
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2014, VOL. 60, NO. 1, PP. 103–108

Manuscript received January 10, 2014; revised March, 2014. DOI: 10.2478/eletel-2014-0012

Tracing Fault Effects in FPGA Systems
Mariusz Węgrzyn and Janusz Sosnowski

Abstract—The paper presents the extent of fault effects in
FPGA based systems and concentrates on transient faults (in-
duced by single event upsets – SEUs) within the configuration
memory of FPGA. An original method of detailed analysis of fault
effect propagation is presented. It is targeted at microprocessor
based FPGA systems using the developed fault injection tech-
nique. The fault injection is performed at HDL description level
of the microprocessor using special simulators and developed
supplementary programs. The proposed methodology is illus-
trated for soft PicoBlaze microprocessor running 3 programs.
The presented results reveal some problems with fault handling
at the software level.

Keywords—FPGA testing, application based testing, fault in-
jection, SEUs

I. INTRODUCTION

F
PGA based systems become very popular in many tech-

nical domains, including dependable applications where

fault effects may have critical consequences. Hence, various

fault tolerance schemes are proposed in the literature, e.g.

partial reconfiguration, massive redundancy, error scrubbing

[1]–[3]. As opposed to classical systems based on ASICs and

microprocessors (with fixed logical structure) in FPGAs we

face some additional problems related to configuration faults

which have severe impact on the system operation. Developing

fault detection and fault tolerance techniques we have to

analyze propagation of fault effects taking into account the

specificity of FPGA structures. A special interest is targeted

at transient faults, due to the fact that permanent faults result

in similar effects as in classical fixed logic systems. Transient

faults relate to SEUs (single event upsets) caused by cosmic

radiation, electromagnetic disturbances, power problems, etc.

In the literature we observe a strong interest to analyze

transient fault impact on FPGAs exposed to radiation (e.g.

[4]–[7]). These experiments confirm critical effects at the level

of implemented application within FPGAs. Unfortunately, the

controllability and observability of these experiments is low.

They give only some general view of the problem.

The drawbacks of radiation experiments can be alleviated

in simulation based fault injections. For this purpose we have

developed fault injection scenarios at HDL level. We have

concentrated on SEUs within FPGA configuration memory,

due to the fact that related faults may have significant impact

on the system operation, however the analysis of their effects

is still neglected. Moreover, we concentrate on investigating

these effects in correlation with implemented applications. An

important and original contribution of this paper is tracing

fault effects related to three levels: logical, microprocessor

and application. We take into account microprocessor model

PicoBlaze which is used to run various programs. This is quite

M. Węgrzyn and J. Sosnowski are with the Institute of Computer Science,
Warsaw University of Technology, ul. Nowowiejska 15/19, Warsaw 00-665,
Poland (e-mails: marioweg@o2.pl; jss@ii.pw.edu.pl).

typical model of using FPGAs in many systems (e.g. [3], [8],

[9]), however in practice we can use more sophisticated micro-

processors e.g. Power PC [8] (for many of them configuration

files for FPGAs are available).

Various fault handling techniques have been developed for

classical fixed logic microprocessor systems ([10], [11] and

references therein). We have found that using them directly in

FPGA based microprocessor systems is not so efficient as in

classical fixed logic and some supplementary techniques have

to be added. We deal with this problem in the paper. Another

important issue in fault handling is testing the hardware

platform. FPGAs create here more problems than fixed logic

systems. This results from functional block universality and

a wide scope of configurations. So, complete testing of the

available logical and interconnection resources is cumbersome,

it involves several chip reconfigurations (high time overhead)

including programming various BIST schemes (compare [12]–

[14]). In practice, we are restricted to a single application

implemented on FPGA. Hence, application based testing can

be a reasonable solution [9], [15]–[17]. Checking the effec-

tiveness of such tests we can use fault injection techniques.

The outline of the paper is as follows. Section 2 gives some

general view on fault models and fault injection techniques in

FPGAs. Section 3 describes the developed fault injection envi-

ronment and test scenarios. Experimental results are presented

in section 4. Final conclusions are given in section 5.

II. FAULTS IN FPGAS

SRAM based FPGAs are composed of configurable logic

blocks (CLBs), routing circuitry which connects these blocks

and configuration memory which defines performed functions

of CLBs and their interconnections (performed by switch

boxes and wiring segments). Typically, CLBs comprise some

look up tables, flip-flops and internal routing (e.g. implemented

with multiplexers controlled by the configuration memory).

