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Introduction

Modern flexible manufacturing systems are gen-
erally defined as integrated computer systems involv-
ing technological machines (machine tools), means of
transportation, and tools enabling the effective im-
plementation of low- and medium-volume production
[1, 2]. They are characterized by a high level of in-
tegration between technological processes, transport
and planning. While analysing the processes in in-
tegrated manufacturing systems, it can be assumed
that the most important element in determining the
proper course of technological processes, transport
and storage is the control and planning subsystem
[3]. One of the most important planning tasks is to
determine the optimal sequence of production orders
[4,5]. The criterion used to assess the individual rank-
ing is most frequently the overall lead time of pro-
duction orders, the sum of delays, the cost of delays

and the total profit derived from the realization of
a set of pending orders [6–8]. The proper operation
of the production system is determined by its prop-
er cooperation with the planning subsystem. This is
due to the fact that the planning subsystem handles
all the important decisions concerning the transport
subsystem, the storage subsystem, and the machin-
ing subsystem that have a decisive impact on the
efficiency of the whole production system and the
directly associated manufacturing costs. This paper
presents a method of determining the optimal se-
quence of production orders in view of the sum of
the costs related to the delayed execution of orders.
One of the most important assumptions is that the
single-machine problem is considered. The developed
method is based on the methodology of branch and
bounds, and takes into account different unit costs of
delays of individual orders and the allowable delay of
the order not giving rise to delay costs.
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The issue of scheduling production

orders, taking into account

the cost of delays

The issue of scheduling production orders has
been analysed in many scientific papers [9–12]. The
most common scheduling criterion is the total time
of execution of all orders. However, this approach is
not valid in the case of modern models of produc-
tion management, where logistic parameters such as
deadlines, delays and penalties for any resulting de-
lays play a vital role.

The issue of scheduling production orders has
been shown on the example of the manufacturing sys-
tem based on implementing single-machine process-
ing. The considered system consists of input storage,
an M1 machine and output storage. The technologi-
cal process is carried out in a flow. A set of n produc-
tion orders is given Z = {z1, z2, . . ., zn}. It is assumed
that all orders are available at the start of produc-
tion (T1 = 0) and may be performed in any order.
The machine can only carry out one order at a time
(exclusive-like mode). Each order zi is described by:
the required processing time to(i), the required dead-
line tt(i), the allowable delay of the order not causing
delay costs c(i) and the unit cost of delayKz(i) – the
cost per unit of time for delays exceeding the value
of c(i). It was also assumed that the realization of in-
dividual orders requires the machine to be retooled.
The machine’s set-up time does not depend on the
sequence of order entry to production and has been
included in the processing time of individual orders.
Furthermore, there are no interruptions in the ma-
chine’s operation and in the delivery of orders for
production.

Figure 1 shows a diagram of the issue of schedul-
ing production orders. Input storage contains orders
that have been accepted for realization. When start-

ing the production process determine the sequence
in which orders will be taken from the warehouse.
The total number of possible order sequences is n!.
After completion, orders end up in the output stor-
age. Each completed order can be characterized by
logistic parameters such as the actual execution time,
timeliness of performance, and the amount of penalty
for the delay.
The logistic parameter values of the completed

orders depend on the input sequence selected. The
issue of scheduling production orders comes down to
determining the optimal sequence of production or-
ders. The criterion used to assess the individual rank-
ing is the sum of the delay costs of all orders. Based
on the analysis of actual manufacturing processes, it
takes into account the different unit costs of delays
of individual orders and the different amounts of al-
lowable delays of orders involving no delay costs.
The sum of the costs of delays of orders admit-

ted for execution is a very important parameter in
determining the quality of operation in a company.
This parameter is related to the timely execution of
production orders, but also takes into account the
penalties resulting from a delay in performance. Such
penalties result from a desire to protect the client
against costs which might arise in the case of a de-
layed execution of order and should be taken into ac-
count in the production planning process. Of course,
the best solution is to plan production in such a way
as to make all orders on time. In this case, there are
no costs associated with delays. Unfortunately, this is
not always possible in commercial practice. In their
struggle to obtain jobs, companies not only compete
in terms of price and quality, but also the delivery
date. Taking too many orders may result in a failure
to implement some of them to the prearranged dead-
lines. In this case, it is necessary to plan production
processes in order to minimize the financial impact of
delays related to the realization of production orders.

