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larger signals may get considerably compressed, unlike µ-law 
algorithm, it is guaranteed that these signals after companding 
will definitely not be smaller than originally small but 
expanded signals. The more uniform the source signal is, the 
less quantization error and thus a higher signal to noise ratio is 
achieved. 

This paper is organized as follows. In sections 2, µ-law 
algorithm is briefly discussed. Section 3 describes the 
proposed companding algorithm, followed by quantization 
error analysis in Section 4. Section 5 presents the simulation 
results, and finally, conclusion is drawn in Section 6. 

II. µ-LAW 

µ-law is a logarithmic conversion algorithm used in North 
America and Japan that is defined by CCITT G.711. It 
compresses 16−bit linear PCM data down to eight bits of 
logarithmic data. The compressing and expanding functions of 
this algorithm are defined by the following equations, 
respectively. 
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where µ is the compression parameter (µ in the U.S. and 
Japan) and x is the normalized integer to be compressed. 
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III. PROPOSED COMPANDING ALGORITHM 

To compand the signal, more than one function is utilized: 
an exponential function for compressing stage and a 
logarithmic function for expanding. In each exponential 
function, to make the output signal more uniformly distributed, 
a set of companding parameters are properly adjusted. This 
algorithm is described below. 

A. Compression Stage 

To compress the original signal, the whole signal range is 
divided into several subintervals and each set of these subs is 
mapped to a new interval. In this work, we consider 4 
subintervals and assign a different exponential function as a 
compressor function for each subinterval. To do so, the 
following steps are necessary: 

1) �ormalizing signal to [0, 1]: for simplicity, the 

amplitude of original signal is normalized to [0, 1]. 

2) Choosing the range of each subinterval: in this work, 

the whole range of original signal is divided into 4 

subintervals, ),0[ 1r , ),[ 21 rr , ),[ 32 rr , and ]1,[ 3r . 

3) Counting the number of signal data that fall into each 

subinterval. In this step, it is necessary to determine the 

number of data points in each subinterval. Let n1, n2, n3 and 

n4 be the number of data points falling into subintervals 

),0[ 1r , ),[ 21 rr , ),[ 32 rr  and ]1,[ 3r , respectively. The 

percentage of data, pi, that fall in the subinterval i in 

compressed space can be found by 
�

n
p i

i = , where � is the 

total number of signal data points. That is, 
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4) Calculation of compressing function, 

The following functions are employed for compressing 

function, 
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As shown in Fig. 2, in order to map signal data from the 

original space to the compressed space, by applying the 

above function, we shall have, 
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Fig. 2. A schematic of the technique. 
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B. Expansion Stage 

The de-companding function is the inverse function of that 
can be found as, 
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IV. QUANTIZATION ERROR ANALYSIS 

As described in previous section, the original signal is 
mapped to a compressed space in such a way that the number 
of data in each subinterval is proportional to the length of that 
subinterval. By doing so, the compressed signal exhibits a 
uniform distribution and it can be quantized using a uniform 
quantizer. For uniform quantization of a uniform distributed 
signal, since the quantization error is also uniform over each 
quantization interval, we have, 
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where 2

qσ  is the mean square quantization error, ∆ is the 

length of quantization interval, xmax is the maximum signal 
amplitude level, and M is the number of quantization levels. 

In general, it can be shown that the mean square 
quantization error is obtained by [7], [8], 
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where 2
xσ  is the variance of the signal, and C’(x) is the 

derivative of the companding function with respect to x. 
For the µ-law companding, α is close to the companding 

parameter µ which is typical equal to 255. Assuming that the 
number of quantization level, M is 256, Eq. (6) becomes, 
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V. SIMULATION RESULTS 

To verify the performance of the proposed technique in 
terms of quantization error, which is given in Eq. (5) and 
computation efficiency given in CPU time, we used both 
synthetic and real data as source signals. In the case where 
synthetic data are used for verification, we generated 4000 
random numbers with a Gaussian distribution; for real data 

verification, we constructed an audio signal using MATLAB 
audio recording command (Fig. 3). The amplitude of the 
signals are normalized into [0, 1], and the whole dynamic 
range is divided into 128 (7 bits) and 256 (8 bits) quantization 
levels, respectively. 

From Tables 1 and 2, it can be seen that in terms of 
quantization error, in good agreement with the theoretical 
analyses shown in Section 4, the proposed companing 
algorithm shows less quantization errors than that obtained 
from µ-law at a modest increase of computation cost. It is also 

seen that the proposed algorithm would require smaller 
number of code words for the same quantization error level 
than when µ-law is applied. 

 

VI. CONCLUSIONS 

In this work, quantization error in companding techniques 
due to non-uniformly distributed companded signal was 
investigated. To address this problem, a new algorithm that 
uses multi-exponential companding was proposed, and it was 
verified using real data. The results showed that the proposed 
technique has a few distinct advantages: it has lower 
quantization error than popular µ-law, or it needs smaller 
number of code words for the same quantization error than that 
of the case when µ-law is applied. These advantages are 
achieved at a cost of a slight increase in computation 
requirement, which is less of a concern, given modern fast 
computing platforms. 
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Fig. 3. A real audio signal for data processing. 

  

TABLE I 

RESULTS FOR SYNTHETIC DATA 

Criteria 
No 

Companding 
µ-law 

Multi-
Exponential 

Theoretical 
Results 

Quantization 
Error 

8 Bits 0.00018 0.00010 0.00006 0.00005 
7 Bits 0.00034 0.00019 0.00010 0.00008 

Relative CPU Time 1 1.06 1.92 --- 

 

TABLE II 

RESULTS FOR REAL DATA 

Criteria 
No 

Companding 
µ-law 

Multi-
Exponential 

Theoretical 
Results 

Quantization 
Error 

8 Bits 0.00098 0.00075 0.00042 0.00035 
7 Bits 0.00190 0.00140 0.00110 0.00088 

Relative CPU Time 1 1.07 2 --- 
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