Look up tables (LUTs) define logical functions (truth table)

of n inputs and m outputs. Sometimes special data RAM mem-

ories and specialized logical blocks (e.g. arithmetic logic) are

included also. The functionality of FPGA is determined by the

configuration memory, its content is programmed externally

by loading appropriate stream of bits. This stream usually is

organized in frames (e.g. 32 bits in Virtex 4). Frames can be

attributed to CLBs, and other programmable components in

FPGA (e.g. switches).

In general, we can distinguish permanent and transient

faults. Permanent faults result from physical damages such

as stuck at faults caused by shorts, opens of connections to

inputs or outputs of logic circuits, etc. Transient faults relate

to temporary disturbances which change the state of logical

components (e.g. flip-flop state change, gate input or output

pulse glitch, RAM cell state change). These disturbances

104 M. WĘGRZYN, J. SOSNOWSKI

can result from electromagnetic interference, power supply

noise, cosmic, artificial and natural radiation (e.g. due to

alpha particles which are emitted by radiating impurities in

the chip packaging materials). There are also intermittent

faults which have the nature of reoccurring transient faults

of short or long duration. In fact, they relate to physical

damages of more subtle nature, e.g. degradation of some

electrical parameters (revealing as logical faults under specific

operational circumstances), crosstalk, etc. Dealing with per-

manent and intermittent faults in FPGAs practically is very

similar to classical fixed logic circuitry [10], [11]. Similarly

we can treat transient faults related to fixed logic components

of FPGAs (e.g. CLBs, data RAMs). The most critical are

transient faults within the configuration memory. These faults

may change the function of FPGA blocks and connections. As

opposed to fixed logic systems many transient fault mitigation

techniques, e.g. based on time or software redundancy are

not effective in the case of configuration faults. FPGAs are

becoming more prone to transient faults due to the increasing

integration density [5], [6]. In most cases they are modeled

as single event upsets. They are more probable in space and

avionics systems exposed to higher level of cosmic radiation,

nevertheless neutron particles present in the atmosphere can

also produce SEUs.

In practice, an important issue is transient fault risk assess-

ment in relevance to configuration memory. For this purpose

various experiments have been performed with artificial and

natural radiation. These experiments have low controllability

and observability, which is important to get a deeper view on

SEUs consequences. Moreover, in practice we deal with FPGA

based systems performing a preprogrammed function (appli-

cation), so it is reasonable to analyze fault effects concerning

this application. Hence, we have developed a test bench for

experiments with fault injection at hardware description level.

In general, FPGA susceptibility to SEUs can be evaluated in

four ways:

1) Exposing a large number of FPGA circuits to cosmic

rays at specified conditions on the earth for a long

time. This approach has been used in Rosetta experi-

ment [4] which assured total testing time in the range

from hundred thousand to millions device hours. FPGA

configuration bit streams were continuously checked by

read out operations (compared with the reference stored

patterns). In this way average failure rates have been

derived for 4200 m above sea level and 550 meters

below ground.

2) Exposing FPGAs to an accelerated neutron flux. Special

expensive equipment is needed here [6], [7], it assures

also specification of particle energies and intensity.

Knowing the space radiation energies and intensity on

the earth or satellite orbits (for different places and alti-

tudes) we can recalculate the operation time in the exper-

iment (with the accelerator) to the equivalent time in the

considered FPGA operation target environment, e.g. [3].

3) Fault emulation in FPGAs. Faults can be emulated

by disturbing configuration bit streams and loading

them through the configuration interface (e.g. JTAG)

to the tested chip and monitoring its behavior. Here,

some supporting equipment is needed (compare [3], [8],

[18]). This can be extended for flip-flops and block

RAMs in more sophisticated fault injectors. In [19]

a more complex fault emulation scheme is integrated

with the modified VHDL source code (additional gates,

multiplexers, wires, etc.) of the analyzed system, this

approach is not useful for the planned experiments with

SEUs in LUTs.

4) Fault injections into FPGA simulators – this approach

has been used in our experiments (section 3).

