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N-Body Potential Interaction as a Cost Function

in the Elastic Model for SANET Cloud Computing
Zenon Chaczko, Germano Resconi, Christopher Chiu, and Shahrazad Aslanzadeh

Abstract—Given a connection graph of entities that send
and receive a flow of data controlled by effort and given the
parameters, the metric tensor is computed that is in the elastic
relational flow to effort. The metric tensor can be represented
by the Hessian of the interaction potential. Now the interaction
potential or cost function can be among two entities: 3 entities or
‘N’ entities and can be separated into two main parts. The first
part is the repulsion potential the entities move further from the
others to obtain minimum cost, the second part is the attraction
potential for which the entities move near to others to obtain the
minimum cost. For Pauli’s model [1], the attraction potential is
a functional set of parameters given from the environment (all
the elements that have an influence in the module can be the
attraction of one entity to another). Now the cost function can
be created in a space of macro-variables or macro-states that
is less of all possible variables. Any macro-variable collect a set
of micro-variables or microstates. Now from the hessian of the
macro-variables, the Hessian is computed of the micro-variables
in the singular points as stable or unstable only by matrix calculus
without any analytical computation – possible when the macro-
states are distant among entities. Trivially, the same method can
be obtained by a general definition of the macro-variable or
macro-states and micro-states or variables. As cloud computing
for Sensor-Actor Networks (SANETS) is based on the bonding
concept for complex interrelated systems; the bond valence or
couple corresponds to the minimum of the interaction potential
V and in the SANET cloud as the minimum cost.

Keywords—Elastic netwrok model, cloud computing, Sensor-
Actor networks, matrix calculus, N-Body interactions, cost func-
tions.

I. INTRODUCTION

S
ENSOR Actor Network (SANET) systems are envisioned

to become the next generation of large-scale, distributed,

ad-hoc and autonomous software intensive systems. These

network systems made of collaborating sensors and actors can

be deployed in the Cloud Computing environments which can

include many ubiquitous, concurrently running applications

often supported by several different infrastructure providers

that collaboratively deliver services to both ad-hoc and sta-

tionary users [2]–[4]. The term Cloud Computing has been

evolving for some time; and on its way it has absorbed several

paradigms that have been used in different situations and

various contexts. This has made it a multi-faceted concept that

takes on various meanings. Essentially, Cloud Computing for

SANETS refers to the software, data or/and computer process-

ing technology made into a service for distributed actors in the
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network [3]–[5]. The ‘cloud’ relates to interconnected actors

in the environment; of which the actors may be networked

computer devices that are organized into individual servers,

clusters of servers, farms of clusters or virtual machines.

Typically, virtualization is performed using some form of

hypervisor technology on which a host operating-system runs

multiple operating environments. A cloud usually is associ-

ated with something intangible, expansive and elastic. These

metaphoric impressions mainly relate to the availability of

resources. However, it is with the term computing is where the

real confusion can actually occur. This is due to the fact that

cloud computing can be perceived and used in various ways

(i.e. as an application, as a platform, a server infrastructure

or as a service delivery mode). The most critical factors that

constitute a barrier to a wider adaptation of cloud computing

is the cost of data transfer, as well as difficulties associated

with accurate measurement of the cost of service usage [3],

[5].

In cloud computing for SANETS, due to non-locale and

multi-tenancy of services and resources, there is a need for

sophisticated mechanisms of service and resource utilization

as well as their metering per user and application on an hourly,

daily, weekly, monthly or yearly basis [3]. Currently there

is a lack of effective mechanisms and tools that deal with

these problems. This paper describes how the elastic network

model [3], [6] concept can be adopted to plan, monitor (meter),

manage and mitigate usage of the cloud computing actors and

services; as seen as a grid of entities where effort control the

flow of the messages in the grid in a best way. The connection

between effort and flow is an ‘N’ ports matrix which form is

given by the oriented connection graph of the entities and of

the edge’s self and mutual weighted couple.

