always two 

or more modulating signals that are monotonic when θ1 varies from 0 degrees to 360 degrees 

with a step of 1 degree, except several narrow intervals. In the monotone interval, the 

frequency point corresponding to the minimum Df is nearest to f1 among all frequency points.  

However, when the initial phase angle θ1 values are in those intervals ([43-Δ,43+Δ],  

[178-Δ,178+Δ], [223-Δ,223+Δ], [358-Δ,358+Δ],0<Δ<1, unit (degrees)), only one modulating 

signal is monotonic. Further research shows that, for those intervals, although in the whole 

interval [0 Hz, 1 Hz] of Δf1 a certain modulating signal is not monotonic, there is still a 

narrower interval in which the signal is monotonic. Furthermore, the Df value corresponding 

to the minimum Δf1 is also the minimum. For example, when the initial angle θ1 is 358 

degrees, the relationship of Df values versus Δf1 is depicted in Fig. 1(b). Here the signal am(t) 

is monotonic for the whole interval [0 Hz, 1 Hz], and the non-monotonic intervals for signals 

bm(t) and cm(t) are [0.04 Hz, 0.05 Hz] and [0.99 Hz, 1 Hz] respectively. So two or more 

modulating signals are monotonic whatever the frequency deviation is, when the initial phase 

angle θ1 is 358 degrees. 
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Fig. 1. (a) Monotone and non-monotone intervals for the modulating signal am(t), bm(t) and cm(t)  

(b) Relationship of Df value versus frequency deviation Δf1 when θ1 is 358 degrees. 

 

Synthesized from the above descriptions, the following conclusions are obtained. If two or 

more modulating signals determine the same points nearest to the fundamental frequency f1, it 

means that this frequency point is fa. Meanwhile, these corresponding modulating signals are 

monotonic.  

After the point fa is detected, the next step is to find out the second-nearest frequency point 

fb. There are two frequency points nearest to fa among all frequency points, one on the left 

side (denoted as fb1) and the other on the right side (denoted as fb2). When the modulating 

signal is in the monotone interval, the frequency point corresponding to the smaller Df value is 

fb. For example, if the frequency point fa is 49.7 Hz, co-determined by the signals am(t) and 

bm(t), the two frequency points nearest to fa are 49.6 Hz and 49.8 Hz respectively. According 

to the fore-mentioned description, the signals am(t) and bm(t) are both in the monotone interval. 

Select one of the two signals arbitrarily, for example, am(t). For signal am(t), if the Df value of 

the right point (49.8 Hz) is smaller than that of the left point (49.6 Hz), fb is 49.8 Hz.  

 According to the linearity of discrete wavelet transform [39, 40], (10) exits, where 

DWT(· ) means the discrete wavelet transform operator. Equation (10) shows that the 

wavelet coefficients of signal cm(t) can be directly calculated from those of signals am(t) and 

bm(t), and therefore calculation complexity is reduced. 

 ( ( )) ( ( )) ( ( ))m m mDWT c t DWT a t DWT b t  . (10) 

 

3. Evaluation of the proposed algorithm 

 

The performance of the DWT-based frequency estimator proposed in this paper has been 

evaluated under static and dynamic conditions using computer simulation. In the static tests, 

the effects of noise, harmonics, inter-harmonics and dc offset are evaluated. In the dynamic 

tests, the capability of the frequency estimator in tracking step, ramp, and oscillatory 

variations of frequency is evaluated. Effects of amplitude and phase jumps in the power signal 

are also studied. The evaluation is compared with the PLL-based method [18] and the ANF-

based method [19]. Finally the voltage samples collected from the power system are analyzed 

by the proposed algorithm. Here the sampling frequency is 3200 Hz, the wavelet function is 

db5, and the window size is 0.2 second (640 samples). Seven-level DWT is performed to 

obtain the wavelet coefficients in the frequency band (0-12.5 Hz). Similar results are obtained 

when other wavelet functions (wavelets that belong to Daubechies, or Coiflets, or Symlets or  

biorthogonal families) are used, and are not shown here for simplification.  
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3.1. Static test 

 

3.1.1. Noise 

 

The test signal is a pure sinusoidal signal with unity amplitude, corrupted with zero-mean 

Gaussian white noise. Fig. 2 (a) shows maximum errors of the proposed algorithm, the ANF-

based method and the PLL-based method, when the sinal-to-noise ratio (SNR) varies from 

20dB to 60dB. It is observed that the noise immunity feature of the proposed algorithm is 

desirable, and competes with that of the ANF-based method. However, the proposed 

frequency estimator provides less-accurate responses compared with the PLL-method, when 

noise is present. 

