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Abstract 

The goal of the proposed computational model was to evaluate  the dynamical properties of air gauges in order to 

exploit them in such industrial applications as in-process control, form deviation measurement, dynamical 

measurement. The model is based on Reynolds equations complemented by the k-ε turbulence model. The 

boundary conditions were set in different areas (axis of the chamber, side surfaces, inlet pipeline and outlet 

cross-section) as Dirichlet’s and Neumann’s ones. The TDMA method was applied and the efficiency of the 

calculations was increased due to the “line-by-line” procedure. The proposed model proved to be accurate and 

useful for non-stationary two-dimensional flow through the air gauge measuring chamber. 
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1. Introduction  

 

     Air gauges are well known precise measuring devices which recently regain scientific 

interest [1, 2], as well as interest of industrial enterprises [3, 4]. It is crucial to investigate 

thoroughly the dynamical properties of the air gauges, because they are applied in  

systems of in-process control (dynamical dimensional measurement) [5, 6], in measuring 

automatons (quick measurement) [7], in topography measurement (periodic signal) [8], in 

form deviation measurement [9] and so on. In such conditions, with the input signal 

changing in time, perfect reproduction of the input signal is not possible and certain 

dynamic error is inevitable.  

     To improve dynamical properties of the air gauges, their measuring chamber volumes are 

substantially reduced down to several cm
3
, and the sensing part is based on of piezoresistive 

pressure transducers built into the measuring chamber [10]. Series of experimental 

investigations have been performed on the dynamical properties of this kind of air gauges  

[4, 11, 12].  

     Measurement science has become closely associated with computer, information, control 

and systems science [13]. The rapid development of computer science, signal processing, 

material science etc., enables us to use more precise and more sophisticated methods for data 

processing that were too complicated to be conducted in the past [14]. The present work deals 

with the mathematical model of the air flow through a reduced-volume measuring chamber of 

air gauge in dynamic conditions of measurement (non-stationary state). Based on scientific 

publications (e.g. [15]), the turbulence model k-ε was chosen as the most appropriate for the 

investigated case. 
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2. Model of the measuring chamber and the boundary conditions 

 

The scheme of the back-pressure air gauge is presented in Fig. 1 [3]. Its model used for 

experimental investigation is shown in Fig. 2. Typically, the back-pressure pk in the 

measuring chamber represents the dimension-dependent value of the displacement s between 

the measuring nozzle and the flapper surface. When the outlet orifice of the measuring nozzle 

is closed by the flapper surface, the pressure in the measuring chamber is equal to the feeding 

pressure: pk = pz. 

 

  
Fig. 1. Scheme of the typical back-pressure air gauge [3]. Fig. 2. Experimental setup. 

 

     The proposed mathematical model applies the Reynolds equations complemented by the 

turbulence model k-ε. The equations for nonstationary flow through the air gauge measuring 

chamber, may be written in general form [16]: 
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where: Φ represents subsequently components of the velocity vector (axial U and radial V), 

kinetic energy of turbulence k and its dissipation velocity ε. 

     The flow is assumed to be axially-symmetric, and coordinates z and r define the 

localization of each calculated point. Coefficients ΓΦ and SΦ for each variable are presented in 

Table 1. When it is assumed that Φ = ρ; ΓΦ = SΦ  = 0, then the equation (1) becomes the 

equation of  flow continuity. 
 

Table 1. Coefficients for the equation (1) [17]. 
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     The values Cμ, C1, C2, σk and σε are the constants of the turbulence model. According to  

[18], their values may be assumed as it is shown in Table 2. 
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Table 2. Constants of the turbulence model. 
 

Cμ C1 C2 σk σε 

0.09 1.44 1.92 1.0 1.3 

 

     Those constants presented in  Table 2 have been determined experimentally. They provide 

accurate results of calculations for most cases. 

     In Fig. 3, the computational domain inside the air gauge measuring chamber of length lk 

and diameter dk is presented. Values ld and dw correspond with the length and diameter of inlet 

nozzle, respectively. Because of assumed flow symmetry, the axis may set the bound γ2, the 

side surfaces of the inlet nozzle and the measuring chamber set the bounds γ3, and the cross-

sections of inlet pipeline γ1 and measuring nozzle γ4 set the rest of the boundaries. 

 

 
 

Fig. 3. The computational domain inside the air gauge measuring chamber. 

 

     The way of setting of boundary conditions for equation (1) is dependent on the specific 

solved problem. In the actual research, it was assumed that at the moment t = 0, all the system 

(inlet pipe – inlet nozzle – measuring chamber) remains in the initial state of rest (U = V = 0), 

and its pressure pk = pz = 0.15 MPa. Such conditions take place when the measuring nozzle is 

closed by the flapper surface. In the time t > 0, the measuring slot goes wider and the air 

flows outside, causing changes in back-pressure pk = f(s). 