The connection matrix is the Laplacian of the weighted

graph or the Hessian of the interaction potential or cost

function. Any entity (atom) in the cloud computing has a

cost or potential, which value is a function of the conceptual

position of all the other entities as atoms [7]. Now all the

entities (atoms) can be in special states where the cost assumes

the minimum conceptual value. The aim of this paper is to

show that is possible to have an algorithm that computes from

cluster variables. At any cluster of atoms or cloud servers, a

macro-variable is associated as a cost function of this macro-

variable. At the beginning, the stability condition is computed

(minimum cost) for the macro-space of the macro-variables,

after which the stability is computed for all the other variables

of the SANET network.

Now, cloud computing by analogical system in a dynamical

way serves the SANET actor (constraint) in a best possible
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manner with the minimum cost. The elastic network model

approach method [3], [6] to the computation is different

from the Turing machine method, because the solution of the

problem is found without a step-by-step procedural algorithm;

but with a grid of elements (atoms) guided and controlled by

one function (interaction potential or cost function) that the

form is defined by the N-body interaction which is constrained

by the SANET actor’s needs and limitations.

Elasticity and utility are interconnected in the elastic net-

work model of computation, because the entire cloud system

can be activated by external sources (actor). The activation

or actor sources move dynamically throughout the cloud

system to different stable conditions (minimum cost), which

is compatible with the sources and the internal constraints.

Changes in the cloud system grid means a change of the

constraint and change of the interaction cost of the service.

In conclusion, two main parts is identified in cloud computing

[3].

The first is from the interaction potential, bonds, minimum

cost and so forth;

• The second is the actor’s action that can change the

dynamic of the system to move all the states to different

stable points.

At the maximum level, the action by a SANET actor can

activate a more drastic change of the cloud by the changing

of fundamental constraints represented by the interaction po-

tential form. To have a deeper idea of the cloud computing

based on the elasticity model we should be able to view a

metaphorical image of the atoms and macromolecules (pro-

teins) as clouds atomic interaction by one interaction potential,

that can be of two-body or many-body potential interactions

[8]. Many different types of macromolecules compete in a

super-interaction potential to obtain the minimum cost of the

right functionality of the body.

It is argued that the elastic network model can be applied as

a general guide to biology, cloud computing, bio-computing

and other systems that contain interacting entities in a grid

of interactions. Initially, the biological model in the physical

2-body was captured in the Gaussian Network Model (GNM)

that was used to study the dynamics of proteins at the atomic

level [7], [9]. Later the technique was adapted to repre-

sent the amino-acid level interaction system; after which the

Anisotropic Network Model (ANM) and the Elastic Network

Model (ENM) approach was used to study the dynamics of

complex, large scale networks where computer simulations [7]

using detailed all-node models (including atoms, proteins and

elements) are not feasible – due to the exponential complexity

of the system with an increase in size.

II. CONNECTION MATRIX AND HESSIAN MATRIX

A. Laplacian, Green Matrix, Potentials and Flows

Given the graph in Fig. 1, the incidence edges, nodes

Fig. 1. Graph with cloud nodes and oriented edges.

relation matrix M, is done as:

M =

















V1 V2 V3 V4
e1,2 1 −1 0 0
e1,3 1 0 −1 0
e1,4 −1 0 0 1
e2,4 0 1 0 −1
e3,4 0 0 1 −1

















(1)

Now we compute the node, with the node relation as this

way:

MV =













1 −1 0 0
1 0 −1 0
−1 0 0 1
0 1 0 −1
0 0 1 −1





















V1
V2
V3
V4









=













V1 − V2
V1 − V3
V4 − V1
V2 − V4
V3 − V4













(2)

Now we remark that for the two cycles we have the

identities:
{

(V1 − V2) + (V4 − V1) + (V2 − V4) = 0
(V1 − V3) + (V4 − V1) + (V3 − V4) = 0

(3)

Now we transform the identities in equation by the sources:
{

V3 − V1 = E1

V4 − V2 = E2
(4)

and we have the system:
{

(V1 − V2) + (V4 − V1) = E2

(V4 − V1) + (V3 − V4) = E1
(5)

And the solution is:
{

V1 = V3 − E1

V2 = V4 − E2
(6)

In a graphical way, we have the following structure:

Fig. 2. Transformed graph with above-mentioned solution.
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So we have only two free variables that are V3 and V4.