The first approach gives some general characterization of

FPGA susceptibility to SEUs, which can be a basis of some

scaling adapted to the considered implemented systems (e.g.

taking into account resource usage). Typically, SEU error rate

is specified in FIT units (the number of failures that can occur

in 109 hours) referred to the memory size in bits. In [3], [4],

[20] we have quite interesting results related to radiation at the

level of the earth. They cover not only susceptibility of con-

figuration memory to SEUs but also data RAMs incorporated

in logical units (block RAM memory). Depending upon the

technology (150nm to 65 nm in Virtex5) failure rate for config-

uration memory was in the range 401-151 FIT/Mbs (with 95%

confidence intervals: [367,435]-[101,215]), it decreased with

higher integration densities (however, higher dispersion was

observed over the tested chips here) due to additional new fault

hardening techniques used in these memories. In the case of

data RAM block failure rate was in the range 397-635 FIT/Mb

(with 95% confidence intervals: [317,491]-[428-907]) and it

increased with the integration density. The Rosetta experiment

[4] confirmed that most probable are single bit changes,

multi bit upsets were negligible. Configuration memory is

less susceptible to SEUs than data memory. Moreover, the

susceptibility of flip-flops in CLBs was very low (for Virtex5

approximately 0.06 FIT/Mb). The presented results explain

why in newly developed FPGAs we can encounter ECC codes

combined with configuration frames.

We should be conscious that the probability of SEUs

increases with the altitudes above the sea level, hence it can

be several times higher in the mountains, for airplane flights

the increase can be several hundred times higher, in the space

environment (satellites and other cosmic equipment) this can

be even higher [3]. Moreover, in these cases multi bit upsets

are also more probable.

Experiments of the second type allow us to characterize fault

susceptibility of real applications. In practice, implementing

some application (circuit) over FPGA we do not use all

chip resources, moreover in this case many configuration bits

do not effect this implementation. Hence, the derived fault

susceptibility in experiments of type 2 have to be scaled down

taking into account radiation characteristics of the operational

environment. However, experiments of type 2 can be per-

formed in short time using a single or a few FPGA chips.

This is critical taking into account a wide scope of possible

application’s and implementations.

Experiments of type 3 are more flexible and cheaper, they

can be performed in short time with single FPGA, moreover

the required test environment can be relatively cheap. How-

ever, it is targeted at checking fault susceptibility in relevance

to artificially injected SEUs, so the equivalent fault rate in

FITs needs to be recalculated taking into account overall

TRACING FAULT EFFECTS IN FPGA SYSTEMS 105

SEUs susceptibility of FPGAs (obtained from the first group

of experiments). For this purpose we can use the following

formula to scale the results:

FSA = FSFPGA ∗ CUA ∗NFSA

where FSA and FSFPGA are fault rates in FITs related to

the considered preprogrammed application and overall FPGA

structure (we consider here only configuration memory bits),

CUA is configuration memory usage ratio for the implemented

application, NFSA is natural fault masking of the application

(e.g. algorithm fault tolerance, partial redundancy). CUA re-

lates to the limited usage of logical blocks and potentially

critical configuration bits for the application (compare [3]).

For Virtex 5 (xc5v1x50t) the nominal fault rate is 151 FIT/Mb

and the configuration memory is 11.37 Mb, hence for this chip

FSFPGA = 1717 FIT, which is equivalent to about 66 years

of Mean Time Between Failures (MTBF). FISA relates to

natural fault tolerance of the application. In [3] an application

with dual microprocessors (PicoBlaze) has been considered

which used 82% of chip logical resources and the estimated

critical configuration bits resulted in CUA = 16%. Fault

injection experiment (over 5000 faults injected randomly in

configuration bits) resulted in 4.9% failures, hence FSA = 84

FIT (NFSA was about 30%). Using an error recovery technique

(based on an additional PicoBlaze processor) FSA has been

reduced to 20 FIT [3].

In experiment 3 it is difficult to trace fault effects, moreover

correlation of configuration bits with used functional blocks

is quite complex, so significant number of fault injections

is needed even if the application uses only a small part

of the chip. Deeper fault propagation analysis is useful to

optimize fault mitigation mechanisms. This can be achieved

in experiment 4. Here we can disturb only used resources.

However, a good simulator is needed (e.g. Cadance).

In the literature various error detection, error recovery and

fault tolerance techniques have been proposed for FPGA based

systems. The most complex ones use massive redundancy

e.g. triple modular redundancy, which is very expensive and

acceptable in the case of critical applications ([1], [3], [19]

and references). Targeting at configuration SEUs we can detect

faults by periodical read backs and if needed recoding config-

uration bit stream [21]. This results in high time overhead

unacceptable in many applications. Some FPGAs provide

the capability of partial reconfiguration, which can be used

to optimize this technique. Checking the correctness of the

configuration frames can be done by some external circuitry

or internally by built in checker in FPGA (e.g. based on

some simple microprocessor with self-testing capability). The

latter solution is possible in FPGAs which provide internal

configuration port and embedded ECC codes in the config-

uration frames stored on chip. This is available in Virtex

4 and 5 devices, where ECC code detects double errors,

locates single bit errors. This capabilities can be used to

mitigate SEUs (compare [3], where FSA has been reduced

from 84 FIT to 20 FIT).

