I

www.czasopisma.pan.pl w www.journals.pan.pl

POLSKA AKADEMIA NAUK

Management and Production Engineering Review

Volume 5 ¢ Number 1 ¢ March 2014 e pp. 28-31
DOI: 10.2478 /mper-2014-0004

DE

G

DE GRUYTER
OPEN

2mper

ENTERPRISE SERVICE BUS ARCHITECTURE
FOR THE BIG DATA SYSTEMS

Cezary Ortowski', Edward Szczerbicki?, Jan Grabowski!

Y IBM Center of Advanced Studies in Campus
2 University of Newcastle, Callaghan University Drive, Callaghan NSW 2308, Australia

Corresponding author:

Cezary Orlowski

Gdansk University of Technology
Narutowicza 11/12 80-823 Gdaiisk, Poland
phone: +48 58 347 13 19

e-mail: cor@zie.pg.gda.pl

Received: 25 October 2013
Accepted: 5 January 2014

ABSTRACT

This paper presents the construction of the enterprise service bus architecture in data
processing resources for a big data decision-making system for the City Hall in Gdansk.
The first part presents the key processes of bus developing: the installation of developing
environment, the database connection, the flow mechanism and data presentation. Develop-
ing processes were supported by models: KPI (Key Processes Identifier) and SOP (Simple
Operating Procedures) (also connected to the bus). The summary indicates the problems of

the bus construction, especially processes of routing, conversion, and handling events.

KEYWORDS

enterprise service bus, service oriented architecture, big data system, smart cities, transfor-
mation and conversion processes.

Introduction

Development of IT systems processing big data
requires architecture design which integrates on the
one hand, the data on the other- creates the con-
ditions for application integration. Half of the last
decade was dominated by the approach in which the
integration of resources was supported by data ware-
house.

In the era of systems based on big data agglomer-
ations have the problems of the substantial resources
integration. These resources stored in heterogeneous
databases derived from measurement networks. For
example, Geneva [1] collects data on hundreds TB
size originating from the measurement noise, pollu-
tion, traffic and current data from monitoring net-
works.

In turn, the city in the United States as Boston
or New York [2] in principle take the scattering data
for later analysis for decision support systems. They
accept that the data collection of the big data at the
present stage of development of Smart Cities systems
are not able to processing it.

Information technology capable of processing
such significant data are interested in of building

28

the efficient solutions for the needs of cities, both in
collecting and processing the data. These solutions
are based on multilayer architectures and applica-
tions, focused on advanced GIS (ang. Geographical
Information Systems). Most of them are based on the
IT integration buses. The scope, shape and mecha-
nism of those buses depend on the size and range of
the data.

The article was analyzed bus integration com-
bined with the verification environment to check how
the verification environment determines the efficien-
cy of those buses.

The application integration took place through
the creation of layers of middleware, Enterprise Ap-
plication Integration Platforms, protocols, API (Ap-
plication Protocol Interface) or individual design GUI
(Graphical User Interface). These solutions were not
generic, and in case of problems of integration of en-
terprise information systems, it was time-consuming
to implement and impossible to develop [4, 5].

That is why a growing number of applications
is built on the basis of architectural design integra-
tion bus ESB (Enterprise Service Bus). ESB bus is
a service-oriented platform for connecting applica-
tions created basing on various technologies, incom-

“'\'\'\’\;.(léhiS()l)IhlllEt.l)illl.E)l P
Y

% www journals.pan.pl

POLSKA AKADEMIA NAUK

Management and Production Engineering Review

patible formats, data resources, and communication
protocols. The advantage of this solution is primarily
its dynamic conversion and data transformation (dy-
namic data transformation and conversion), distrib-
uted communication and intelligent routing services.

For this reason, before the construction of a sys-
tem for the City Council, decisions about the selec-
tion of future system architecture had to be made.
Given the advantages of ESB, a SOA (Service Ori-
ented Architecture) supported by ESB was chosen. A
subsequent specification of requirements for the new
system and data architecture was designed basing on
MS SQL environment and applications on the basis
of RAS (Rational Software Architect). The bus inte-
gration was built on the WebSphere Message Broker
Toolkit. The presentation layer was shown in I0C
(Intelligent operating system).