Fig. 1. The process of scheduling production orders in a single-machine production system and its impact
on the logistic parameters of the produced orders
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Determining the sequence

of production orders

with a minimum sum of the delay costs

This paper proposes a method that allows deter-
mining the sequence of production orders that al-
lows for the minimum sum of the delay costs. The
model of the production process also takes into ac-
count the so-called “allowable delay” for each order,
above which one runs the risk of contractual penal-
ties. The developed method consists of two steps. In
the first stage, the “base” sequence is determined;
this is the sequence for which the maximum cost as-
sociated with the delay of a single order is not greater
than for all other sequences. The second stage defines
the sequence of orders, ensuring the minimum sum
of the cost of delays.

It is assumed that for a given list of orders
z1, z2, ..., zn the following information is available:

to(i) – the processing time for order zi,

tt(i) – the required deadline for order zi,

c(i) – the allowable delay for order zi not causing
delay costs,

Kz(i) – the unit cost of delay for order zi (cost
per unit of delay time exceeding the value c(i)).

The process of determining the base sequence be-
gins by determining the sum of the processing times
of all orders received. So marks the sum of processing
times in the given list of n orders:

So =

n∑

i=1

to(i). (1)

For each job in the list it is verified whether im-
plementing it as the last one would result in a delay,
and whether it will be necessary to pay the penalty.
If order zi is executed as the last, its due date will
be equal to the sum of processing times of all orders.
The cost associated with the delay in the execution
of this order shall be:

p(i) = max {(So − tt(i) − c(i)) · Kz(i); 0} . (2)

The introduction of the parameter c(i) describing
the acceptable delay allows a better adaptation of the
model of the issue at hand to the requirements found
in the planning practice of industrial plants. Based
on the analysis of production processes, it can be not-
ed that small delays in the execution of production
orders often do not result in any penalties.

Mathematically speaking, parameter c(i) is
equivalent to introducing a modified deadline t′t(i)
for the execution of order zi:

t′t(i) = tt(i) + c(i). (3)

In the case where all c(i) = 0, and all Kz(i) = 1,
the issue comes down to designating a sequence that
provides the minimum sum of delay times. Then
p(i) = max {So − tt(i); 0} and means a delay for the
execution of order zi, should it be carried out last.
This problem has been presented in detail in the au-
thors’ previous paper [8].

Determining solutions with a minimum sum of
the costs of delays is in the form of a tree.

Stage I:

Initially, in the first block (the root of the tree),
the value of p(i) is determined for each task according
to the formula (2). If p(i) = 0 for every i = 1, . . ., n,
this means that each sequence of production orders
(of all possible options) gives the sum of the delay
costs equal to 0. In this case, the process of finding
the optimal solution is completed. In the event that
not all p(i) are equal to 0, you select any of the orders
for which p(i) is the smallest and place it at the end
of the queue (mark the selected order as zj). Then
you determine the time S′

o that is needed to carry out
the rest of the orders (excluding the selected order
zj); this equals

S′

o := So − to(j). (4)

The total cost of delays (for the time being, only
taking into account the last order in the queue) is
Kop = p(j).

Then, in block 2 (the successor of block 1 in the
tree of solutions), it is performed what has already
been done at the root of the tree, but without the or-
der that has already been put at the end of the queue.
Wherein, now to determine p(i) you take into ac-
count S′

o(p(i) = max {(S′

o − tt(i) − c(i)) · Kz(i); 0}).
The order selected in block 2 is designated as zk,
and inserted into the queue as the second last. The
time required for processing the remaining orders
S′

o := S′

o − to(k) and the sum of delay costs Kop :=
Kop + p(k).

Thereafter, repeat what has been done in block 2
(ignoring the orders already entered as the last and
second last in the queue) until you reach block of
n (leaf in the tree), from which the order is set to
the front of the queue. This way you have obtained
the base branch in the tree (with the established se-
quence of all orders). If the sum of the cost of delays
for the entire branch SKop is 0, the resulting sequence
is optimal in terms of the sum of the delay costs. The
minimum sum of delay costs in this case is 0.

Stage II:

If the sequence determined in the base branch
has SK op > 0, the sequence does not necessarily
give the minimum total cost of delays. Check from
block n−1 to block 1, whether selecting the next or-
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der (in terms of its minimum value p(i)), would ex-
ceed the sum of delay costs SK op of the basic solu-
tion. If so, do not expand another branch. If not (i.e.
Kop + p(ik) <= SK op), enter the selected order zik

into the next block in the appropriate place in the
queue, and so on.

