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A MODEL FOR ABNORMAL GRAIN GROWTH IN NANO-CRYSTALLINE MATERIALS BASED ON ZENER DRAG FORCE

MODEL NIEPRAWIDŁOWEGO WZROSTU ZIARNA W MATERIAŁACH NANOKRYSTALICZNYCH OPARTY
O SIŁĘ PĘDNĄ ZENERA

Abnormal grain growth of a matrix in which normal grain growth has stagnated due to the presence of fine incoherent
ceramic particles is studied. A balance between driving and retarding forces is used as the criteria for estimating the steady
state. Random and non-random approaches are applied for coarse and nano-grained structure respectively.
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Badano nieprawidłowy wzrost ziaren w materiale, w którym prawidłowy wzrost ziaren został zahamowany z powodu
obecności drobnych cząsteczek ceramicznych. Równowaga pomiędzy siłami pędną i opóżniającą zostały przyjęte jako kryte-
rium oszacowania stanu równowagi. Zastosowano przypadkowe i nieprzypadkowe podejście odpowiednio do struktury grubo
i drobnoziarnistej.

1. Introduction

Nanocrystalline materials are thermodynamically
unstable due to the presence of a large fraction of in-
terface boundaries. Accordingly, abnormal grain growth
is observed in the case of various nanostructured mate-
rials [1-10]. Stabilization of the fine grained structures
is of critical importance for retaining their unique prop-
erties [11-13]. There are several mechanisms that are
responsible for the enhanced thermal stability against
grain growth [14, 15]: (a) solute drag, (b) grain boundary
segregation, (c) Zener pinning by fine ceramic particles
and (d) chemical ordering. In the case of Zener pining,
however, abnormal grain growth can be expected when
the normal grain growth is prevented by the secondary
phase particles. This could be due to: 1) a decrease in the
Zener back stress because of a reduction in the number
of particles (either by dissolution or Ostwald ripening)
[16], 2) anisotropy in grain boundary energy [17] and
3) a broad distribution size of the grains in which nor-
mal growth stagnated because of the presence of a low
volume fraction of the ceramic particles [18].

The present model concerns the latter case, assum-
ing that grains are spherical and growing in the presence
of incoherent stable ceramic particles. The only driving

force considered is the reduction of total grain boundary
energy. Random and non-random approaches are used
for the interaction of particles with boundaries in the
case of coarse and nano-grained matrix respectively.

2. Coarse grained materials-Random Approach

First one should define retarding and driving forces
applied on a unit surface of grain boundary in a matrix
with a uniform distribution of second phase particles.
The driving force is arisen from the presence of grain
boundaries with surface energy of γ. The number of
grains in a unit volume of a material of an average grain
size of Di is obtained by

n =
1
πD3

i
6

(1)

Considering the surface of each grain is shared between
two grains, the total grain boundary area per unit volume
would be

Sv ≈ 0.5n × πD2
i =

3
Di

(2)

Thus the driving pressure for abnormal growth is

Pd =
3γ
Di

(3)
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This is opposed by two forces; drag from the distribu-
tion of particles Pp, and effect of the finite size of the
abnormally growing grain(s) Pa.

For a volume fraction fV of randomly distributed
spherical particles of radius r, the number of particle
per unit volume (Nv) is given by

NV =
3 fV
4πr3 (4)

The number of particles intersecting an unit area of
boundary is then

Ns = 2rNV =
3 fV
2πr2 (5)

The drag pressure caused by the randomly distributed
particles on unit area of the boundary is given by

Pp(r) = F · NS (6)

where F is the maximum restraining force of a particle
intersecting a grain boundary of specific energy γ [19].

F = πrγ (7)

and hence
PP(r) =

3 fVγ
2r

(8)

The retarding force due to the radius of curvature of the
abnormal grain(s) Pa is given by

Pa =
2cγ
Da

(9)

where Da is the radius of curvature of the abnormal grain
and c is a constant taken as 2 [20].

