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A Novel Multi-Exponential Function-based
Companding Technique for Uniform Signal
Compression over Channels with Limited
Dynamic Range

Taleb Moazzeni, Henry Selvaraj, and Yingtao Jiang

Abstract—Companding, as a variant of audio level
compression, can help reduce the dynamic range of an audio
signal. In analog (digital) systems, this can increase the signal-to-
noise ratio (signal to quantization noise ratio) achieved during
transmission. The p-law algorithm that is primarily used in the
digital telecommunication systems of North America and Japan,
adapts a companding scheme that can expand small signals and
compress large signals especially at the presence of high peak
signals. In this paper, we present a novel multi-exponential
companding function that can achieve more uniform compression
on both large and small signals so that the relative signal strength
over the time is preserved. That is, although larger signals may
get considerably compressed, unlike p-law algorithm, it is
guaranteed that these signals after companding will definitely not
be smaller than expanded signals that were originally small.
Performance of the proposed algorithm is compared with p-law
using real audio signal, and results show that the proposed
companding algorithm can achieve much smaller quantization
errors with a modest increase in computation time.

Keywords—Companding, multi-exponential function, Mu-law,
quantization, uniform signal compression.

I. INTRODUCTION

OMPANDING is a common technique for reducing the

data rate of audio signals by making the quantization
levels unequal. If the quantization levels are equally spaced,
12 bits must be used to obtain telephone quality speech.
However, only 8 bits are required if the quantization levels are
made unequal, matching the characteristics of human hearing
[12]. This can be carried out by an operation called
companding [9], [3]. In this way, the signal levels need to be
very close together for smaller signals, whereas a larger
spacing is often needed for larger signals. However, since the
companded signal is not uniformly distributed, this leads to
increased quantization errors [7].

One direct solution to reduce quantization error is to
increase the number of quantization intervals. This would
require the number of code words to be increased in
proportion to the number of quantization intervals, resulting in
increased system capacity and thus a higher cost [11].

Currently, two nearly identical standards are used for
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companding signals: u-law in North America and Japan and A-
law in Europe [11]. Although u-law, similar to A-law,
improves voice quality at lower signal levels compared to
uniform quantization as in uniform PCM, this technique
focuses on enlarging small signals and does not change high
signal peaks, which leads to a higher average power level of
output signals [1], [2], [10]. As shown in Fig. 1, the first peak
(between sample intervals 1 and 2 in Fig. 1) is not compressed
when p-law technique is applied. To combat this problem,
several nonlinear companding transform techniques have been
proposed in the literature [1], [4], [S], [6], [10]. However,
comparing the original signals, the compressed signals have a
larger average power level and still exhibit nonuniform
distributions [2], [5], as exemplified in a case also shown in
Fig. 1. Although this technique is successful in compressing a
large peak (sample interval between 1 and 2 in Fig. 1) and also
expanding the smaller peaks, the average amplitude level is
enlarged at the same time. This problem was addressed in [2]
by employing an exponential companding technique. This
technique is shown to be capable of adjusting the amplitudes
of both large and small input signals while leaving the average
power unchanged, but it can be effective only if the original
signals are Gaussian-distributed in nature, which may not be
the case in real applications.
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Fig. 1. Signal amplitude vs time for (i) original signal, (ii) x-law companded
signal, and (ii) exponential companded signal.

In this paper, we present a non-signal structure based
technique, herein referred to as “multi-exponential
companding”, which can achieve more uniform compressions
on both large and small signals so that the relative signal
strength over the time is still preserved. That is, although
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larger signals may get considerably compressed, unlike p-law percentage of data, p;, that fall in the subinterval i in
algorithm, it is guaranteed that these signals after compandin, n .
w?ll definitely gnot be smaller thang originally smpall bu% compressed space can be found by pi= N’ » where N'is the
expanded signals. The more uniform the source signal is, the total number of signal data points. That is
less quantization error and thus a higher signal to noise ratio is ' ’
achieved.

This paper is organized as follows. In sections 2, p-law [0,7)— p,
algorithm is briefly discussed. Section 3 describes the [1.1) = P,
proposed companding algorithm, followed by quantization [75,7) = Py
error analysis in Section 4. Section 5 presents the simulation 1] = p
results, and finally, conclusion is drawn in Section 6. » 4

4) Calculation of compressing function,
1L p-Law The following functions are employed for compressing

u-law is a logarithmic conversion algorithm used in North function,
America and Japan that is defined by CCITT G.711. It
compresses 16—bit linear PCM data down to eight bits of 1-b, exp(al\x\) ()g‘x‘<rl
logarithmic data. The compressing and expanding functions of
this algorithm are defined by the following equations, F(x)= by exp(ay|)) n<p<n 3
respectively. by exp(a;|x]) <<

b, exp(a4‘x‘) r < ‘x‘ <1

n(l + ,u‘x‘)

F(x):sgn(x)l -1<x<1 ()

In(1+ u)

where u is the compression parameter (¢ in the U.S. and
Japan) and x is the normalized integer to be compressed.