The edge node relation can be reduced into this form:

M =













1 0
1 0
−1 1
0 −1
0 −1













(7)

Now the node-to-node relation is:

N =MTM =

[

3 −1
−1 3

]

(8)

That is the Laplacian of the graph:

Fig. 3. Laplacian of the graph solution.

In Figure 2 the nodes 1 and 4 are the independent nodes;

the others are nodes that connect 1 with 4.

We remark that the sources E1 and E2 are connected with

the flows of the two cycles in this way:
[

f1
f2

]

=
1

8

[

3 −1
−1 3

] [

E1

E2

]

(9)

Now for the flow edge relation we have:

P =

















f1 f2
e1,2 1 0
e1,3 0 1
e1,4 1 1
e2,4 1 0
e3,4 0 1

















(10)

The flow-to-flow matrix is

F = PTP =













1 0
1 0
−1 1
0 −1
0 −1













T 











1 0
1 0
−1 1
0 −1
0 −1













=

[

3 1
1 3

]

(11)

and we have:
[

E1

E2

]

=

[

3 1
1 3

] [

f1
f2

]

(12)

That is the inverse of the previous matrix. The matrix is the

Green function of the Laplacian
[

3 1
1 3

]

(13)

B. Edge Coupling Weight

Given the couple matrix of the edges:

C =













k1,1 k1,2 k1,3 k1,4 k1,5
k2,1 k2,2 k2,3 k2,4 k2,5
k3,1 k3,2 k3,3 k3,4 k3,5
k4,1 k4,2 k4,3 k4,4 k4,5
k5,1 k5,2 k5,3 k5,4 k5,5













(14)

in a graphical way we have:

Fig. 4. Self-weight edge elements.

We have the weight between edge (1,2) and (1,4) that is:

Fig. 5. Couple between edges (1,2) and (1,4).

We can see that the couple is inside a cycle, but the influence

is also the two cycles together. Now given the flowedges

relation we have the 2-port matrix:












1 0
0 1
1 1
1 0
0 1













T 











k1,1 k1,2 k1,3 k1,4 k1,5
k2,1 k2,2 k2,3 k2,4 k2,5
k3,1 k3,2 k3,3 k3,4 k3,5
k4,1 k4,2 k4,3 k4,4 k4,5
k5,1 k5,2 k5,3 k5,4 k5,5

























1 0
0 1
1 1
1 0
0 1













=

=

[

K1,1 K1,2

K2,1 K2,2

]

(15)

where:

K1,1 = k1,1 + k3,3 + k4,4 + (k1,3 + k3,1) + (k3,4 + k4,3)+

+(k1,4 + k4,1)

K1,2 = k1,2+k1,3+k1,5+k3,2+k3,3+k3,4+k4,2+k4,3+k4,5

K2,1 = k2,1+k3,1+k5,1+k2,3+k3,3+k4,3+k2,4+k3,4+k5,4

K2,2 = k2,2 + k3,3 + k5,5 + (k2,3 + k3,2) + (k3,5 + k5,3)+

+(k2,5 + k5,2) (16)

are the weights of the edge coupling elements.
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C. Hessian and Lagrangian

Given the graph:

Fig. 6. Graph with edge-point relation.

we have the edge-to-point relation:

M =

















V1 V2 V3 V4
e1,2 −1 1 0 0
e1,3 −1 0 1 0
e1,4 −1 0 0 1
e2,4 0 −1 0 1
e3,4 0 0 −1 1

















