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can perform a set of operations and requires skills of a given level for its maintenance. A multi-
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criteria: the direct measures of gaps, the measures proposed by Zitzler and Thiele in 1999 and
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Introduction

The design and analysis of production systems
has been broadly discussed in the literature [1-6].
Several standard scientific problems have been for-
mulated such as the optimal process planning, facil-
ity layout, line balancing, buffer allocation, equip-
ment selection, etc.

This paper deals with line balancing and equip-
ment selection while designing machining lines. Note
that we consider a relatively general case where:

— Each piece of equipment can be used to accom-
plish not only one but a set of different technological
tasks.

— At the line design stage, for each task there is
a set of various types of equipment each of which can

be used to execute the task, one piece of equipment
must be selected from this set.

In a previous works, we have already studied
models and algorithms for combinatorial optimiza-
tion of machining lines with a single criterion and
several criteria. In this paper, we focus on the line
balancing and the equipment selection problems for
a special type of such lines: reconfigurable automat-
ed machining lines where for each available piece of
equipment we know the maximal set of tasks that can
be executed with the equipment, but in each design
decision we use only a subset of tasks. We propose
some adaptations and improvements for previously
suggested multi-objective algorithms and study their
effectiveness via a series of numerical tests. Further-
more, to compare the performances of these algo-
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rithms different measuring techniques will be used
to provide a broader perspective.

When a new machining line is designed (or an ex-
isting line is reconfigured for a new product) a cor-
responding line balancing and equipment selection
problem has to be solved. Because of precedence
constraints between tasks and the need to choose
equipment for each workstation, we have to take in-
to account these constraints as well as others relat-
ed to equipment compatibility. This leads to a very
complex combinatorial optimisation problem. Such
a line is designed (or reconfigured) for manufactur-
ing a given product. At the beginning of any design
or redesign, all tasks required for manufacturing the
product should be known. Then, the problem is to
define the workstations, i.e. to assign tasks and pieces
of equipment to workstations such that a criterion is
(or several criteria are) optimized.

The rest of the paper is organized as follows. Sec-
tion 2 presents an analysis of the state of the art
in this domain. In Sec. 3, the problem statement is
given and a Pareto optimization model is developed
for the considered machining lines. The optimization
algorithms are briefly explained in Sec. 4. Tests and
comparisons of algorithms are presented in Sec. 5.
Some discussions on possible extensions of the pro-
posed approach are given in Sec. 6. Finally, conclu-
sions are reported in Sec. 7.

State of the art and motivation

In literature, a similar simplified problem is
known as assembly line balancing (ALB). The Simple
Assembly Line Balancing problem (SALBP) deals
with grouping tasks (non-divisible work elements) in-
to workstations taking into account precedence rela-
tions between tasks and a constraint on line cycle
time or number of workstations. The tasks are ex-
ecuted at each workstation sequentially. The cycle
time of the assembly line is determined by the work-
station with the maximum workload. Two principal
types of SALBP are studied: SALBP-1 attempts to
minimize the number of workstations for a required
cycle time Ty, while SALBP-2 attempts to minimize
the cycle time for a given number w of workstations.
Comprehensive surveys on these problems and they
generalisations were published, for example, in [7—
13]. However, actual industrial problems are usual-
ly more complex. Often, the assignment of tasks to
workstations requires equipment selection for each
station to do the required job efficiently. This should
consider also equipment compatibility constraints,
ability of equipment to execute the considered tasks,
etc. In this case, we have a more complex combina-
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torial problem than SALBP which is often called the
line balancing and equipment selection problem.

Recently, several new generalisations of ALB,
named transfer line balancing problems (TLBP),
were proposed for mass production machining lines.
Lines with sequential activation of equipment at each
station were studied in [14, 15]. Lines with parallel
activation of pieces of equipment at each station were
considered in [16]. Lines with mixed equipment ac-
tivation at each station were addressed in [17], etc.
Some specificities of such machining lines are: 7) the
tasks of the same equipment (multi-spindle head) are
executed in parallel, i.e. simultaneously, so the equip-
ment working time is equal to the maximum of its
task times; 4) if equipment is selected for a line de-
sign, all the tasks of this equipment will be executed
here (we cannot execute only a sub-set of equipment
tasks).

Thus, the literature is awash with different ALB
models for standard manual assembly lines with se-
quential execution of tasks. We have also some expe-
rience to apply ALB approaches for mass production
machining lines with parallel execution of tasks at
workstations where both line balancing and equip-
ment selection problems are examined. Nevertheless,
it can be concluded that, often, when considering
problems of assembly and/or machining line balanc-
ing and equipment selection, only scalar optimization
techniques are developed. They optimize only one of
the following criteria: equipment cost (investments),
occupied area, workstation loads, etc., see for exam-
ple [18-20]. Again, in real life industrial situations,
the problems are usually far more complex, because
there are several conflicting criteria, and all of them
should be considered simultaneously.

Therefore, the motivation of this work is to sug-
gest an approach of multi-objective line balancing
and equipment selection for reconfigurable automat-
ed machining lines. Lines where all pieces of equip-
ment of each workstation are activated simultaneous-
ly will be considered. However, in contrast with our
previous work dedicated to design of mass produc-
tion machining lines, this paper deals with the case
where only a sub-set of tasks of each piece of equip-
ment can be used and not necessarily all the tasks.
This gives more flexibility for design decisions, sim-
plifies future modifications and is a property of re-
configurable machining lines.

In this study, more than one objective function
will be treated. In literature, multi-objective prob-
lems are often reduced to a corresponding single cri-
terion optimization problem via a weighted sum of
initial criteria [21]. A major drawback of this ap-
proach lies in the difficulty to obtain the required
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weights for the considered criteria. Moreover, this
technique gives only one solution. Usually, decision
makers prefer a set of acceptable solutions to apply
instead of a single option. Therefore, the goal of this
paper is to develop a Pareto! optimization approach.
This approach provides a set of solutions giving de-
cision makers some leeway in their decisions.