F(y) =sgn(y)(1/ ,u)[(l +p1)! —1] ~1<y<l1 )

III. PROPOSED COMPANDING ALGORITHM

To compand the signal, more than one function is utilized:
an exponential function for compressing stage and a
logarithmic function for expanding. In each exponential
function, to make the output signal more uniformly distributed,
a set of companding parameters are properly adjusted. This
algorithm is described below.

A. Compression Stage

To compress the original signal, the whole signal range is
divided into several subintervals and each set of these subs is
mapped to a new interval. In this work, we consider 4
subintervals and assign a different exponential function as a
compressor function for each subinterval. To do so, the
following steps are necessary:

1) Normalizing signal to [0, 1]: for simplicity, the
amplitude of original signal is normalized to [0, 1].

2) Choosing the range of each subinterval: in this work,
the whole range of original signal is divided into 4

subintervals, [0,n) 5 [,7,) 5 [1,7) ,and [r,1] -

3) Counting the number of signal data that fall into each
subinterval. In this step, it is necessary to determine the
number of data points in each subinterval. Let n;, n,, n; and
n4 be the number of data points falling into subintervals
[0,7) , [1,r) » [ry,1;) and [r,1] , respectively. The

As shown in Fig. 2, in order to map signal data from the
original space to the compressed space, by applying the
above function, we shall have,

alzlln(l—pl)’ biissetto 1,
i
1 7’2 b _ _
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Fig. 2. A schematic of the technique.
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B. Expansion Stage

The de-companding function is the inverse function of that
can be found as,

1
—In(1-|y) 0<y<p,
a

1
a*ln(%) p s ‘y‘ <p, “

Fro=1] ‘;‘

—In(:) P <P <ps
a, b,

1
Ly p s
a, b,

IV. QUANTIZATION ERROR ANALYSIS

As described in previous section, the original signal is
mapped to a compressed space in such a way that the number
of data in each subinterval is proportional to the length of that
subinterval. By doing so, the compressed signal exhibits a
uniform distribution and it can be quantized using a uniform
quantizer. For uniform quantization of a uniform distributed
signal, since the quantization error is also uniform over each
quantization interval, we have,

1 +A/2

N 1 2x (X, )
2 2 ax \2 ;
o =— dg = — = — (=-max)2 _ Zmax/ (5)
NI R AT 12( M ) M2

where 0'; is the mean square quantization error, A is the

length of quantization interval, x,, is the maximum signal
amplitude level, and M is the number of quantization levels.

In general, it can be shown that the mean square
quantization error is obtained by [7], [8],

2 2
R ©)
xmax
a= .
‘x‘C (%)

where o2 is the variance of the signal, and C’(x) is the
derivative of the companding function with respect to x.

For the p-law companding, a is close to the companding
parameter ¢ which is typical equal to 255. Assuming that the
number of quantization level, M is 256, Eq. (6) becomes,

o= (N

2
Since o7 > [XA“;] , from Egs. (5), (7), one can arrive at

®)

V. SIMULATION RESULTS

To verify the performance of the proposed technique in
terms of quantization error, which is given in Eq. (5) and
computation efficiency given in CPU time, we used both
synthetic and real data as source signals. In the case where
synthetic data are used for verification, we generated 4000
random numbers with a Gaussian distribution; for real data

verification, we constructed an audio signal using MATLAB
audio recording command (Fig. 3). The amplitude of the
signals are normalized into [0, 1], and the whole dynamic
range is divided into 128 (7 bits) and 256 (8 bits) quantization
levels, respectively.

From Tables 1 and 2, it can be seen that in terms of
quantization error, in good agreement with the theoretical
analyses shown in Section 4, the proposed companing
algorithm shows less quantization errors than that obtained
from u-law at a modest increase of computation cost. It is also
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Fig. 3. A real audio signal for data processing.
TABLE 1
RESULTS FOR SYNTHETIC DATA
Criteria No law Multi- Theoretical
Companding # Exponential Results
Quantization 8 Bits  0.00018 0.00010 0.00006 0.00005
Error 7 Bits  0.00034 0.00019 0.00010 0.00008
Relative CPU Time 1 1.06 1.92 -—-
TABLE I
RESULTS FOR REAL DATA
Criteria No Jaw Multi- Theoretical
Companding # Exponential Results
Quantization 8 Bits  0.00098 0.00075 0.00042 0.00035
Error 7 Bits  0.00190 0.00140 0.00110 0.00088
Relative CPU Time 1 1.07 2 ---

seen that the proposed algorithm would require smaller
number of code words for the same quantization error level
than when u-law is applied.

VI. CONCLUSIONS

In this work, quantization error in companding techniques
due to non-uniformly distributed companded signal was
investigated. To address this problem, a new algorithm that
uses multi-exponential companding was proposed, and it was
verified using real data. The results showed that the proposed
technique has a few distinct advantages: it has lower
quantization error than popular u-law, or it needs smaller
number of code words for the same quantization error than that
of the case when p-law is applied. These advantages are
achieved at a cost of a slight increase in computation
requirement, which is less of a concern, given modern fast
computing platforms.
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