In classical fixed logic microprocessor based systems var-

ious software techniques can be used to mitigate SEUs

(e.g. recalculation, checksums, exception handling, software

redundancy [10]). Recently, many applications implemented

in FPGAs are based on embedded (programmed in FPGA)

microprocessors. Hence, arises the problem of checking their

fault robustness in FPGA, as well as checking the effectiveness

of software tests for microprocessors [9]. These techniques can

be targeted at the considered applications to make them more

effective and cheaper. The robustness of these solutions can

be checked in experiments of type 4. In particular, they allow

us to achieve high degree of stressing the tested application

as compared with other experiments.

III. TESTING SCHEMES

The developed experiments are targeted at testing fault

susceptibility of application programs running on a micro-

processor implemented within FPGA. The general idea is to

use appropriate microprocessor simulator which accepts its

specification in HDL language, correlates it with the targeted

FPGA, performs simulations of executing provided programs

(in assembler) and allows analyzing the behavior of the tested

application (e.g. program results) in this environment. These

assumptions are fulfilled by two simulators: Cadence NC

VHDL and Mentor Graphics ModelSim. Fault injection is

performed at microprocessor HDL description level, which

reflects FPGA implementation.

There are available HDL descriptions of soft processors

for FPGA implementation, e.g. PicoBlaze for Xilinx FPGAs

[22]. Their HDL descriptions reflect the FPGA structure in

order to efficiently use the FPGA resources that allow precise

modeling of the faults and their automated fault injection. Each

simulated fault is represented by an appropriate HDL file,

however some additional scripts are needed to perform fault

injection campaigns and analyze their effects in an automatic

way. The faults in an HDL description of the processor are

simulated by modifying the individual functional blocks. For

each functional block a HDL model describing behavior of

SEU-induced faults is developed. The HDL model should

actually reflect the change of configuration as a consequence

of the SEU effect.

In the performed experiments we use PicoBlaze processor

specified in VHDL [22]. The basic VHDL entities (Xilinx

basic primitive subcircuits) in Xilinx PicoBlaze processor core

description are: RAMs, LUTs, multiplexers and flip-flops.

RAM and flip-flop state changes are of a transient nature and

can be modified (i.e. restored to a fault-free value) during

normal system operation. These faults are detected with an

online functional test, specific to the target application and

hence they are not the subject of this investigation. Our goal

is to analyze fault effects in the configuration of the processor

core (in particular, faults in LUTs).

The generation of the fault descriptions was implemented

as a perl script. All the instances of LUTs related to functional

blocks are located (specified) in the VHDL description of

the processor core. For each LUT instance its initialization

parameter is investigated and the list of the initialization

parameters describing all the SEU-induced faults as well as all

the stuck-at faults at the LUT inputs and outputs are generated.

For some LUT instances it is possible that a single bit change

of a LUT content manifests itself as a stuck-at fault. In such

a case a duplicated stuck-at fault description is excluded. In

a similar way the stuck-at faults at the LUT inputs as well as

106 M. WĘGRZYN, J. SOSNOWSKI

a)

move_group_LUT: LUT4

generic map (INIT => X"7400")

port map(I0 => instruction(14),

I1 => instruction(15),

I2 => instruction(16),

I3 => instruction(17),

O => move_group);

b)

Inputs INIT => X"7400" INIT => X"7480"

I2 I1 I0 O(I3=0) O(I3=1) O(I3=0) O(I3=1)

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 1 0 1

0 1 1 0 0 0 0

1 0 0 0 1 0 1

1 0 1 0 1 0 1

1 1 0 0 1 0 1

1 1 1 0 0 1 0

Fig. 1. Fault effect related to the change of one bit (X"7400" → X"7480")
in LUT4: a) VHDL description of fault-free four-input circuit, b) truth tables
for fault free and faulty LUT.

the stuck-at faults at the LUT output can also be modeled by

modifying the contents of the LUT configuration.