A Pareto multi-objective optimization problem
can be defined as follows [22]:

Find vectors of decision variables X =
(21, @a,... ,xZ]T that satisfy
Q@ inequality constraints:
P equality constraints:
h; (X) =0, i1=1,...,P (2)

and optimize (minimize or maximize) a vector of ob-
jective functions:

FX)=[fi(X), f2(X),..o, (X)L (3)

In other words, the result is a particular set of
vectors { X* = [z7, 25,...,2%] } which provides
a compromise for all the objectives (1) among the
set of all points in the space of decision variables that
satisfy the constraints (1) and (2). Thus, a Pareto-
optimal set { X* } is composed of only feasible solu-
tions, and called the set of non-dominated solutions
[23]. None of these solutions (vectors of decision vari-
ables) can be considered as better than an other one
from this set [24].

In this paper, we have developed multi-objective
genetic algorithms based on the property of Pareto
optimality. Fonseca and Fleming [25] presented three
techniques for this type of multi-objective evolution-
ary algorithms. In the first, the fitness is determined
via an aggregation of all objectives for the solution
(linear sum of the criteria). The second works on dif-
ferent populations at the same time, each population
is associated with one criterion. The third is based on
Pareto ranking of a single population (Niche Rank-
ing Techniques). Sarker [26] present another genetic
algorithm based on the Pareto optimality. A review
on genetic techniques used for solving multi-objective
problems can be found in the paper of Coello [27].
Clearly, the increasingly used and arguably the most
powerful are the following algorithms: NPGA of Horn
[28], NSGA of Srinivas and Deb [24], and SPEA of
Zitzler and Thiele [29].

There exist multi-objective approaches for assem-
bly line balancing. A multi-objective line balancing
problem was studied by Ponnambalam [30], with as

objectives the number of workstations, total dead
time, and load smoothing between workstations. The
authors suggested a genetic algorithm using an ap-
proach based on a weighted sum of criteria. A similar
approach was presented in the paper of Younes [31]
for a flexible manufacturing system. Their criteria
were: 1) cost of transferring a part, from one sta-
tion to another, and 2) load smoothing between sta-
tions. A Multi-Objective Group Genetic Algorithm
(MOGA) was suggested for the design of a hybrid
assembly line in Rekiek [32]. This algorithm was
enriched by introducing a Branch and Cut (B&C)
and the Prometee (Preference Ranking Organisation
METHod for Enrichment Evaluation) techniques.

In our previous publications [33] and [34], we used
the well known Multi-start method with one, two
and four criteria for which the best parameters set-
tings were determined. We also built a method based
on the NSGA-II algorithm to treat, with certain ef-
fectiveness, the case where the equipment selection
is the sole problem (line balancing was already re-
solved). In this paper, we develop further this NSGA-
IT for the more general case of both line balancing
and equipment selection. Two versions of the algo-
rithm are provided here: with local search (NSGALg)
and without local search (NSGAwrs). These two
methods will be tested on a set of randomly gen-
erated problems and compared using three types of
different measures: the direct measurement of gaps
between objective functions, the measures proposed
by Ziztler and Thiele [29] and the distances suggest-
ed by Riise [35].

Problem statement

Background

A similar single criterion optimization problem
for equipment selection and line balancing was ex-
amined in the paper of Makdessian [33] to minimize
the investment cost. Three approaches, a Branch
and Bound algorithm, a heuristic based on a trun-
cated enumeration, and a genetic algorithm, were
presented. In [34], this model was reformulated for
a multi-objective equipment selection with Pare-
to optimization approach, but without line balanc-
ing. Two multi-objective algorithms were proposed:
a Multi-start algorithm derived from Sysoev and Dol-
gui [22] and a genetic algorithm of type NSGA-II (the
second version of Non Dominated Sorted Genetic Al-
gorithm), inspired from the work of Lacomme [36].
The model and the algorithms proposed in this pa-

LA French-Ttalian economist Pareto (1848-1923) first developed the principle of multi-objective optimization for use in
economics. His theory became collectively known as Pareto’s optimality concept.
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per are based on some preliminary ideas and results
of [34]. However, they are more general and more
realistic, because here we consider both line balanc-
ing and equipment selection problems with addition-
al constraints.

Problem formulation

Each piece of equipment can be used for process-
ing a set of tasks. For each task, there is a set of avail-
able alternative pieces of equipment. Any equipment
has advantages and drawbacks. A machining line is
designed for a given product, but with the possibil-
ity to reconfigure for another product in the future.
This is feasible because of the modular principle of
line design and the possibility to use only partially
the equipment already installed.

Let N be the set of all tasks required to man-
ufacture one item of the considered product, M be
the set of available pieces of equipment. Let n = |N|
be the number of tasks required to manufacture one
product item and m = |M| the number of available
types of equipment which can be used for this line,
respectively. Let Fq; be the equipment of type j,
J € M and SetEq; be the set of all tasks that can
be executed with Eg;, j = 1,...,m. If Eq; is as-
signed to workstation &, then a sub-set Nj; C SetE-
qj of tasks will be executed with this equipment at
workstation k, k = 1,...,w. Each available piece of
equipment is characterized by its cost, can perform
a set of operations and requires skills of a given level
for its maintenance. Of course, usually a task execut-
ed with different equipment requires different times.
Several pieces of equipment of different types can be
installed on a workstation.