The article ends with the authors conclusions and
observations focusing on the problems of both the
construction of bus model and its implementation as
well as the implementation of the system in the IOC.

Installation of developing environment

The IOC system is delivered (the development
version), as images of five logical servers on the
VMuware vSphere platform (operating system Linux
Red Hat 5). This complex development environment
within which, development tools are divided into log-
ical servers. This division of development tools on the
one hand facilitates the process of software develop-
ment because it allows developers to focus on selected
tools. On the other hand, requires knowledge of the
full developer environment to find and use the tools
needed for the development process [3-6].

First ioc15install logical server is used primarily
by the installation of the IOC [7, 8]. It is later used in
the work related to software development. The sec-
ond server ioc15db facilities is determined as a data-
base server infrastructure and has a database tool
*.db2 and environmental processes for their prepa-
ration and monitoring. Additionally ioc15db server
creates conditions for the collection and processing of
any databases resources. The third iocl5event serv-
er is most important one from the point of devel-
oping view and IOC application design. Its purpose
is to support the ESB and ensure the flow of events
through the bus. Joc15event server is also responsible
for connection to external data sources (such as the
ones used in the ESB design of the database *.SQL).

This server includes development tools support-
ing the flow and events through the ESB bus. It con-
tains four essential developing tools: WebSphere Mes-
sage Broker used to design ESB architecture bus,

Volume 5 ¢ Number 1 e March 2014

WebSphere Message Queue supporting the flow data
(messaging handling) and two other tools for commu-
nication and event processing: Twwoli Netcool Impact
— supporting event handling and Tivoli Netcool Om-
nibus - supporting the process (event processing and
enhancing). The development environment is com-
plemented by two others servers, four application
serveriocl5app offering access to the GUI for I0OC
system and the fifth ioc15mgmt supporting develop-
ing and configuration management environment, its
start and stop, also monitoring the status of the work
of individual IOC modules.

Requirements for the IOC system

The IOC system to be built is an intelligent city
management system which (due to its functionali-
ty) uses data collected from multiple sources (from
the environmental monitoring, industrial network re-
sources, crisis management repository (cameras, se-
curity systems, early warning systems and others)).
In case of Gdansk requirements analysis (focusing on
the pollutants and their use) needs a precise descrip-
tion of the design concept of data acquisition and
processing as well as the construction of a decision
support system [1, 9]. In the process of requirement
analysis the developers used two approaches different
from the point of view of the processes of construc-
tion of databases and their acquisition. The first ap-
proach assumed direct power system IOC data from
project partners. The second approach was based on
building a data warehouse fed by data from an ex-
ternal database project partners. Before choosing the
solution both approaches were tested.

The first approach required both the analysis of
different standards of databases and possibilities of
data acquiring. Therefore two experiments were car-
ried out. The first, in which data requirements and
their standards were specified (ARMAAG — infor-
mation about pollution, the City Council-noise da-
ta, Gdansk University of Technology — pollution and
weather conditions) and attempts were made to sup-
ply IOC database in a parallel manner.

It soon turned out that parallel supply is very
difficult to achieve. Therefore, it was decided to sup-
ply sequential data (using the second approach), thus
evaluating usefulness of the data and the mechanisms
of their acquisition. In the case of sequential process-
ing (second approach), obtaining data was possible
but there was a problem of sequential repetition of
such supply. To ensure repeatability of the supply,
both wholesale and IOC processes were developed.

Another important task was to build the founda-
tion of the system database server. As it was sug-

29

www.czasopisma.pan.pl P

g iN www journals.pan.pl

POLSKA AKADEMIA NAUK

Management and Production Engineering Review

gested at the beginning, the database system could
have been placed on the same server on which I0C
was set. However, it turned out that both in terms
of testing processes and the subsequent development
of the system, a much better solution (also from the
point of view of safety of the system) was putting
the database system on an a server external for the
I0C.