(17)

The Laplacian is:

G =MTM =









3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3









(18)

Lets now establish a connection between the Hessian and

the Laplacian in this way by referring to the Anisotropic

Network Model (ANM) and also the Elastic Network Model

(ENM):

G =









3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3









=

=

























∂2V
∂x2

1

∂2V
∂x1∂x2

∂2V
∂x1∂x3

∂2V
∂x1∂x4

∂2V
∂x2∂x1

∂2V
∂x2

2

∂2V
∂x2∂x3

∂2V
∂x2∂x4

∂2V
∂x3∂x1

∂2V
∂x3∂x2

∂2V
∂x2

3

∂2V
∂x3∂x4

∂2V
∂x4∂x1

∂2V
∂x4∂x2

∂2V
∂x4∂x3

∂2V
∂x2

4

























= Hessian (19)

Now when V is unknown, we can use the previous equation

and thus found the solution for V in this way:

V = 3x21 + 2x22 + 2x23 + 3x24 − 2x1x2 − 2x1x3−

−2x1x4 − 2x2x4 − 2x3x4 (20)

or

V = 3x21 + 2x22 + 2x23 + 3x24 − 2x1x2 − 2x1x3−

−2x1x4 − 2x2x4 − 2x3x4 = (x1 − x2)
2+

+(x1 − x3)
2 + (x1 − x4)

2 + (x2 − x4)
2 + (x3 − x4)

2 (21)

V is a positive definite function (always positive). With the

eigenvalues we compute the stability condition for the four

points or atoms. In this situation we have the eigenvalues:

λ =









0
2
2
4









(22)

The stability of the first point is not defined, though the

other singular points are stable. Now given the potential:

V (R1,2, R1,3, R1,4, R2,4, R3,4) =

= (R1,2 −R0
1,2)

2 + (R1,3 −R0
1,3)

2 + (R1,4 −R0
1,4)

2+

+(R2,4 −R0
2,4)

2 + (R3,4 −R0
3,4)

2 =

= V (x1, y1, z1, . . . , x4, y4, z4) =

= V (q1, q2, . . . , q12) (23)

where q are the general coordinates in the configuration space

and Ri,j are the distance between two points i and j.

For:

R1 = R1,2 −R0
1,2,

R2 = R1,3 −R0
1,3

R3 = R1,4 −R0
1,4

R4 = R2,4 −R0
2,4

R5 = R3,4 −R0
3,4 (24)

we have:

∂V (R1, R2, . . . , R5)

∂x1
=

∂V

∂R1

∂R1

∂x1
+

∂V

∂R2

∂R2

∂x1
+

+
∂V

∂R3

∂R3

∂x1
+

∂V

∂R4

∂R4

∂x1
+

∂V

∂R5

∂R5

∂x1

∂

∂x1

∂V

∂x1
=

∂

∂x1

( ∂V

∂R1

∂R1

∂x1
+

∂V

∂R2

∂R2

∂x1
+

∂V

∂R3

∂R3

∂x1
+

+
∂V

∂R4

∂R4

∂x1
+
∂V

∂R5

∂R5

∂x1

)

=
∂2V

∂R2
1

∂R1

∂x1

∂R1

∂x1
+
∂2V

∂R2
2

∂R2

∂x1

∂R2

∂x1
+

+
∂2V

∂R2
3

∂R3

∂x1

∂R3

∂x1
+
∂2V

∂R2
4

∂R4

∂x1

∂R4

∂x1
+
∂2V

∂R2
5

∂R5

∂x1

∂R5

∂x1
+

+
∂V

∂R1

∂2R1

∂x21
+

∂V

∂R2

∂2R2

∂x21
+

∂V

∂R3

∂2R3

∂x21
+

∂V

∂R4

∂2R4

∂x21
+

+
∂V

∂R5

∂2R5

∂x21
(25)