We  will

ECJ'

also use the following notations:
cost of a piece of equipment of type 7,

Prod;,  throughput of line (number of items pro-
duced per year),

Area;  area occupied by equipment of type j,

SLy, Technical complexity of station k, this de-

fines the skill level required for a worker
employed for maintenance.
The following assumptions are introduced:
— Precedence relations between tasks (i = 1,...,n)
from N are given;
— The set M of all available pieces of equipment is
also given;
— Cost, set of operations and complexity level for
each equipment type are known;
— Compatibility constraints between pieces of equip-
ment are known;
— Inclusion constraints for the tasks obliging execu-
tion of certain tasks at the same workstation are
also known;
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— Task processing times are known, deterministic
and depend on the type of equipment employed;

— A task can be performed at any workstation, if the
station is provided suitable equipment;

— Longest task does not exceed the predetermined
cycle time Tj;

— Tasks are grouped in sets, all the tasks of set Nk;
will be executed with equipment j at workstation
k;

— Setup, tool changing, material handling, loading
and unloading times are negligible or included in
the processing times of the tasks;

— All tasks assigned to pieces of equipment are ex-
ecuted simultaneously, thus the equipment time
is equal to the maximum of task times for tasks
executed with this equipment;

— Objective line cycle time is equal to Ty = Awv-
Time/ProdL, where AvTime is the available work-
ing time per year.

Considering the fact that some basic ideas and
techniques of the suggested multi-objective genetic
algorithms have been already published in [34], this
paper presents only a short description of the im-
proved algorithms and is focused on the justification
and the application of this approach, the new ideas
and the main extensions of the methods, but most of
all on the experimental tests of the algorithms, their
analysis and some discussions about the further de-
velopments for this research.

Optimization criteria

Let w be the number of workstations in a design
decision (in a feasible line) and X be the vector of
decision variables which represent an assignment of
tasks and pieces of equipment to workstations.

The vector criterion of our problem is:

Optimize F(X) = {f1(X), f2(X),
f3(X), fa(X)}.

The first criterion is related to the minimization
of the investment cost:

(4)

w
Minimize fi(X)=Y_ > Ec;(X), (5
k=1 jEM;,
where Mj, is the set of equipment assigned to work-
station k. Only one piece of equipment of each
type can be assigned to a workstation, nevertheless
several pieces of equipment of the same type can
be employed in the line but at different worksta-
tions.

The second criterion is the maximization of the
line throughput rate, i.e. the number of items pro-
duced per year. The line throughput rate is equal to
the throughput rate of the bottleneck workstation:
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Maximize fo(X) = ProdL(X)

=Mink=1,2,...,w(Prod k(X)). (©)

The third criterion furnishes a line with a mini-
mum occupied space:

Minimize f3(X) = Z Z Area;j(X). (7)

k=1 jEM,

And finally, the last criterion, considers the tech-
nical complexity of workstations, and thus the re-
quired skill level for the workers employed for the
line maintenance:

Minimize f4(X)=SL(X)= Maz k

=1,2,..., w(SLE(X)). ®

This function is rather particular and considers
the technical complexity of the line taking into ac-
count the equipment assigned to workstations. Re-
quired skill level for a workstation is equal to maxi-
mum of required skill levels for pieces of equipment of
this workstation. Here, we adopted arbitrarily a scale
from 0 to 9. A piece of equipment with SL = 9 re-
quires the highest possible skill level for workers em-
ployed for its maintenance (note also that this cor-
respond also to the highest worker salary). This in-
formation is important and is used to identify the
requirements to carry out the maintenance activities.

Constraints

The following additional notations are used for
modeling the problem constraints:

wo maximal number of workstations in the line
(i.e. w < wp);

er number of pieces of equipment assigned to
workstation k;

ep maximum authorized number of pieces of
equipment per station (i.e. e < eg);

FEq; piece of equipment of type j, j € M;

M, subset of equipment from M assigned to
workstation k;

Set £g; maximal set of tasks which can be exe-
cuted with equipment of type j, j € M;

Ny set of tasks executed with [-th equipment of
workstation k;

N set of tasks executed at workstation k, N, =
ek
U N kq-
qg=1

The constraints introduced in the previous sec-
tion can be represented as follows:

i) A partial order relation over the set N can be
represented by an acyclic graph GP = (N, DP). An
arc (i1,92) € N x N belongs to set DP if and only
if task 7o must be executed after task 7;. From this
graph, for each set My = {j1,...,Jex}, 51 € M and

8

vector N = (N1, ..., Nie, ), Ni C SetEqj;, the set
of tasks Pred(Nj) which must be executed before
workstation £ can be deduced;

ii) Exclusion conditions for the pieces of equip-
ment of the same workstation can be represent-
ed by a graph a" = (M, EES) in which a pair
(J1,72) € M x M belongs to the set D" if and
only if the piece of equipment Eg; and the piece
of equipment Fg;, cannot be allocated to the same
workstation.

iii) Inclusion conditions for the tasks of the same
workstation can be represented by the graph G! =
(N, DY) such that a pair (i1,i2) € N x N belongs
to the set DT if and only if tasks i; and iy must be
allocated to the same workstation.

Thus, a feasible solution S = (FE,0),
where E = (Mi,...,M,) and O =<
{Nlla'"7N181}5"'7{Nw17"'7Nwew} >5Mk =

{j1,---sJek}, N € SetEqj;, j1 € M, satisfies the
following constraints:

w o ep
U UNu=N (9)
k=1 1=1

Nk/l/ ﬂN npy = @7

KU £k k" =1,...,w; 1" =1,...,exr;  (10)
P=1,...,ep
k—1 e,
Pred(Ng) € | J | Nogy k=1,...,w  (11)
r=1qg=1
ek
UNklﬂce{(Z),c},cEDI,kzl,...,w (12)
1=1
(M (I'), My (1)) ¢ DF5, (13)
k=1,...,wl'=1,...,ep — 11" =1'"+1
er <ep,k=1,...,w (14)
w < wp. (15)

Constraints (9)—(10) state that all tasks from N
must be assigned and only once. Relation (11) defines
the precedence constraints between tasks. Expres-
sion (12) determines the inclusion constraints for the
tasks, i.e. the necessity to execute the corresponding
tasks at the same workstation. Relation (13) deals
with the compatibility of equipment at the same
workstation (exclusion constraints, i.e. some pieces
of equipment cannot be assigned to the same work-
station); Expressions (14)—(15) provide limits on the
number of workstations and pieces of equipment for
each workstation.