The standard data warehousing was analyzed as a
last problem. Taken into account the two standards
*SQL and *.DB2. From the point of view of the
IOC the better solution (supplying the requirements
of the IOC) was the standard DB2 databases. Taken
into account the experience of our team, for which
the standard DB2 was not known. Therefore, it was
decided to standard SQL, although more develop-
ment seemed to be the DB2 [10, 11]. The decision on
this standard of the more well-known than the more
predictive stemmed from the need to reduce project
risk.

Integration bus architecture

The integration bus architecture of a decision
support system is shown in Fig. 1. It consists of three
layers of data flow. The data base input node con-
nects database integration bus (in our case, the data
warehouse akwilon2) [12]. The Mapping node con-
verts the data from the data warehouse into integra-
tion bus protocol CAP (Common Alerting Protocol).
The MQ Output node (presentation layer) is to put
the event (recorded in CAP) in the queue manager
ESB integration bus. Applications of IBM WebSphere
Message Broker Toolkit (bus construction) and Net-
cool Impact (posting events on the IOC system map)
were the environmental implementation of the sys-
tem architecture [2, 13, 14].

Presentation layer
I |

Wehsphere Message MQ Explorer 10C
Broker Toolkit ‘:/ GEm =

!_‘_\ | 1

Data layer Transformation layer

MS SQL Server 1

| ‘

3 date

E1 [g—&—g}

4 - ——c| (g

gwm a4 E Masping LM)

'?I‘;"" Database Input MQ Output

[Reference

h‘—\ ,—‘—\ 10Cmap

!

Measurements
list

7 BANTD
1 OBECTKeY y [)
;./

Fig. 1. The integration bus architecture for IOC system.

30

The data flow is illustrated by the example
of the use of resources (data layer). At this lay-
er it is checked whether the table in the database
10C_appliaction Akwilon2 finds rows that contain
data from 85 stations of noise. If so, the trigger
(data base element) of new records is activated 10-
CAPPL (Fig. 2) (insert command), which creates
records with the same ID in table IOC_Event. Ta-
bles I0C_event and IOC_application are connected
by the relationship with a primary key ID. Figure 2
shows a fragment of the code trigger which allows
operations on rows of both tables.

USE [AkwilonData]
G0
‘f***#** Dbject:
SET ANSI_NULLS ON
a0
SET QUOTED_IDENTIFIER ON
G0
EIALTER TRIGGER [dbo].[IOCAPPL]
ON [dbe].[IOC_application]
AFTER INSERT
AS
EIBEGIN

Trigger [dbo].[IOCAPPL]

SET MNOCOUNT OMN;

DELETE FROM dbo.IOC_event

El INSERT INTO [dbo].IOC_event
([OBIECT_KEY])

select INSERTED.id from INSERTED

END

Fig. 2. A fragment of the code IOCAPPL trigger allowing
operations on rows of both tables.

I0OC_event
Column MName Data Type Allow Mulls
% EVENT_ID int =
ols | OBJECT_KEY int [}
[
I0C_application
Colurnn Name Data Type Allow MNulls
date varchar(50)
time varchar{50)
Pktld int 0
Value float
coord varchar(53)
o | @ D int]
Reference int
O

Fig. 3. The database tables akwilon2 (ioc_event and I0C
aplliaction).

Volume 5 ¢ Number 1 e March 2014

I

www.czasopisma.pan.pl E)Q www.journals.pan.pl

POLSKA AKADEMIA NAUK

Management and Production Engineering Review

Conclusions

The paper presents the design of ESB integra-
tion bus architecture of IOC decision support system
for the City of Gdansk. During the construction of
the bus two groups of issues had to be dealt with:
creation and maintenance of data flows and the use
of development environment for the implementation
and modification of bus architecture.

In the first case (start and maintaining the flow)
the problems mainly focused on the conversion of
data e.g. how to supply ESB. Another problem con-
cerned the use of processes: move, assign and con-
cept in data mapping processes. While the mowve al-
lowed the simple processes to convert the data to
the CAP protocol, process assign, especially con-
cept not always supported the conversion process.
Similar problems occurred in the processes of the
event queue. Repeated attempts to refresh the event
filled the base and did not allow correct action trig-
ger database rows. Therefore, documentation devel-
opment environment was often used to solve these
problems.