An example of a modeled fault is shown in Fig. 1. The

VHDL description of a LUT implementing a circuit generating

an internal processor signal move-group is shown in Fig. 1a

and the corresponding truth table in Fig. 1b. The input signals

I0-I3 relate to the specified bits (in brackets) of the instruction

code (in the instruction register). The implemented logic func-

tion is defined by the initialization parameter (INIT) assumed

as X"7400", i.e. hexadecimal code related to a vector compris-

ing bits of concatenated columns O(I3=1) and O(I3=0). The

most significant bits of O(I3=1) and O(I3=0) bytes relate to

the last row of the table. The SEU-induced fault of a LUT

typically manifests itself as a change of one bit of the LUT,

thus modifying the Boolean function it implements. Let us

assume that the 8th bit of the LUT column O(I3=0) has been

changed (truth table in Fig. 1b with marked false value as bold

underlined 1). This fault can be modeled in VHDL description

changing the initialization parameter (INIT) from X"7400" to

X"7480". Similarly, we can model stuck-at faults on inputs

or outputs. For example a stuck-at-1 fault at input I3 in the

considered LUT is modeled by INIT = X"7474", i.e. column

O(I3=0) assumes the value of column O(I3=1). Stuck-at-1 fault

at output O is modelled by INIT = X"FFFF" (all LUT memory

entries equal to 1).

The considered LUT (LUT4 in VHDL description [22]) in

Fig. 1a relates to the decoder for the control of the program

counter and CALL/RETURN stack. Having analyzed the effect

of the simulated fault (INIT = X"7480") we have found that it

resulted in erroneous decoding of SUB or SUBCY instructions

as RETURN or JUMP with unknown address locations, so the

program did not terminate correctly.

During the fault simulation the generated “faulty” initializa-

tion parameters were applied one by one to the VHDL descrip-

tion of the Xilinx PicoBlaze processor core [22]. A modified

VHDL description is then used by the simulator to run a tested

application (program). Taking into account a large number of

considered faults we use special scripts which automatize the

processes of loading new configuration, running the applica-

tion and storing results. Having injected the specified number

of fault injections we check the results with an additional

script which qualifies fault effects and generates summarized

statistics. It is also possible to trace effects of individual faults

even at the signal levels within selected internal logic circuits,

e.g. an output of some flip-flop. For PicoBlaze processor we

have identified 1804 single bit faults related to used LUTs. The

Xilinx PicoBlaze processor is a small 8-bit microprocessor,

used mainly for training purposes. It has 1K of program space,

16 8-bit registers, 256 input and 256 output ports, a 64-byte

internal scratchpad RAM and a 31-location stack. The original

VHDL description of the processor core consists of about 1500

lines of code.

We needed to modify the original VHDL description to

enable the perl script fault injection. The PicoBlaze hardware

is generated using VHDL loops “for” which create more

instances of the same sub-circuits (most loops replicate 8 times

bit slices of some logical blocks). To make accessible all these

instances to the fault injector, we have “unrolled” all “for”

loops (explicit code blocks embedded in VHDL description).

The unrolled VHDL description results in about 3000 lines of

code. In this way the perl script has direct access to every line

of the hardware description. The fault injection is implemented

by reading line by line this unrolled VHDL description by the

perl script. The script looks for proper strings (description of

INIT parameters) in the code and then changes values of these

parameters. After every change was completed, simulation is

started by the same script.

In the VHDL description we can distinguish 14 modules,

we give functions of these modules, related VHDL description

lines (beyond these lines there are some initialization, com-

ment and control lines) and the number of functional FPGA

elements used in these modules (CLB – logical blocks, LUT

– configuration tables, FF – flip-flops, MUX – multiplexers

and XOR circuits). The presented parameters give some view

on the PicoBlaze microprocessor complexity:

• Basic control unit (lines 305-326); CLB = 1, LUT = 1,

FF = 3

• Interrupt logic (lines 343 to 392); CLB = 2, LUT = 3,

FF = 6

• Decoder for the control of the program counter and

CALL/RETURN stack circuitry (lines 414 to 463);

CLB = 3

• The ZERO and CARRY flags circuitry (lines 479 to 625);