The optimization algorithm for the problem (5)-
(15) is described in the next section.

Volume 3 ¢ Number 1 e March 2012
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Method developed

As stated in the previous section, this problem is
a special case of the multi-objective line balancing
and equipment selection (resource planning) prob-
lem. In [33] and [34], some preliminary results of
this study were reported. The choice of NSGA-II for
a similar problem was made based on a literature re-
view and some tests. In this work, some further im-
provements to this approach are suggested for a more
general problem.

First, we need to define the solution coding and
a population of solutions.

For our problem, we have used the following solu-
tion coding: each solution of w workstations is com-
posed of w genes. Each gene k (i.e. workstation k)
is represented by a data structure composed of an
area of integer values where each value j signifies Fg;
and corresponding tasks Ny; C SetEqj. An example
of this solution is presented in Fig. 1. In this figure,
there are 4 workstations. The first one is equipped
with one piece of Eqs which executes tasks a, b and c.
The second workstation has 2 pieces of equipment:
one of type Eqs2 and second of type Eqs, the first ex-
ecutes tasks d and e, and the second, tasks f and g.
The third workstation is equipped with Eqq which
executes tasks k and [. The last station has one piece
of Eqs which executes s and z. Note that in this ex-
ample Eqs can execute at least (a, b, ¢, d, €) and Eqs
can execute (f, g, s, z), but only a part of these tasks
are executed at workstations 1, 2 and 4, respectively.

2 (a, b, c) 2 (d, e);

3¢9

4(kD 32

Fig. 1. Example of solution encoding.

Let P, be the population of such solutions at the
beginning of the iteration ¢.

As for all genetic algorithms, our NSGA-II con-
sists of two phases: 1) Initialization of population,
and 2) Genetic procedures (selection, crossover, mu-
tation, etc.) to evolve the population.

As a first step, the initial population P1 is created
with S, randomly generated solutions. For that, we
use an algorithm similar to COMSOAL for SALBP,
see for example [14], i.e. we create a list of candidate
equipment and select one piece of equipment from
this list randomly.

The main procedures of the genetic operations
of NSGA-II algorithms are as follows. Before apply-
ing the selection operator, the solutions are ranked.
This process identifies several Pareto fronts: front(k),
k=1,2,.... 1t S efront(k), this means that the so-
lution Pt(S) is classified in A-th front. The ranking

Volume 3 e Number 1 ¢ March 2012

is made so that non-dominated solutions occupy the
first Pareto front. Therefore, the rank number 1 is
assigned to the best solutions. For the rest of the so-
lutions, the non-dominated ones are sought and then
they are classified in the second Pareto front, and so
on. This ranking procedure is stopped when all solu-
tions are classified in fronts.

In this procedure, one starts to fill the first Pare-
to front. The solutions are compared to each oth-
er to check for dominance relations. Let X be the
considered solution. If X dominates Y, then Y is
added to the set composed of solutions that are worse
than X. Otherwise, if Y dominates X, then the num-
ber of solutions better than X increases by 1, i.e.
Nmbrbetter(X)=Nmbrbetter(X)+1. This procedure
is repeated until X is compared with all other solu-
tions from the current population. If after compar-
isons Nmbrbetter(X)=0, then X is added to the first
front, and so on. Finally, we obtain the first complete
front. The procedure for the other Pareto fronts is the
same. After applying this ranking procedure, we will
have all the solutions assigned to Pareto fronts and
to each solution a rank is allotted. Let Rank be a vec-
tor where element Rank(S) represents the number of
the Pareto front in which solution Pt(.S) is assigned.

Another particularity of NSGA-II algorithms
consists in calculating distances between solutions
of the same Pareto front. This procedure is called
“Crowding Distance Assignment” or Margin calcu-
lation.

The margin or crowding distance is as follows:
Once the crossover and mutation operations are
processed, a population with a size (2S) equal to
twice the size of the initial population (S) is ob-
tained. Therefore, we cannot accommodate all the
fronts in the new parent population of size S. The
non-accommodated fronts are simply deleted. When
the last allowed front is being considered, we may
have more solutions in the last front than the re-
maining slots in the new population. In order to
avoid arbitrarily choosing some individuals, we ap-
ply a niching strategy by choosing the individuals
that can assure diversity among those considered.
For this reason, we calculate the crowding distance
for each individual measuring the Euclidean distance
between its two closest neighbours in each front. Fig-
ure 2 shows a two-objective example for crowding
distance assignment.

The tournament prefers the most isolated indi-
viduals. Boundary points must always be selected
that is why their crowding distance is set to co in
the algorithm below. Let F,[i] be the fitness function
of the solution i according the objective o (0 = 1, 2).
The function F'[i]q adopted to calculate the crowding

9
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distance is shown in Algorithm 1. Thereafter, those
strings having largest crowding distance values are
chosen to be inserted in the new parent population.
Once the non-dominated sorting is over, the new par-
ent population, My, is created by choosing solu-
tions of different non-dominated fronts.

A
6

o
O

v

fi

Fig. 2. Crowding distance assignment.

Algorithm 1: Crowding distance assignment
Let x the number of solutions in the considered front
for i — 1 to x do
Flila =0
end for
for o «—1to 3 do
Sort the solutions according to each objective o
Set F[1]q and F[x]a to co
for i — 2 to (x-1) do
Flila = Fli]la + (Foli + 1] — Foli — 1])
end for
end for

If two individuals of the population belong to the
same rank, we consider as “better”, or more inter-
esting for us or with greater fitness, the one with the
larger crowding distance.

Thus, the fitness function of NSGA-II is defined
as follows: let X and Y be two solutions from the cur-
rent population. We consider that X is better than
Y if Rank(X) < Rank(Y'), or Rank(X) = Rank(Y')
and Margin(X) > Margin(Y").

The principal steps of our NSGA-II are shown
below (Algorithm 2).