If you reach the next leaf in the tree (with a fixed
sequence of all orders), then the sum of delay costs
for this sequence is not higher than for the basic solu-
tion. Update SK op and continue checking subsequent
branches, while it is possible to expand some (until
SKop is exceeded). Finally, optimal solutions are the
leaves with the minimum SK op value; denote it by
SK opm.

Comments:

Denote the fixed sequence of all orders as
(zi1, zi2, . . ., zik, . . ., zin). If a block with the estab-
lished sequence of n−k orders for all other orders
shows p(i) = 0, then the sum of the delay costs SK op

for the entire branch will be the same as the sum of
the delay costs Kop in that block. Therefore, the se-
quence of the remaining orders in the primary k posi-
tions is then unrestricted. Such a situation should be
marked with ([zi1, zi2, . . ., zik], . . ., zin). In particular,
when in the first block p(i) = 0 for all i = 1, ..., n,
then we have ([z1, z2, . . ., zn]).

Examples

To better understand the proposed method, con-
sider two examples. Data for Example 1 are shown
in Table 1.
Variants differ by: ci) – the allowable delay not re-

sulting in the cost of delays being charged and Kz(i)
– the unit cost of delay. Note that in variant 1, the
total cost of delay will be equal to the sum of de-
lay times. In variants V2–V4, acceptable delays were
set for all orders at 10, 20 and 30 min, respectively.
Variant V5 differs from V2 in that the unit cost of an
order delay z3 is 10 times larger than for the others.
Table 2 summarizes the results. Sequences for

base solutions and optimal solutions were given for
all variants. Note that the inclusion of parameters
c(i) and Kz(i) has a significant impact on what the
optimal sequence will be in terms of the sum of the
costs of delays. Moreover, this sequence may be sig-
nificantly different from optimal due to the sum of
the delay times (see variants V1 and V5).
The figures below show trees with solutions for

variants of Example 1. In the upper left corner, the
block number according to the designation sequence
is given under (Bi). The crossed out order zi indi-
cates that attaching this order to the item would
exceed the minimum sum of the delay costs, i.e.
Kop + p(i) > SKop.

Table 1
Data for Example 1.

Order Processing time
to [min]

Required deadline
tt [min]

Variant V1
c/Kz

Variant V2
c/Kz

Variant V3
c/Kz

Variant V4
c/Kz

Variant V5
c/Kz

z1 10 150 0/1 10/1 20/1 30/1 10/1

z2 20 30 0/1 10/1 20/1 30/1 10/1

z3 100 110 0/1 10/1 20/1 30/1 10/10

z4 50 60 0/1 10/1 20/1 30/1 10/1

Table 2
Summary of the designated sequences selected for Example 1.

Ident. Sequence SKop (V1) SKop (V2) SK op (V3) SK op (V4) SK op (V5) Comments

U1 (z2, z4, z3, z1) 0+10+60+30=100 0+0+50+20=70 0+0+40+10=50 0+0+30+0=30 0+0+50*10+20=520

is base
for V1, V2,
V3, V4

and optimal
for V3, V4

U2 (z2, z4, z1, z3) 0+10+0+70=80 0+0+0+60=60 0+0+0+50=50 0+0+0+40=40 0+0+0+60*10=600
is optimal
for

V1, V2, V3

U3 ([z1, z2], z4, z3) 0+0+20+70=90 0+0+10+60=70 0+0+0+50=50 0+0+0+40=40 0+0+10+60*10=610
is optimal
for V3

U4 (z2, z3, z4, z1) 0+10+110+30=150 0+0+100+20=120 0+0+90+10=100 0+0+80+0=80 0+0+100+20=120
is base
for V5

U5 (z2, z3, z1, z4) 0+10+0+120=130 0+0+0+110=110 0+0+0+100=100 0+0+0+90=90 0+0+0+110=110
is optimal
for V5
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Figure 2 shows the tree of solutions for variant V1
for example 1. The block B4 has a solution with the
base sequence which proved not to be optimal. The
minimum sum of the cost of delays has been obtained
in block B7. The crossed out order z−2− from block B3
means that (Kop+p(2) = 90+40 = 130) > (SKop =
100), i.e. insert z2 at the third position from the end,
before z3, z1 will make the total cost of delays at least
130, which is more than for the base sequence. The
same is true with other strikethroughs.

Figure 3 shows the tree of solutions for variant
V2 from example 1. Variant V2 is different from V1
in that for each order the acceptable delay without
the delay costs is 10 min (in case of V1 – 0 min).
The resulting tree has the same structure as in the
case of V1, and hence the base sequence and the
optimal sequence are the same. The value of the
minimum sum of the delay costs is smaller in vari-
ant V2.