     In the inlet cross section γ1, all variables must fulfill Dirichlet’s condition: 
                                                                  

                                                                    
 

  

where: Φ represents subsequently components of the velocity vector U and V, kinetic energy 

of turbulence k and its dissipation velocity ε. 

     In the symmetry axis of the measuring chamber V = 0, for the variables Φ = U, k, ε the 

Neumann’s boundary condition was assumed: 
 

                                                                    
 

  

     In the outlet intersection γ4, all variables kept the Neumann’s condition: 

 

                                                                   
 

     For the inner surfaces of the measuring chamber and the inlet nozzle, boundary conditions 

were set according to the assumption of non-sliding and non-penetrable movement of the air 

stream along the surfaces: 
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     It was derived from the “logarithmic law of the wall” which is applied along with the k~ε 

model for the developed turbulence. 

 

3. Digital approximation of the differential equations of the model 

 

     Approximation of the equation, as well as the applied algorithm were based on the work 

[17]. Some modifications in respect of the dynamic conditions were introduced and the 

continuous area of the measuring chamber was replaced with the discrete non-uniform grid 

(Fig. 4). 

                               
 

Fig. 4. Discretization of the calculation area. 

 

     When both sides of the equation (1) are multiplied by r, the resulting formula is 

particularly easy to be approximated differentially: 
 

                      
 
 

     Equations for each variable are quite similar, therefore the following is presented for the 

general variable Φ, and the differences are discussed: 

     The first term of the equation (6) is approximated as follows: 
 

                                                        
 

  

which may be rewritten as: 
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Diffusional terms of the equation (6) are approximated as following: 
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     After transformations, the share of diffusional terms may be approximated as follows: 
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     Convectional terms of the equation (6) are approximated with the central differences: 

 

                
 

  

 

     After transformations, the share of convectional terms may be approximated as follows: 
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     To ensure a stable difference scheme, the summed share of the convectional and 

diffusional terms is calculated according to the hybrid scheme [19]: 
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The source term of the equation (6) is linearized to the form: 
 

 ,
P U

S S S  (16) 

 

where: 

UP SS ,  are the coefficients dependent on the type of variables. They are calculated 

according to the formulas described in  [17]. The partial derivatives present in the formulas of 

S
Φ

, are approximated using the scheme of “central difference”. 

     After the differential approximation of the equation (6), the obtained formulas may be 

joined together to the following function: 
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where: 
PPjSNWEP MSraaaaa   . 

     All the values of the variables in the equation (17) are calculated for the n + 1 time level, 

except of the term )(n

PPM  . This one is calculated on the basis of the value taken from the 

“old” (n) time level. The coefficients a
Φ

 for each variable are as follows: 
 

SSNNWWEE AaAaAaAa   ;;; . 

 

4. Discretized equations of non-stationary state in measuring chamber 

 

     In the differential equation (17), every value of the function Φ in point P is dependent on 

the values in four neighboring points E, W, N, S (Fig. 4). Equations for the velocity vector 

components U and V are transformed in a similar way as the equation (17). However, two 

important differences should be marked. First, differential approximation is made in the grid, 

where the values of Ui,j or Vi,j are placed in the central points. And secondly, the source terms 

for both components V

U

U

U SS ,  contain additionally pressure differences between two 

neighboring cells. This difference is the result of approximation of derivatives 
z
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The differential equation for the component U may be written as the following formula: 
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and for the component V: 
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     The coefficients V

U

V

P aa ,  are calculated in the same way as for the equation (17), and the 

values **, V

U

U

U SS  mean the discretized approximation of the other than pressure components: 
V

U

U

U SS , . However, the exact values of the pressure p in the grid joints are not known in the 

moment when the equations (18) and (19) are solved, therefore the approximate value p* is 

taken instead, typically from the previous time level or from the last iteration. As a result, 

from the formulas (18) and (19) approximate values V* and U* are obtained in all the grid 

joints. The exact value of the pressure p is calculated from the formula: 
 

 p = p* + p’, (20) 
 

where: p’ is the pressure correction calculated from the separate equation. The exact values of 

the velocity, which meet the requirement of flow continuity, may be calculated as follows: 
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     It is necessary to calculate the pressure correction p’ in each grid joint to ensure the 

conformity of calculated values U and V with the flow continuity equation: 
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     To obtain the discretized form of the equation (22), the formulas (21) should be put in. It 

leads to the following formula: 
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     The equations (21) may be rewritten as follows: 
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     Then  Poisson’s equation for the pressure correction may be obtained: 
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     To obtain the discretized boundary conditions, the differential grid was used. In the 

discretized form, the bound γ1 must fulfill the Dirichlet’s condition for all variables: 
 

 )(0,1 rj  . (26) 

     In the points next to the side surfaces, the boundary conditions are based on the 

“logarithmic law of the wall”. Following is the example concerning the side parallel to the z-

axis. Here, the values of the velocity in the point next to the side surface is marked with index 

sc. 