Algorithm 2: Overall structure of our NSGA-II (NS-

GAwLs)

Create an initial population P with Sp solutions,
where Sp is the size of population

FEvaluate all the solutions from P using the problem
criteria

Sort Py by non domination

Compute the crowding distance for each solution from
Py

Repeat

10

Create an offspring population Cy of Sp solutions using
genetic operators: selection, crossing, mutation
and reparation of unfeasible solutions (two
parents from P generate two children)

Evaluate each new solution (with all the criteria)

Fusion Cy and Py

Sort the resulting population Oy of 2*Sp solutions and
ranking them in front(k),k =1,2, ...

Compute the crowding distance for each solution from Oy

Py — o

k«—1

While |P;41| + | front(k)| < Sp do

Add front(k) to Piiq

k «— k+1

end while

Missing «— Sp — |Pi11]

if Missing # 0 then

Sort the solutions of front(k) by decreasing order of
their crowding distances

forj «— 1 to Missing do

Add the j-th solution of front(k) to Pi+1

end for

end if

until Stopping criterion

This algorithm is based on the algorithm suggest-
ed in [37]. Here, |front(k)| means the number of so-
lutions in k-th Pareto front. As a first step, the ini-
tial population is generated and solutions are sorted
in Pareto fronts. For each solution P;(S) a margin
Margin(S) is calculated. Then, at each iteration of
the genetic process, new solutions are generated via
a selection of parents and application of genetic op-
erators such as crossover, mutation, etc.

Parents are selected using the binary tournament:
two solutions are randomly selected from the popu-
lation, the fittest is kept as the first parent, and the
second is rejected. As mentioned above, the “fitness”
function uses solution ranks and crowding distances.
If two solutions belong to different ranks, the solution
of smallest rank is the fittest. When these two solu-
tions belong to the same front, the tournament pro-
cedure prefers the most isolated one, i.e. with largest
crowding distance, to better cover the optimal Pareto
set. Two new candidates are randomly selected again
to find a second parent with the same procedure.

After selecting two parents, an OX crossover is
applied.

To carry out genetic jumps in the algorithm,
the operator of mutation is used. We have applied
a traditional mutation (random change of a gene,
i.e. a piece of equipment is replaced with another
randomly). This mutation operator is applied with
a probability of 0.01.

After the crossover and mutation operations, we
check the feasibility of offspring. For each new so-
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lution, we start with a gene and check if all the
constraints are respected. Two types of constraints
are checked: precedence relations among tasks and
compatibility for pieces of equipment assigned to the
same stations. If there is a violated constraint, the
gene considered is randomly modified: new piece(s)
of equipment are randomly selected from the set of
equipment whose elements respect these constraints.
If there is no feasible solution, then we come back
to the previous gene, otherwise go to the next gene,
and so on.

Clones are detected and eliminated during the in-
sertion of new individuals into population at the step
of fusion of C; and P;.

In literature, for a better trade-off between di-
versification and intensification, the traditional mu-
tation operator is sometimes replaced with a local
search, see for example [36-39], such algorithms are
called memetic algorithms. Note that, in 1999, Deb
was the first to mention the possibility to hybridize
NSGA-IT with a local search. Nevertheless, a local
search was rarely used with genetic algorithms of
type NSGA-II. Thus, we have developed two genet-
ic algorithms: i) NSGA g, with traditional mutation
and a local search, and i) NSGAw s, without local
search, i.e. only with random mutations.

Note that several questions appear when incor-
porating the local search in a NSGA, for example: at
which step (or iteration) should the local search be
applied?

Our NSGALs is as shown in Algorithm 3.

Algorithm 3: NSGA-II with local search (NSGALs)

Create an initial population Py of size Sp

Evaluate the solutions from P,

Sort P; by non-domination

Compute the crowding distance for each solution from Py

Repeat

Create an offspring population Cy of Sp solutions using
genetic operators: selection, crossing, mutation
and reparation of unfeasible solutions (two parents
from P: generate two children for Ct)

FEvaluate each new solution

Fusion C and Py

Sort the resulting population O of 2*Sp solutions by
non-domination

Compute the crowding distance for each solution from Oy

P — @

k1

While |Piy1| + | front(k)| < Sp do

Add all solutions from front(k) to Pii1

k «— k+1

end while

Missing «— Sp — |Pr+1]

if Missing # 0 then

Sort the solutions of front(k) by decreasing order of the
crowding distance
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for j «— 1 to Missing do
Add the j-th solution of front(k) to Piy1
end for
end if
After each ten iterations,
for all solutions of the current population
for each station of the solution selected
search for new available
and compatible piece of equipment which improves
the solution
if such a piece of
equipment exists, then
replace the current piece of
equipment with this new equipment

end if

end for

replace the selected solution with the improved one
end for

until Stopping criterion

In the algorithm, the local search is implement-
ed as follows: for each workstation, all non-assigned
pieces of equipment to this workstation are tested
for possible replacements of the current equipment.
There are two conditions when to replace the equip-
ment of a workstation:

— The new equipment meets compatibility con-
straints.

— The new equipment improves the current solu-
tion.

The local search procedure is situated at the end
of Algorithm 2 just before checking the stopping cri-
terion, i.e. when a new population is obtained after
crossover, mutation, etc. Local search is not applied
at each iteration of the genetic algorithm, but only
after each ten iterations.

The algorithms NSGAps (Algorithm 3) and NS-
GAw s (Algorithm 2) have been tested. The results
are reported in the next section.

Numerical experiments

All developments were done in C++ (Borland
C++) and tested on a Pentium 4 computer under
Windows 2000. Two versions of NSGA-II were test-
ed: NSGALg, i.e. with an additional procedure of lo-
cal search applied to all the individuals of the popula-
tion each ten iterations, and NSGAyy g, without this
additional local search. The following subsections de-
scribe the computational experiments as well as the
measuring criteria used to compare the algorithms
studied. Two types of results are presented: the first
for only two criteria (throughput and cost) and the
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second for all the four objective functions mentioned
above.