CLB = 6, LUT = 11, FF = 3, MUX = 8, XOR = 3

• The program counter (lines 693 to 944); CLB = 10,

LUT = 20, FF = 10, MUX = 20, XOR = 29

• Register bank and the second operand selection (lines

1208 to 1467); CLB = 5, LUT = 10, FF = 1

• Memory storing function (lines 1493 to 1508); CLB = 5,

LUT = 2, FF = 10

• Logical operations combined with the pipeline stage to

form ALU multiplexer and decoding circuitry (lines 1713

to 1856); CLB = 5, LUT = 9, FF = 8

TRACING FAULT EFFECTS IN FPGA SYSTEMS 107

• Shift and Rotate operations combined with the pipeline

stage (lines 1888 to 2079); CLB = 6, LUT = 11, FF = 9,

MUX = 1

• Arithmetic operations combined with the pipeline stage

(lines 2107 to 2339); CLB = 5, LUT = 9, FF = 8,

MUX = 8, XOR = 8

• Generation of the most significant bit in ALU (lines

2376 to 2396); this function is implemented within the

presented above 3 functional modules related to ALU

• ALU multiplexer (Lines 2418 to 2641); CLB = 9,

LUT = 17, FF = 1, MUX = 1, XOR = 8

• Read and Write strobes (lines 2674 to 2691); CLB = 2,

LUT = 3, FF = 2

• CALL/RETURN stack control (lines 2964 to 3075);

CLB = 6, LUT = 5, FF = 11, MUX = 4, XOR = 5

We have found the need of checking FPGA fault susceptibil-

ity at the application level, which runs on the preprogrammed

processor soft core PicoBlaze. Here, we have to take into ac-

count the fact that the processor resources can be used partially

or in a limited way. Moreover, in this case we may encounter

natural fault masking capability of the application as well as

we can introduce some additional fault tolerance mechanisms

at the software level (compare [10]). For this purpose we have

developed 3 matrix multiplication programs (MM1-MM3).

The basic program MM1 comprises 133 instructions, only 16

different instructions from the PicoBlaze instruction set are

used. The static distribution of the used instructions was as

follows (instruction occurrences in the program are shown in

brackets):

ADD(40), CALL(1), COMPARE(8), FETCH(3),

JUMP[C,NC,Z,NZ](20), RETURN(1), SRA(2), SR0(1),

STORE[kk,(sY)](53), SUB(4), TEST(1).

Program MM2 is an enhanced version of MM1 by adding

control sums in columns and rows of the first and second argu-

ment matrix, respectively. This assures control sums (columns

and rows) in the resulting matrix. MM2 program comprises

226 assembler instructions, using 17 instruction codes from

the processor list with the following distribution:

ADD(53), ADDCY(2), CALL(1), COMPARE(21),

FETCH(16), JUMP[C,NC,Z,NZ](46), RETURN(2), SRA(2),

SR0(1), STORE[kk,(sY)](78), SUB(5), TEST(1).

Program MM3 is an enhanced version of MM2 by adding

exception handling. It comprises 386 instructions, using 21

instruction codes from the processor list with the following

distribution:

ADD(59), ADDCY(4), AND, CALL(1), COMPARE(23),

FETCH(17), JUMP[C,NC,Z,NZ](53), RETURN(2), SRA(2),

SR0(1), STORE[kk,(sY)](85), SUB(5), TEST(2).

The mnemonics of instructions are self-explanatory (com-

pare [22]), please note that JUMP and STORE relate to 4

(different condition tags) and 2 (memory address immediate

or in a register) types of instructions, respectively.

In the performed experiments configuration faults have been

injected at VHDL description level and for each fault the

analyzed program has been executed in the simulator. Fault

impact has been checked at the application level. For this

purpose we have developed a special script which compared

the resulting matrix with the reference correct one and checked

program termination. Fault effects are summarized in Tab. I.

TABLE I
FAULT INJECTION EFFECTS FOR MATRIX MULTIPLICATION.

Program Fault effects Number of
version No result Incorrect result Correct result new faults

MM1 28.62% 21.23% 50.16% 12
MM2 28.62% 21.22% 48.84% 13
MM3 33.11% 19.94% 53.05% 13

We have distinguished 3 classes of fault effects: no result – the

program does not terminate (infinite loop) or does not produce

the resulting matrix, incorrect result – the generated result is

erroneous (typically many result matrix entries are incorrect),

correct result – many injected faults disturb operation of

microprocessor logic blocks which are not used during the

program execution (e.g. related to not used instructions). The

input data for the tested applications assures 100% coverage

of executed instructions in the program.

In [9] the first author checked fault effect propagation for

the developed self-test program of PicoBlaze microprocessor.

This test used up to 256 test vectors and covered over 90%

of injected faults. Each test iteration (related to the specified

initial test vector) involved execution of about 300 processor

instructions. There were 41 hard to detect faults of the first

order, i.e. detected by only one test vector. It was interesting

that the matrix multiplication program allowed us to reveal

(detect) some additional faults (shown in the last column).

Tracing the propagation of these faults in these programs we

could identify the reasons of their masking in the self-test

program. Hence, it was possible to improve some instruction

sequences to cover these faults. We have also noticed that

the considered programs detected 16, 16 and 21 hard to

detect faults, respectively. An interesting issue was that these

3 programs detected almost the same new faults.