     The kinetic energy of turbulence ksc is calculated from the general equation (17), while the 

convection is neglected. The diffusion in the direction normal the side surface is considered to 

be zero: 0k

Na . The source term of the equation is simplified: 
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  - tangent stress on the side surface, κ, E - are the experimentally 

determined constants (κ = 0.42; E = 9.7), n
+
 = k

1/2
Cμ

1/4
Δn/V - dimensionless distance from the 

side surface, Δn – the above distance with dimension. 

     The value of kinetic turbulence energy dissipation in the point next to the side surface, is 

calculated from the following formula: 
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     In the symmetry axis, the boundary condition for the variable V is of Dirichlet type: 

 01, iV  (29) 

and for the rest of variables, of Neumann type: 
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 2,1, ii  . (30) 

     In the outlet cross-section, all the variables Φ have got the Neumann’s boundary condition 

in the following form: 

 jiji ,1maxmax,  . (31) 

5. Iteration solution of the discretized equations 

 

     Fig. 5 presents the block diagram of the calculation algorithm. 

 

 
 

Fig. 5. The iteration algorithm. 

 

     In each time level, iteration should be performed in order to solve the system of 

differential equations for every variable Φ. The efficiency of the calculations was increased 

due to the procedure “line-by-line”. To perform it, the differential equation (17) was 

transformed into the formula: 
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     The equation (32) is solved simultaneously in the whole grid line using the TDMA method 

[19]. For each variable, the iteration cycle is repeated several times (2 to 5 times). The 

convergence criterion of the iteration process is the condition: 
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     The residual criterion above (33) is the necessary condition of the convergence of iteration 

process. It postulates with certain accuracy λ that the differential equations are fulfilled in all 

points of the grid for each variable Φ. 

 

6. The simulation results 

 

     The simulations were performed for a cylindrical inlet nozzle of length ld = 6.06 mm and 

diameter dw = 2.025 mm leading into the measuring chamber of diameter 10 mm and length 

40 mm. The inlet pipe diameter was 15 mm with assumed steady velocity distribution 

U(r) = U0. The feeding pressure pz = 0.15 MPa, barometric pressure pa = 0.101325 MPa. The 

air density was calculated for the temperature T = 293 K, and mass flow 6 × 10
-4

 kg/s. The 

time was assumed from 0.001 s to 0.11 s with step Δt = 0.001 s. 

     The simulations provided the information on the flow through the air gauge measuring 

chamber. Fig. 6 presents the obtained profiles of the velocity component U in several cross-

sections, and the Fig. 7 provides the chart of the values of velocity vectors and their 

directions. 
 

 

 

Fig. 6. The velocity profiles inside the air gauge 

measuring chamber. 

 

Fig. 7. The velocity vectors inside the air gauge 

measuring chamber. 

 

 

7. Conclusions 

 

     The proposed mathematical model for nonstationary flow through the air gauge measuring 

chamber is based on the Reynolds equations and the k-ε turbulence model. It is useful in the 

calculations of the nonstationary state of the flow in the measuring chamber of an air gauge, and 

has been successfully used for the simulation of the flow through the constriction flow meter 

[20]. It appears from performed comparison of different turbulence  models [21] that when 

simulating a two-dimensional flow through a pipe with constriction, the traditional Launder-

Spalding k-ε model yields the best results and involves the lowest calculation cost.  

    The model applies a set of differential equations, containing the axial and radial components 

of velocity U and V , the kinetic energy of turbulence k and its dissipation velocity ε. The flow 

is assumed to be axi-symmetrical, and coordinates z and r define the localization of each point 

of the calculation area. The discretization grid is non-uniform in order to calculate more 

accurately the most important areas. 

     The boundary conditions were set in different areas (axis of the chamber, side surfaces, 

inlet pipeline and outlet cross-section) as the Dirichlet and Neumann ones. The TDMA 

method was applied and the efficiency of the calculations was increased due to the “line-by-

line” procedure The proposed model proved to be accurate and useful for nonstationary flow 

through the air gauge measuring chamber. 
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