So the total Hessian for the four points x and the five edges

is:

G =
∂2V

∂qi∂qj
=

∑

h,k

∂2V

∂Rh∂Rk

∂Rh

∂qi

∂Rk

∂qj
+
∑

k

∂2Rk

∂qi∂qj

∂V

∂Rk

+

= JTZJ +H

[

∂V

∂Rk

]

= S + L (26)
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where:

Z =
∂2V

∂Rh∂Rk

,

H =
∂2Rk

∂qi∂qj
,

J =
∂2Rh

∂qi
(27)

Now we can explain the main formula as cluster reduction

computation for the Hessian matrix. Now for the first we

compute the Hessian for the macro-variables R so we have

the macro Hessian:
∂2V

∂Rh∂Rk

(28)

After we can compute the micro-Hessian:

G =
∂2V

∂qi∂qj
(29)

For all the states in q: In the critical points where the

derivatives of the potential are equal to zero we can simplify

a lot the previous expression so the final calculus is:

G =
∂2V

∂qi∂qj
=

∑

h,k

∂2V

∂Rh∂Rk

∂Rh

∂qi

∂Rk

∂qj
= JT

i ZJj = S

(30)

∂V

∂Rk

= 0

where J is the Jacobian of the functions R with the general

coordinates of q. Z is the Hessian of the voltage function

respect to R.

D. Example for a Very Simple Example

Edge matrix for the potential:

V (R1, R2) = R2
1 +R2

2 (31)

where:

R1 = R1,2 −R0
1,2, R2 = R2,1 −R0

2,1 (32)

Now the Z is given by the expression:

Z =
∂V

∂Rh∂Rk

= 2

[

1 0
0 1

]

(33)

and for:

R1 =
√

(x1 − x2)2 + (y1 − y2)2 −R0
1,2

R2 =
√

(x2 − x1)2 + (y2 − y1)2 −R0
2,1 (34)

(next page)
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So for:

J =





∂R1

∂x1

∂R1

∂y1

∂R1

∂x2

∂R1

∂y2

∂R2

∂x1

∂R2

∂y1

∂R2

∂x2

∂R2

∂y2



 =

=







x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2






(35)

S = JTZJ =

= 2



























x1−x2√
(x1−x2)2+(y1−y2)2

x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

x1−x2√

(x1−x2)2+(y1−y2)2
x1−x2√

(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2



























[

1 0
0 1

]







x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

x1−x2√

(x1−x2)2+(y1−y2)2
y1−y2√

(x1−x2)2+(y1−y2)2
x1−x2√

(x1−x2)2+(y1−y2)2
y1−y2√

(x1−x2)2+(y1−y2)2






=

= 4



























(x1−x2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
(x1−x2)

2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(y1−y2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
2(x1−x2)

2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

2(y1−y2)
2

(x1−x2)2+(y1−y2)2



























(36)

and the linear part L is:

L =

























∂2R1

∂x2

1

∂R1

∂x1∂y1

∂R1

∂x1∂x2

∂R1

∂x1∂y2

∂R1

∂y1∂x1

∂2R1

∂y2

1

∂R1

∂y1∂x2

∂R1

∂y1∂y2

∂R1

∂x2∂x1

∂R1

∂x2∂y1

∂2R1

∂x2

2

∂R1

∂x2∂y2

∂R1

∂y2∂x1

∂R1

∂y2∂y1

∂R1

∂y2∂x2

∂2R1

∂y2

2

























∂V

∂R1
+

+

























∂2R2

∂x2

1

∂R2

∂x1∂y1

∂R2

∂x1∂x2

∂R2

∂x1∂y2

∂R2

∂y1∂x1

∂2R2

∂y2

1

∂R2

∂y1∂x2

∂R2

∂y1∂y2

∂R2

∂x2∂x1

∂R2

∂x2∂y1

∂2R2

∂x2

2

∂R2

∂x2∂y2

∂R2

∂y2∂x1

∂R2

∂y2∂y1

∂R2

∂y2∂x2

∂2R2

∂y2

2

























∂V

∂R2
(37)
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When R1 = R2 = R we have:

S = JTZJ =

= 2



























x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√

(x1−x2)2+(y1−y2)2

x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2



























[

x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

x1−x2√
(x1−x2)2+(y1−y2)2

y1−y2√
(x1−x2)2+(y1−y2)2

]

=

= 2



























(x1−x2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
(x1−x2)

2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(y1−y2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
2(x1−x2)

2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

2(y1−y2)
2

(x1−x2)2+(y1−y2)2



























(38)

G =

























∂2V
∂x2

1

∂V
∂x1∂y1

∂V
∂x1∂x2

∂V
∂x1∂y2

∂V
∂y1∂x1

∂2V
∂y2

1

∂V
∂y1∂x2

∂V
∂y1∂y2

∂V
∂x2∂x1

∂V
∂x2∂y1

∂2V
∂x2

2

∂V
∂x2∂y2

∂V
∂y2∂x1

∂V
∂y2∂y1

∂V
∂y2∂x2

∂2V
∂y2

2

























=

= 2



























(x1−x2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
(x1−x2)

2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(y1−y2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2
2(x1−x2)

2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

2(y1−y2)
2

(x1−x2)2+(y1−y2)2



























+

+

























∂2R
∂x2

1

∂R
∂x1∂y1

∂R
∂x1∂x2

∂R
∂x1∂y2

∂R
∂y1∂x1

∂2R
∂y2

1

∂R
∂y1∂x2

∂R
∂y1∂y2

∂R
∂x2∂x1

∂R
∂x2∂y1

∂2R
∂x2

2

∂R
∂x2∂y2

∂R
∂y2∂x1

∂R
∂y2∂y1

∂R
∂y2∂x2

∂2R
∂y2

2

























∂V

∂R
= S + L (39)
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Now we can reduce the previous form to only two-

dimensions, so we have:

G =







∂2V
∂x2

1

∂V
∂x1∂y1

∂V
∂y1∂x1

∂2V
∂y2

1






=

=







(x1−x2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(y1−y2)
2

(x1−x2)2+(y1−y2)2






+

+







∂2R
∂x2

1

∂R
∂x1∂y1

∂R
∂x1∂y1

∂2R
∂y2

1







∂V

∂R
(40)

When ∂V
∂R

= 0, we have:

G =







∂2V
∂x2

1

∂V
∂x1∂y1

∂V
∂y1∂x1

∂2V
∂y2

1






=

=







(x1−x2)
2

(x1−x2)2+(y1−y2)2
(x1−x2)(y1−y2)

(x1−x2)2+(y1−y2)2

(x1−x2)(y1−y2)
(x1−x2)2+(y1−y2)2

(y1−y2)
2

(x1−x2)2+(y1−y2)2






(41)

Now the eigenvalues of G are:

λ1 = R2, λ2 = 0 (42)

And the eigenvectors are:

ψ =





x1−x2

y1−y2

y1−y2

x1−x2

1 1



 (43)

III. CONCLUSION

The development of rapidly mixing Markov chains has

intertwined with advances in randomized approximation al-

gorithms, this also coincided with the recent progress on

expander graphs and eigenvalues which can be found useful

for resolving problems of resource management and task al-

location in distributed cloud computing. Spectral graph theory

typically had applications related to chemistry, physics and

biology, where eigenvalues are associated with the stability

of molecules. Graph spectra issues arise naturally in various

problems of theoretical physics and quantum mechanics (for

instance, in minimizing the energies of Hamiltonian systems).

However, in our research, we try to address not as much

the issues of energy or resource minimalisation but rather to

explore the bounds of the system stability and how movements

in availability/usage of resources affect the entire system (the

elastic Cloud).
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