In the second case the application of the de-
velopment environment WebSphere Message Broker
Toolkit aided the construction of the bus but not
all in layers of the proposed architecture. While the
high level architecture of ESB bus was relatively
easy to build, including developers applications for
the implementations of data flow processes was far
more complicated e.g. For example, frequent prob-
lems with the construction of models, KPIs and
SOPs. Since both models could be built in two ways:
using WebSphere Message Broker Toolkit or Web-
Sphere Business Monitor development toolkit, the
selection of the tool did not always guarantee the
correctness of the construction of the model. As in
the first case, the documentation had often to be
referred to. This continuous analysis of documenta-
tion slowed down the process of constructing decision
support system in IOC project.

While the process of developing IOC system for
processing big data for decision-makers: the City of
Gdansk, was a relatively complex, the process of in-
troducing changes to the system turned out to be rel-
atively simple. Development environment which was
difficult to install provided a multi-layered process
of change. It has been shown (as is the case of oth-
er complex developing environments) that the work
on the process of the installation of the develop-
ment environment is quickly reflected by its perfor-
mance. Therefore, the example of the construction of
ESB for the City Council might be considered posi-
tive.

Volume 5 ¢ Number 1 e March 2014

References

[1] Czarnecki A., Ortowski C., Ontology as a tool for
the IT management standards support Agent and
Multi-Agent Systems, Technologies and Applica-
tions, 2009, pp. 330-339.

[2] IBM Intelligent operations center Information
Center, http://publib.boulder.ibm.com/infocenter/
wasinfo/v6r0/index.jsp, (2013).

[3] Ortowski C., Kowalczuk Z., Knowledge management
based on dynamic and self-adjusting fuzzy models, in
Knowledge-Based Intelligent Information and Engi-
neering Systems, Springer Berlin Heidelberg, 2006.

[4] Ortowski C., Zidtkowski A., Czarnecki A., Valida-
tion of an agent and ontology-based information
technology assessment system, Cybernetics and Sys-
tems: An International Journal, 41 (1), 62-74, 2011.

[5] Ortowski C., Rule-based model for selecting integra-
tion technologies for Smart Cities systems // Cyber-
netics and Systems, 2014 — in press.

[6] Pastuszak J., Stolarek M., Ortowski C., Concept of
generic IT organization evolution Model, Faculty of
ETI Annals, Information Technologies, 18, 235-40,
2008.

[7] Bhowmick A., IBM Intelligent Operations Center
for Smarter Cities Administration Guide 5, Event
flow diagnostic and validation tool for IBM Web-
Sphere Business Monitor, International Business
Machines Corporation 2009.

[8] Common Alerting Protocol Version 1.2
http://docs.osasis-open.org/emergency/cap/v1.2/
CAP-v1.2-0s.pdf, (2013).

[9] Czarnecki A., Ortowski C., Sitek T., Zidtkowski A.,
Information technology assessment using a func-
tional prototype of the agent based system, Foun-
dations of Control and Management Sciences, 2009,
pp. 7-28.

[10] Snadach K., Graphical data presentatation in IBM
Intelligent Operations Center, Diploma Disserta-
tion, Gdansk, 2013.

[11] Smith A.D., IBM Intelligent Operations Center KPI
Implementers Guide for Websphere Software, Doc-
ument version 1.0.

[12] Kortas K. Data integration using ESB - IBM
Websphere Message Broker, Diploma dissertation,
Gdansk, 2013.

[13] IBM WebSpher application server information
center, http://publip.boulder.ibm.com/infocenter/
cities/v1r5m0/index.jsp, (2013).

[14] IBM WebSphere Broker Message Broker Informa-
tion Center, http://publib.boulder.ibm.com/info-
center /wmbhelp /v7rOm0/index.jsp, (2013).

31