Tested instances

The computational evaluation is based on
five problem families: {(|N|=7, |M|=3); (]N|=10,
|M|=5); (|N[|=20, |M|=8); (|N]|=30, [M[=15);
(IN|=50, |M]=20)}, where n = |N| is the number of
tasks, and m = | M| is the number of available equip-
ment types. As aforesaid, only one piece of equipment
of each type can be assigned to a workstation, never-
theless several pieces of equipment of the same type
can be employed in the line but at different work-
stations. Thus, in the instances tested, the number
of available units of equipment of each type had no
limit.

For each family of problems, five different in-
stances were generated (25 problems in total).

The size of the population (number of individ-
uals) S, depends on the size of the instance. The
maximal size of the population was fixed at 200. The
initial population of size 30 x |M|x|N| was generated
by using a COMSOAL-like heuristic, as for example
in [6, 14].

These values have been chosen after a prelimi-
nary study, see [34]. Task times as well as the prece-
dence graphs were generated randomly. Compatibili-
ty among pieces of equipment belonging to the same
workstation is considered to be 100%, i.e. this type
of constraint was not used in the tests. The area oc-
cupied by equipment has been generated randomly
between 10 and 50 units. The cost of each piece of
equipment has been generated taking into account
its capacity to execute the tasks: that which is able
to execute more tasks is more expensive. Worker
skill levels required for maintenance of each piece of
equipment have been modelled with numbers from 0
to 9.

An additional preliminary study on selecting the
stopping criterion has been done. First, the algo-
rithms have been tested with only the stop condi-
tion of 1000 iterations. For the problems with 50
tasks and 20 types of equipment, the Pareto-optimal
solutions have been obtained in 7068 seconds. Nev-
ertheless, no improvement was observed compared
with the tests of the same series with run time
of 120 seconds. Therefore, the stop condition has
been fixed at 120 seconds for all algorithms and in-
stances.

Two types of tests have been accomplished: the
first for only two criteria and the second for all the
four objective functions. The same parameters of al-
gorithms have been used for both the bi-objective
and four-objective studies.

12

Measuring criteria

Two multi-objective algorithms: NSGAps and
NSGAw s were evaluated. The comparison was
made between their Pareto fronts of non-dominated
solutions, i.e. the Pareto fronts obtained with these
algorithms. In order to compare the quality of the
Pareto fronts of non-dominated solutions, three mea-
sures were used:

Gaps direct measurement of gaps (see sub-section
5.4.1);

1, ¥, ng distances proposed by Riise [35];

C1, C2 measure of Zitzler [29].

Let ni be the number of solutions in the Pare-
to front of non-dominated solutions obtained with
the first method, we will denote this front F'1. The
Pareto front obtained with the second method will
be denoted F'2 and the notation ny will be used for
the number of non dominated solutions in F'2. Note
that F'1 and F'2 are the fronts of non-dominated so-
lutions, i.e. the first Pareto fronts obtained with cor-
responding algorithms. In other words, F1=front(1)
for the first method and F2=front(1) for the second
method, when the algorithms are stopped.

The distance of Riise u is computed as shown in
(16), where dx is a distance between a solution X
belonging to the Pareto front F'1, and its orthogonal
projection on the Pareto front F2. The value of u
is negative if F'1 is under F'2 which means that F'1
is better than F'2 for the considered objectives, and
positive, otherwise.

n = Z dx.

XeF1

(16)

As the value of p depends on the number of so-
lutions n; in front F'1, the normalization is usually
applied as follows:

w« _ M

uo=—.
n

(17)
In order to quantify the distance between the two

Pareto fronts F'1 and F2, p* is replaced with the
g measure. This provides a value that splits off the
front F'1 from the front F2 and it is calculated as
shown in (18), for the bi-objective case:

1

il dx

1 X;Vl

fa = \/(flmax - fl min)2 + (f2max - f2min)2

where flmax = max{fl(X) | X € FlUF2}7 flmin =
min {f1(X)| X € F1U F2}, fomax = max{fa(X)|
X € F1UF2} and fomin = min{fo(X)] X €
F1U F2}; f1(X) and f3(X) are the two objective
functions of the problem. For the four-objective case,

, (18)
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4
the formula is similar but with 4/ >~ (fimax — fimin)?
i=1
in the denominator, i.e. considering all four functions
fi(X), f2(X), f3(X) and fi(X).

The measure of Zitzler C'1 represents the percent-
age of solutions in F'1 dominated by at least one
solution in F2. Considering that the measure is not
symmetric, it is advised to compute C2 as well, which
represents the percentage of solutions in F'2 dominat-
ed by at least one solution from F'1. In conclusion,
F1 is better than F2 if C1 is smaller than C2.

Bi-objective case

First, we have tested our algorithms for the bi-
objective case since maximizing throughput rate and
minimizing cost are generally the most important
criteria and often used for these kinds of design
problems. The following indicators will be employed
to compare the results of our two algorithms: that
of Ziztler and Thiele [29] and of Riise [35], both
were explained in the previous sub-section. Note that
these two types of measures have been successful-
ly applied in previous work to compare two Pareto
fronts obtained by two different multi-objective al-
gorithms, see [40, 41].

Test results are reported in Table 1 where n; and
no are the numbers of non dominated solutions in
fronts F'1 and F2, respectively. For the test fami-
lies, n = |N| is the number of tasks and m = |M| is
the number of available equipment types. C'1 and C2
clearly show that NSGALs outperforms NSGAw s
in all instances.