 

3.1.2. Harmonics and DC Component 

 

To study the impact of harmonics and DC offset on the performance of the frequency 

estimator, several examples are considered, where the input signal is a fundamental 

component plus dc offset, or a fundamental component plus a third harmonic, or a 

fundamental component plus a fifth harmonic, or composed of a fundamental component, dc 

offset and harmonics (2
nd

 ~ 25
th

). The estimated frequency has a fixed error (5 mHz) when the 

relative magnitude of dc offset or a single harmonic component with respect to that of the 

fundamental component varies from 0% to 50%. This study shows that the impact of dc offset 

or harmonics is negligible. For the ANF-based method or the PLL-based method, the 

estimated frequency is subject to an oscillatory steady-state error and an offset error. The 

maximum error equals the sum of the oscillatory and offset errors due to individual harmonic 

components. For example, when the test signal is composed of a fundamental and the 3
rd

 

harmonic component, the maximum errors of these frequency estimators are illustrated in  

Fig. 2 (b).  

It is observed that the performance of the proposed algorithm is better, compared with the 

ANF based method. In the case of low harmonic distortion level, the performance of the PLL-

based method competes with the proposed method. However, when the harmonic distortion 

level increases, the proposed method outperforms the PLL-based method. Meanwhile, the 

PLL-based method uses a second-order band-pass pre-filter to reduce the effects of harmonics, 

and the cutoff frequencies are 10 Hz and 110 Hz. Obviously, an inter-harmonic frequency 

component near to the fundamental frequency is difficult to be filtered off by this filter. And 

the task to design such a filter without degrading the performance of the frequency estimator 

is difficult to achieve. 

 

3.1.3. Inter-harmonics 

 

The test signal is composed of a fundamental component with unity amplitude and an 

inter-harmonic component. Three cases with different inter-harmonic amplitude (0.01 p.u, 

0.02 p.u, and 0.05 p.u) are studied. When the inter-harmonic frequency varies from 15 Hz to 

48 Hz, the maximum estimation error of the proposed estimator is depicted in Fig. 2 (c). It is 

observed that the estimation error depends on the inter-harmonic frequency and amplitude. 

For example, when the input signal is composed of a fundamental component and the inter-

harmonic component (frequency: 40 Hz, amplitude: 0.05), the error is less than 35 mHz. This 

study shows that the proposed algorithm has a strong inter-harmonic immunity. 
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Fig. 2. Impact of (a) noise (b) harmonics (c) inter-harmonics on the estimated frequency. 

 

3.2. Dynamic test 

 

3.2.1. Jumps in Amplitude or Phase Angle 

 

Switching may cause a step change in voltage amplitude or phase in power systems [41]. 

The impact of such step changes on the performance of the frequency estimator should be as 

small as possible. Simulation results show that  step changes in the amplitude or phase angle 

result in no steady-state errors in the estimated frequency when the amplitude or phase of the 

input signal undergoes a jump of 0.5 pu (amplitude) or 60 degrees (phase). However, a 

transient error of 50 mHz is observed when the phase angle of the input signal jumps. For the 

PLL-based method or ANF-based method, step changes in the amplitude or phase angle also 

result in no steady-state errors in the estimated frequency. For the ANF-based method, the 

transient error is 200 mHz for an amplitude step, and 3 Hz for a phase angle step. For the 

ANF-based method, the transient error is 800 mHz for an amplitude step, and 1.5 Hz for a 

phase angle step. The drawback of the proposed frequency estimator is that its transient time 

is 0.2 second, longer than that of the PLL-based method (about 0.1s) or that of the ANF-based 

method (about 0.08s).  