It was interesting to compare this with fault effects in the

developed program of matrix multiplication for the fixed logic

microprocessor (compatible with Intel x86) [10]. Here, we

have got more fault detections and corrections due to the

control sums. In particular incorrect results appeared only in

0-1% cases, depending upon fault injections (single bit-flips

in data, registers or program code). Correct results contributed

50-80% in the case of program handling exceptions. The

program handling only checksums assured 30-36% correct

results for faults injected into registers and data area (however

2.1% correct results appeared for faults injected into program

code). This relative high fault robustness (small percentage

of incorrect undetected results) did not appear in FPGA

based microprocessor, due to the fact that configuration faults

introduce more permanent disturbances as opposed to more

transient effects in fixed logic microprocessors. Moreover,

system exceptions in Intel x86 platform are more efficient

than in PicoBlaze. In the FPGA experiment incorrect result

matrices comprised many erroneous entries, quite often these

entries were repeated. Hence, corrections practically were not

possible.

Performing a similar experiment with a simpler application

(calculation of Fibonacci series – about 30 instructions) we

have found over 65% of correct results and no newly detected

fault as compared with the basic testing program.

108 M. WĘGRZYN, J. SOSNOWSKI

The performed experiments confirm that software tech-

niques used to detect or correct errors in fixed microprocessors

are not sufficient to deal with configuration faults in FPGA

based systems. They can mitigate fault effects beyond the

configuration memory, e.g. SEUs effects within data flow,

flip-flops. Hence, we have to use more expensive redundant

systems, doubled microprocessor with comparison [3], [8] or

check periodically the correctness of the configured system

either by a self-test procedure or checking configuration read

backs [3], [14]. Both approaches can be optimized to the

implemented application. Configuration read back can be per-

formed externally (comparison of the whole configuration file

with the reference one or checking its compacted signature)

which is time consuming. In the case of FPGAs with stored

ECC codes for each configuration frame a faster internal

checking can be performed, e.g. internally read back frames

are verified with ECC code checker. Adapting this approach to

the configured application is not trivial due to the difficulty of

localizing and selecting frames related to the used blocks. It

is also worth noting that even in the case of double modular

redundancy checking configuration bits is needed to restore

redundant structure after detection of the faulty processor.

In the opposite case the degraded simplex structure becomes

susceptible to the next fault. In critical applications we can use

more expensive flash based FPGAs, which can be considered

as SEUs resistant.

IV. CONCLUSIONS

In many practical FPGA based systems we should use

SEU mitigation techniques, in particular, they should cover

configuration memory. This is a challenging problem in the

case of microprocessor based systems where SEU effects

from logical level propagate to microprocessor and applica-

tion level. Each of these levels can introduce various fault

barriers, moreover it comprises some natural fault robust-

ness, which is characteristic to the implemented application.

Hence, application oriented evaluation techniques are of great

importance in the case of FPGAs. This is assured in the

developed testing scheme. An interesting result is that some

classical software fault mitigation techniques used in fixed

logic microprocessor systems are not effective in FPGA based

systems. Hence, efficient reconfiguration combined with appli-

cation based microprocessor self-tests is of great importance.

Developing these tests we should also verify them in fault

injection experiments. This technique allowed us to identify

and correct some imperfections in the previously developed

(by the first author) PicoBlaze processor test used in [9]. In

critical problems flash configuration memories can be used.
Further research is targeted at checking various classes

of applications and improving microprocessor tests. We plan

to develop application based tests for programs with more

complex control flow. In particular, we can use here various

structural coverage metrics (compare [23]) to select represen-

tative input data. This can be also combined with structural

and pseudorandom testing schemes [23].

REFERENCES

[1] C. Bolchini, A. Miele, and C. Sandionigi, “TMR and partial dynamic
reconfiguration to mitigate SEU faults in FPGA,” in IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, 2007, pp.
87–95.

[2] F. L. Kastensmidt, L. Carro, and R. Reis, Fault-tolerance techniques for
SRAM-based FPGAs. Springer, 2006, ISBN-10 0-387-31068-1.

[3] U. Legat, A. Biasizzo, and F. Nowak, “On-line self-recovery of embed-
ded multi-processor SOC on FPGA using dynamic partial reconfigura-
tion,” Information Technology and Control, vol. 41, no. 2, pp. 116–124,
2012.