Table 1
Measuring indicators for the bi-objective case.
n; m ni no C1 C?2 ud
73 12 10 0.25 0.10 —-0.1
10; 5 10 9 0.40 | 0.11 —0.13
30; 15 16 7 0.88 | 0.00 —0.29
20; 8 11 10 0.73 | 0.10 —-0.24
50; 20 13 12 0.85 0.00 —0.32

Note: in all the configurations C1 > (2 since
C1 ~70% and C2 ~0-10% which proves that NS-
GAps dominates NSGAws. Moreover ug < 0,
which means that the first (optimal) Pareto front
of the NSGALs algorithm is under that of the NS-
GAw s algorithm. The last statement means that
the Pareto front of the NSGApg algorithm is more
suitable for the two considered objectives: it max-
imizes throughput rate and minimizes the cost of
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the line. Therefore, we can conclude that by apply-
ing local search in our algorithm we improve without
doubt the quality of the results.

Four objective case
Direct comparison

To select the best algorithm, both versions have
been tested and the following gaps have been com-
puted as shown in Eq. (19) where F_LNSG Ay s and
F_NSGAs are the best values of the correspond-
ing objective functions obtained with NSGAw s and
NSGA| g, respectively. The value of Gap is calculat-
ed for each adopted criterion.

(F_NSGAWLs) — (F_NSGALs)
Max {F_NSGAWLs,F_NSGALs}.

The average values of the different criteria and
the gaps are presented in Tables 2, 3 and 4. Columns
Av,., Av;, Av, and Avg in Tables 2 and 3 report
the average values of cost, throughput, occupied
area and skill level, respectively. Similarly, columns
Gap., Gap;, Gap, and Gaps in Table 4 refer to cost,
throughput, occupied area and skill level necessary
for maintenance.

Gap =

(19)

Table 2
Results of NSGAg.
n; m Ave Avy Avg Avg
73 21670 8483 114 7.5
15853 7926 140 0
21037 9100 116 8.83
12584 6118 56 0
23569 1001 124 7.2
10; 5 21343 8783 154 8
20299 7832 193 2
26208 9131 207 2.33
15730 6118 70 3
23817 9853 166 2.8
30; 15 131669 6528 764 6.85
126457 6364 559 5
125994 6426 838 8
128749 6388 584 6.75
117491 6923 584 8.5
20; 8 87785 7624 511 6.08
59615 6449 294 3.25
55374 7542 322 5.35
41168 6651 281 2.66
49439 7558 264 7
50; 20 167588 6070 900 6.52
235072 7027 1458 8.12
180831 6002 1479 4.5
195979 6705 1418 3.16
207883 6855 1375 6.68
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Table 3 Table 5
Results of NSGAw Ls. Comparison of gaps.
n; m Ave Av Avg Avg (a)
73 22137 8258 150 733 Gapers) < Gapowrs)y | Gapyrs) > Gapywis)
15853 7926 140 0 76% (19/25) 40% (10/25)
21190 9100 116 8.83 Gap.(rs)=GapowLrs) Gapyrs)=GapywLs)
12584 6118 56 0 24% (6/25) 32% (8/25)
23569 1001 124 7.2 (b)
10; 5 21343 8783 154 8 Gapa(LS) < Gapa(WLS) Gaps(LS) < Gaps(WLS)
20387 7832 208 2.5 72% (18/25) 60% (15/25)
26208 9131 207 233 Gapars)=Gapawrs) GapsLs)=Gaps(wLs)
21041 6388 138 8.25 28% (7/25) 28% (7/25)
23817 9853 166 2.8
30; 15 107440 6629 876 9
90080 6535 885 8.6 It is evident from the results in Tables 4 and 5
96935 7691 1099 7.5 that the NSGALgs algorithm gives better results
105563 | 6704 970 7.33 (smaller gaps).
95770 7082 936 9
20; 8 70442 8045 581 7 Multi-objective comparison
74224 6466 528 7.75
63252 7543 365 55 The algorithms NSGAps and NSGAwrs have
57315 6561 360 522 been also compared by using the measuring crite-
66913 7573 199 - ria proposed in Zitzler and Thiele [29]. The parame-
50; 20 213470 6116 1681 3 ters of the algorithms are the same as in the previ-
237536 6658 1507 9 ous sub-section. Each non dominated front obtained
200295 6111 1847 ] by NSGALs is compared with NSGAw s thanks to
222123 6700 1936 6.92 C1 and C2 measures. Remember that C1 shows the
236347 7278 1804 8 ratio of solutions in the Pareto front obtained with
NSGAw s dominated by, at least, one solution ob-
Table 4 tained with NSGApg. Conversely, C2 represents the
Gaps for results obtained with algorithms tested. number of non dominated solutions obtained with
n; m Gape Gap Gapa Gaps NSGA g that are dominated by, at least, one solu-
73 —0.021 | 0.026 —0.240 | 0.023 tion of Pareto front obtained with NSGAwrs. The
0 0 0 0 values of C1 and C2 are reported in Table 6.
—0.007 0 0 0
0 0 0 0 Table 6
0 0 0 0 Measuring indicators for the four-objective case.
10; 5 0 0 0 0
~0.004 0 ~0.072 | —0.200 nm i 12 ol o2
0 0 0 0 73 14 12 0.071 0
—0.250 | —0.042 | —0.490 | —0.636 10 5 15 9 0.133 0
0 0 0 0 30; 15 12 11 0.083 0
30; 15 | —0.184 | 0015 | —0.128 | —0.238 20; 8 8 13 0.375 0
—0.287 | 0.029 | —0.367 | —0.418 50; 20 16 9 0.125 0
—0.230 0.164 —0.230 0.063
—0.180 0.047 —0.397 | —0.079 C1 and C2 show that NSGAps is never domi-
—0.185 | 0.023 | —0.375 | —0.055 nated by NSGAyw s which allows us to conclude, as
20; 8 —1.974 0.052 —0.119 —0.131 . . . . . .
—0197 T 0005 T —o.420 T —05s0 in the bl-ob‘!ectlv.e case, on a re.zlatlve efficiency of
0188 0 o116 T 0027 local search in this type of algorithm. Nevertheless,
~0.930 0,014 0218 | —0.490 NSGAw s is dominated in only few cases. This can
“0.261 | —0.002 | —0.266 0 be explained since this problem presents four objec-
50: 20 | —0.215 | —0.008 | —0.464 | —0.184 tives: it is difficult to discriminate between two so-
0106 0.053 0.033 | —0.097 lutions while the number of objectives is increasing.
20097 | —0.018 | —0.199 | —0.437 Therefore, most of the solutions are not dominated
—0.118 0.001 —0.267 | —0.542 by others, since the search space is increasing when
—0.121 | —0.058 | —0.237 | —0.164 the number of objectives is also growing.
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Discussion on possible extensions
of the model