 

3.2.2. Oscillatory Variations of Amplitude 

 

The impact of oscillatory variations of amplitude on the estimated frequency is studied. 

When the amplitude of the input signal changes from its nominal value of 1 to 1+0.2sinπt, the 

maximum error of the estimated frequency is 5 mHz, less than 20 mHz of the ANF-based 

method.  

The following section is devoted to verify the performance of the proposed frequency 

estimator in tracking various types of frequency variations, including ramp, step and 

oscillation. However, the proposed frequency estimator is used for a power energy meter. 

Therefore, different from those in [18] and [19], only frequency variations whose frequency-

rate-of-change (df/dt) is less than 0.2 Hz/second or a single step-change is less than 0.2 Hz, 

are studied.  
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3.2.3. Ramp Variations of Frequency 

 

The capability of the proposed method in tracking ramp variations of frequency is depicted 

in Fig. 3. The frequency-rate-of-change of the input signal is 0.1Hz/second. The true 

frequency and its estimated value are shown in Fig. 3(a), and the estimation error is shown in 

Fig. 3(b). This study shows that the estimated frequency faithfully follows the true ramp with 

a delay of 0.2 seconds.  

 

 
 

Fig. 3. Frequency tracking for ramp variation (a) frequency variation curves (b) the estimation error.  

 

3.2.3. Oscillatory Variations of Frequency 

 

The paper [41] pointed out that the power system frequency can fluctuate due to 

electromechanical oscillations of generators. An example is considered to illustrate the 

performance of the proposed estimator with respect to oscillatory frequency variations. The 

frequency of the input signal is f (=50+sin0.04πt). The maximum rate of change of frequency 

is 0.04πHz/s(<0.2Hz/s). The actual frequency and its value estimated by the proposed 

estimator are shown in Fig. 4(a). It is observed that the estimated frequency follows the actual 

frequency with a delay of 200ms. Fig. 4(b) shows the estimation error. This study shows that 

the proposed frequency estimator can track frequency oscillatory variations when the rate of 

change of frequency is small.  

 

 

Fig. 4. Frequency tracking for oscillatory variation (a) frequency variation curves (b) the estimation error.  
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3.2.4. Step Variations of Frequency 

 

Here the frequency of the input signal makes a step change at 2.7174 s. The actual 

frequency and its estimated values by the proposed estimator are shown in Fig. 5. Three cases 

with different step changes of 50 mHz, 100 mHz and 200 mHz are considered, and the 

corresponding results are illustrated in Fig. 5 (a),(b), and (c) respectively.  It is observed that 

the steady-state error is 10 mHz no matter whatever the step change is; however, the transient 

time grows with an increase of the step change. It is so because the modification of the 

frequency estimation range takes more much time for a large step change. The response time 

of the proposed method is less than 600 ms for a step change of 50 mHz (or 100 mHz), and 

less than 1000ms for a step change of 200 mHz. 

 

3.3. Frequency estimation using a real voltage signal from the power system 

 

The voltage signal from the power system is adjusted by a voltage adjustor, and then 

through a converter (100V/4V), is finally collected by a NI6221 data acquisition card 

(National Instrument, 16-bit A/D converter). The collected signals are analyzed by the 

proposed algorithm, and the fluctuation curve of power system frequency is illustrated in  

Fig. 6. As the true frequency of the power system was not known, estimation errors cannot be 

calculated. However, the estimation quality of the proposed algorithm can be judged from 

their consistency [13, 16]. The maximum variation in the measured frequency is about 
 0.04Hz. This demonstrates the effectiveness of the proposed algorithm for power system 

frequency estimation. 
 

 
 

Fig. 5. Frequency tracking for step variations (a) 0.05 Hz step change (b) 0.1 Hz step change  

(c) 0.2 Hz step change. 

 

 
 

Fig. 6. Frequency measurement results of a voltage signal taken from the grid.  
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4. Discussions 

The proposed estimator employs N successive samples within 10 times the nominal 

fundamental period (0.2 second for a 50 Hz power system). These samples are decomposed 

by multi-level DWT to obtain the wavelet coefficients in the lowest frequency band which are 

used to estimate the power system frequency. N equals 0.2fs, and fs is the sampling frequency. 