[4] A. Lesea et al., “The rosetta experiment: atmospheric soft error rate
testing in differing technology FPGAs,” IEEE Transactions on Materials
Reliability, September 2005.

[5] “Device Reliability Report,” Xilinx Corporation, November 2013, UG
116 (v. 9.6).

[6] Neutron induced Single Event Upsets FAQ, Microsemi 55800021-
0/8.11, August 2011.

[7] Overview of iRoC Technologies Report, “Radiation results of the SER
tests of Alcatel FPGA,” December 2005, 55900061-0/8.06.

[8] J. S. Monson, M. Wirthlin, and B. Hutchings, “A fault injection analysis
of Linux operating on an FPGA-embedded platform,” International
Journal of Reconfigurable Computing, vol. 2012, p. 11, 2012, Article
ID 850487, doi:10.1155/2012/850487.

[9] M. Wegrzyn, F. Novak, A. Biasizio, and M. Renovell, “Functional
testing of processor cores in FPGA based applications,” Computing and
Informatics, vol. 28, no. 1, pp. 97–113, 2009.

[10] P. Gawkowski and J. Sosnowski, “Software implemented fault detection
and fault tolerance mechanisms, part II,” Electronics and Telecommuni-
cations Quarterly, vol. 51, no. 3, pp. 495–508, 2005.

[11] I. Koren and C. M. Krishna, Fault tolerant systems. Elsevier, Inc.,
2007.

[12] A. R. Pandey and H. J. Patel, “Reconfiguration technique for reducing
test time and test data volume in Illinois Scan Architecture Based
Designs,” in IEEE VLSI Test Symposium, 2002, pp. 9–15.

[13] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian, “Testing the inter-
connect of RAM based FPGAs,” IEEE Design and Test of Computers,
vol. 15, no. 1, pp. 45–50, 1998.

[14] J. Sosnowski and M. Pawłowski, Universal and application dependent
testing of FPGAs, EDCC-2 Companion Workshop on Dependable Com-
puting. AMK Press, 1996, pp. 111–120, ISBN 83-906582-0-8.

[15] M. Rozkovec, J. Jeníček, and O. Novák, “Application dependent FPGA
testing method,” in 13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools, 2010.

[16] J. Sosnowski and M. Pawłowski, “Improving Testability in systems
with FPGAs,” in 22nd Euromicro Conference Beyond 2000: Hard-
ware/Software design Strategies Short Contributions, W. Bob, Ed. IEEE
Computer Society Press, 1996, pp. pp. 236–241, ISBN 0-8186-7703-1.

[17] M. B. Tahoori, E. J. McCluskey, M. Renovell, and P. Faure, “A multi-
configuration strategy for an application dependent testing of FPGAs,”
in 22nd IEEE VLSI Test Symposium, 2004, pp. 154–159.

[18] G. G. Cieslewski, A. D. George, and A. M. Jacobs, “Acceleration
of FPGA fault injection through multi-bit testing,” in Engineering of
Reconfigurable systems and Algorithms, July 2010.

[19] S. Rudrakshi, V. Midasala, and S. N. Bhavanam, “Implementation
of FPGA based fault injection Tool (FITO) for testing fault tolerant
designs,” IACSIT International Journal of Engineering and Technology,
vol. 4, no. 5, pp. 522–526, October 2012.

[20] A. Lesea, Continuing experiments of atmospheric neutron effects on
deep submicron integrated circuits. Xilinx Corporation, October 2011,
WP286.

[21] K. Chapman, SEU strategies for Virtex – 5 devices. Xilinx Corporation,
2010, XAP864 (v.2).

[22] PicoBlaze 8-bit Embedded Microcontroller, “User Guide for
Spartan-3, Virtex-II, andVirtex-II Pro FPGAs,” November 21 2005,
www.xilinx.com, 1-800-255-7778 UG129 (v1.1.1).

[23] J. Sosnowski, “Software-based self-testing of microprocessors,” Journal
of Systems Architecture, vol. 52, pp. 257–271, 2006.

[24] B. Dutton and C. Stroud, “Soft core embedded processor based built-in
self-test of FPGAs,” in 24th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, 2009.

[25] ——, “Built-in self-test of programmable input/output tiles in Virtex-5,
FPGAs,” in IEEE Southeastern Symposium on System Theory, 2009, pp.
235–239.

[26] S. K. Venishetti, A. Akoglu, and R. Kalra, “Huerarchical built-in self-
testing and FPGA based healing methodology for system on chip,” in
IEEE 2nd NASA/ESA Conference on Adaptive Hardware and Systems,
2007.