The model (5)—(15) has been developed for the
design of automated machining lines with multi-
spindle heads activated in parallel. For this case, all
the tasks of the same workstation are executed in
parallel. Thus, we ignored the cycle time constraint,
because it is sufficient to examine all available pieces
of equipment before optimisation and eliminate those
with processing times longer than the cycle time Tj.
Nevertheless, the algorithms developed can be also
used for the cases when the cycle time constraint
cannot be ignored (machining lines with sequential
activation of spindle heads, manual assembly lines,
etc.). In these cases, it is necessary to add to the
model the following expressions:

Z TimeEq; < Ty, k=1,...,w,

JEM,

(20)

where Timelq; is the time necessary to execute all
tasks assigned to equipment j at workstation k, this
time is estimated as Maxz{t;;} for multi-spindle ma-
chining equipment, and as _ ¢;; for manual assem-
bly lines, here ¢;; is the time of task ¢ executed with
equipment j.

Another non restrictive assumption of the mod-
el concerns the objective function f;(X) which rep-
resents the investment cost. Here again, this is due
to the lines considered where the investment is the
major cost component. For manual assembly lines,
for example, the worker salaries should be also in-
cluded. This can be accomplished by introducing
salaries Wy (X)) of workers assigned to workstation
k,k=1,...,w. The criterion f;1(X) is then modified
as follows:

Minimize f1(X) = (Ecx(X)+ Wsi(X)) (21)
k=1

where the equipment cost Eci(X) and worker wages
Ws,(X) are put on the same scale using known
methods [5]. Note that Fcp(X) and Wsp(X) de-
pend on pieces of equipment assigned to workstation
k (costs of pieces of equipment and wages for workers
necessary for this equipment).

Criterion f4(X) considers only the required skills
for the maintenance team. For manual assembly
lines, it is more important to take into account the
required operator skills for workstations. The corre-
sponding criterion can be formalised as follows:

Minimize f4(X) = ASL(X)
= Max=12, . w(SLk(X))
— Ming—1,2,....w(SLk(X)).

(22)
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A piece of equipment with SL = 9 requires the
highest possible skill level (note also that the cor-
responding workstation has the highest salary cost).
ASL = 0 represents the case where all workers are
perfectly interchangeable. The case when ASL =9
is most constraining with a maximum skill difference.

In some cases, as for example in the semicon-
ductor industry, there are also compatibility con-
straints between equipment of neighbouring work-
stations [22]. For this case, exclusion conditions for
the pieces of equipment of neighbouring workstations
can be represented by a graph o™ = (M, EEN)
in which a pair (j1,j2) € M x M belongs to the
set D7 if and only if piece of equipment Fq;, and
piece of equipment Fgq;, cannot be allocated to two
neighbouring workstations. The following constraint
is then added in the model:

—EN
(My (I'), My (I")) € D,
E=1,...,w—1; U'=1,..., ex;

ZH = 1, - .,8(k+1).

(23)

Other extensions are possible and can be easily
added to the model (5)—(15).

Conclusion

A new problem of multi-objective line balancing
and equipment selection (resource planning) was in-
troduced in this paper. This problem deals with au-
tomated machining lines. Each workstation can con-
tain one or more pieces of equipment. The problem is
to select pieces for each workstation from a given set
of all available equipment. The goal is to configure
a machining line for production of a given product
in large series while optimizing some criteria. The
difference with the models known in literature con-
sists in the fact that we use a sub-set of tasks of
each available piece of equipment and not necessary
all the tasks that this equipment can execute. This
is a new requirement due to the concept of reconfig-
urable manufacturing systems. The possibility to em-
ploy any sub-set of a given set of tasks which can be
executed with selected equipment, facilitates a future
reconfiguration of the line. At the same time, this in-
creases the combinatorial complexity of the problem
as compared with the case where the set of tasks for
each piece of equipment is fixed.

After presenting the problem statement, an algo-
rithm of type NSGA-II was developed. Then, it was
enriched with a procedure of local search adapted
for the multi-objective optimization. We compared
the versions of the algorithm with (NSGALs) and
without (NSGAwrs) local search using three mea-
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suring criteria: gaps for each criterion; distances of
Riise and measure of Zitlzler. They are employed to
compare the optimal Pareto front obtained with NS-
GAps and the optimal Pareto front of NSGAw s,
for each test example. The results of numerical tests
on several families of randomly generated examples,
have demonstrated that based on these measures, the
NSGA-II with the additional local search (NSGALs)
greatly outperforms the same NSGA-II without this
local search procedure (NSGAwrs).

Regarding the perspectives, the testing of other
possible crossovers or generating the initial popula-
tion by using other heuristics might be a subject of
future research. Furthermore, it might be interesting
to add other industrial constraints to be closer to real
industrial situations.

Furthermore, another promising way to pursue
might be the application of parallel calculation tech-
niques for these NSGA-II algorithms.

The results of this paper encourage the use of
similar techniques for other problems and different
types of production systems.

A more comprehensive comparison with oth-
er multi-objective algorithms as NPGA and SPEA
could be interesting. Still another path to examine is
to integrate the random factors in the model, such as
machine breakdowns, maintenance times, etc. Final-
ly, it may be possible to take into account some user
preferences interactively making the approach more
attractive to management.

The authors thank Chris Yukna for his help with
English.
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