Fig. 2. Tree of solutions for variant V1 for example 1.

Fig. 3. Tree of solutions for variant V2 for example 1.
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Fig. 4. Tree of solutions for variant V3 for example 1.

Figure 4 shows the tree of solutions for variant
V3 for example 1. This variant assumes a greater ac-
ceptable delay without charging the cost of delays; 20
min for each order. In this case, the basic solution is
the same as in the case of V1, in block B4. This solu-
tion is also optimum for this variant. Moreover, there
are three other optimal solutions, in blocks: B7 (z2,
z4, z1, z3) and B8 (z1, z2, z4, z3) and z2, z1, z4, z3).
Figure 5 shows the tree of solutions for variant

V4 for example 1.

Fig. 5. Tree of solutions for variant V4 for example 1.

Even larger values (30 min) of the acceptable de-
lay not resulting in delay costs were accepted for all
orders. This time the tree has the simplest structure.
The resulting basic solution in block B4 is also the
only optimal solution
The last Fig. 6 shows the tree of solutions for

variant V5 for example 1. As it has been mentioned
previously, it differs from variant V2 only in that
the unit cost of delay for order z3 is 10 instead of 1.
Unfortunately, in this case the basic solution differs
significantly from the base of the previous variants.
Similarly, the optimal solution obtained in block B7
is different from that in variant V2. The minimum
total cost of delays is SKopm = 110. Whereas for the
optimal solution in variant V2(z2, z4, z1, z3), the to-
tal cost of delays in variant V5 would be as much as
600.
The second example, the data for which is given

in Table 3, is also considered. The presented variants
are differentiated by Kz(i) – the unit cost of delay.
Similarly as in Example 1, variant V1, the total costs
of delay equal the sum of delay times. In variant V2,
the unit costs of delay for orders z3, z4 and z5 are
greater than 1.
Table 4 shows the results obtained for this exam-

ple. Sequences for base solutions and optimal solu-
tions were given for both variants.
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Fig. 6. Tree of solutions for variant V5 for example 1.

Table 3
Data for Example 2.

Order Processing time
to [min]

Required deadline
tt [min]

Variant V1
c/Kz

Variant V2
c/Kz

z1 20 30 0/1 0/1

z2 40 60 0/1 0/1

z3 30 70 0/1 0/2

z4 50 80 0/1 0/2

z5 60 120 0/1 0/4

Table 4
Summary of the designated sequences selected for Example 2.

Ident. Sequence SKop (V1) SKop (V2) Comments

U1 (z1, z2, z3, z4, z5) 0+0+20+60+80=160 0+0+20*2+60*2+80*4=480 is base for V1 and optimal for V1

U2 (z3, z4, z5, z1, z2) 0+0+20+130+140=290 0+0+20*4+130+140=350 is base for V2

U3 (z1, z3, z5, z2, z4) 0+0+0+90+120=210 0+0+0+90+120*2=330 is optimal for V2

It is noteworthy that the inclusion of parameter
Kz(i) has a significant impact on what the base se-
quence and the optimal sequence will be in terms of
the sum of the costs of delays. Both the base sequence
and the optimal sequence may be significantly differ-
ent from the base and optimum in terms of the sum
of delay times, as shown in this example.

Conclusions

The problem becomes significantly more compli-
cated when, apart from processing times and the re-
quired deadlines, the determination of the costs of
delays takes into account two additional parameters
(the sum of acceptable delay not resulting in delay
costs, and the unit cost of order delays). The pro-

posed method allows determining the optimum solu-
tion in terms of the minimal amount of delay costs,
taking into account these two parameters.

The examples presented in the paper demon-
strate that a mere adding of c(i) = c = const (ac-
ceptable delay for order zi that would not result in
charging delay costs, the same for all orders) may
result in the sequence that is better in terms of the
sum of delay times being worse in terms of the sum
of delays costs, and vice versa (although the base
solutions are the same).

Taking into account the unit cost of delays of or-
ders other than 1, means that this is the basic solu-
tion in terms of the sum of delay costs which may
be different from the basic solution in terms of the-
sum of delay times. The optimal solution in terms of
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the sum of delay costs may be all the more different
from the optimum solution in terms of the sum of
delay times. Further work is planned to extend the
proposed approach to more complex problems (e.g.
flow shop systems).
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