Here some important parameters, including window size, decomposition level, sampling 

frequency and choice of wavelet function are needed to be further explained. 

The sampling frequency fs is selected to be 2
r
 times the nominal fundamental frequency 

and r is an integer. Also fs should be higher than two times the harmonic frequency to meet 

the requirements of the Nyquist-Shannon sampling theorem. Usually frequency components 

higher than 1600 Hz are negligible, so the sampling frequency of 3200 Hz is an appropriate 

choice.  

Here the choice of window size is based on the following considerations, in addition to the 

requirements of the standard [42]. If the window size is 5 times the nominal fundamental 

period, N equals 0.1fs. For multi-level DWT decomposition, assume the decomposition level 

is h, the number of wavelet coefficients (denoted as M) in the lowest frequency band will be 

N/(2
h
), and M should be an integer. When N equals 0.1fs, the maximum decomposition level is 

5 (fs=1600 Hz) or 6 (fs=3200 Hz), and the lowest frequency band is (0 Hz-25 Hz). When N 

equals 0.2s, the maximum decomposition level is 6 (fs=1600 Hz) or 7 (fs =3200 Hz), and the 

corresponding lowest frequency band is (0 Hz-12.5 Hz), Wb is 12.5 Hz. As described in 

section II, the decrease of the lowest frequency bandwidth will help reduce the effects of 

inter-harmonics. So the window size is usually set to be 0.2s (for a 50 Hz system). According 

to the characteristics of multi-level DWT, the decomposition level (denoted as K) is decided 

by fs and wb, as described in (11). Here wb is the width of the frequency band, which usually is 

selected to 12.5 Hz.  

 2log ( )
2

s

b

f
K

w
 . (11) 

For real-time power metering, the calculation procedure including estimation of the 

fundamental frequency, harmonic parameters, and calculation of power-related quantities 

should be done within a 0.2 s period. To simplify verification, the proposed algorithm is 

initially performed in the MATLAB environment and two commands (tic and tic) are used to 

make a rough estimation of execution time. It has been found that the execution time 

increases when the sample number increases or the number of wavelet filter coefficients 

(denoted as Nf) increases. Take the Daubechies family for example. Nf is 10 for Db5, or 20 for 

Db10, or 40 for Db20. Table 1 demonstrates different execution time when sample number or 

Db wavelet is different. Only three different wavelet functions (Db5, Db10 and Db20) are 

present in the table. Here the used computer is HP 540 (CPU: Intel(R) Core(TM) Duo CPU T 

5670@ 1.80 GHz, 1.99 GHz). For example, if the sample time is 640 and the Db5 (or Db10) 

wavelet is used, the corresponding computation time is 97 (or 99) milliseconds. It means that 

Db5 or Db10 is suitable for real-time application. For further evaluation of computational 

complexity, implementation of the use of assembly language in the industry control computer 

will be the future research goal. Furthermore, theoretical analysis of the relationship between 

Df and Δf1 will also be the further work, because  it will be helpful to clarify the characteristics 

of this approach. 
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Table 1. Execution time of the proposed algorithm (in milliseconds). 

 

 

 
5. Conclusions 

 

This paper proposes a DWT-based approach for estimation of power system frequency. 

The noise immunity of this approach is comparable to that of the ANF-based method, and 

smaller than that of the ANF-based method. And its harmonic (or inter-harmonic) immunity 

outperforms those of PLL-based or ANF-based methods. The main drawback is the high 

computation complexity and the corresponding long computation time. Therefore, the 

dynamic response of the proposed method with regard to step, ramp, and oscillatory changes 

of frequency are slower than those of PLL-based or ANF-based methods.  Simulation results 

show that the frequency error of the proposed algorithm is less than 25 mHz in most cases. 

Furthermore, if the proposed algorithm is implemented in parallel computation, the 

computation time will be greatly reduced. This approach is suitable for power system 

frequency estimation for energy metering of a nonlinear load.  
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