The condition under which a very large grain will
grow is

Pd > Pa + Pp(r) =>
3γ
Di
>

2cγ
Da

+
3 fvγ
2r

(10)

The above analysis can be modified to take into account
n abnormally growing grains which each one reduces
the total driving force for growth, thus

3
(
1 − nπD3

a
6

)

Di
− 3 fV

2r
− 2C

Da
> 0 (11)

In the case of a matrix in which the normal grain growth
stagnates due to the particle pinning, the limited grain
size is obtained via an equilibrium between Pp and
driving force for normal growth, thus

3 fvγ
2r

=
2aγ
Di

=> Di =
4ar
3 fv

(12)

where α = 0.375 is a geometrical constant [20].

Inserting Di in Eq. 11 one finds

0.5nπD4
a + (2α − 3) Da +

16αr
3 fv
> 0 (13)

This equation shows that in a given r and fv, abnormal
growth would take place only if the value of Da results
in positive values of Eq. 13. There are four answers to
Eq. 13, two imaginary and two real answers among those
the latter can be considered as the limits of the start and
stagnation of the abnormal grain growth(s).

Using a defect model, Hillert found that initiation
of abnormal grain growth vastly depends on the distrib-
ution of grain size in a matrix, in a way that abnormal
growth seems unlikely in a matrix consisted of grains of
the same size [16]. Indeed, the presence of one or more
grains larger than a critical size (Dac) is the essential
criteria for abnormal growth. The first answer of Eq.
13 yields the critical grain size under which abnormal
growth of a grain is impossible.

Eq. 13 was solved by MATLAB software for
10<r <90nm and 0.001<fv <0.22. X = Dac/Di can be
used as a criteria for estimating the condition under
which abnormal growth is initiated. Since the presence
of a grain much larger than the average grain size is
unlikely, the larger X, the less the probability of abnor-
mal growth is expected. The results of solution of Eq.
13 show that X=1.78 and it is independent of r and fv
values. Moreover at the initial stages, since the number
of abnormally growing grains has no effect on both the
retarding and driving forces, the value of X is indepen-
dent of n.

To the best of our knowledge, this is an unsatis-
factory result. The higher volume fraction of particles
should reduce the probability of abnormal growth [16,
18, 21, 22]. This unfair result may caused from the as-
sumption that considers that interaction of particles with
boundaries is purely random. Several studies, experimen-
tally [23, 24] or theoretically [25-29], have shown that
the number of particles correlating with boundaries is
much higher than the value estimated using a random
approach. The assumption of a random distribution of
precipitates at grain boundaries does not seem to be rep-
resentative of the real materials.

Accordingly the random approach should complete-
ly be revised. The non-random approach is exactly the
case when nanostructured matrixes are studied.

3. Nano grained materials-Non-Random Approach

From a statistical point of view, interaction of grain
boundary-particles in a nanostructured matrix is differ-
ent from that of a coarse grain one (Fig. 1). Even for a
distribution of nano-particles in a nano-grained matrix,
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one must consider that approximately all particles are in
contact with boundaries (Fig. 1-b). It is reasonable to
assume that all particles lie not only on boundaries, but
at vertices in the grain structure, because in these posi-
tions the particles, by removing the maximum boundary
area, minimize the energy of system.

This represents a situation in which all particles are
on boundary corners but not all the boundary corners are
occupied by particles, and thus the growth will actually
continue until all grain corners are pinned (Fig. 1-c).

When studying grain growth in a dispersion of Fe3C
particles in Fe matrix, Helman and Hillert found that
most of the particles where situated in the grain corners
at the inhibited grain growth status [24]. Using the esti-
mation of Hillert [30], there are 24 grain corners in each
grain but each corner is shared between 4 grains. There
would thus be enough particles to fill all the grain cor-
ners in a material if there are on the average 6 particles
per grain volume, thus

Fig. 1. Correlation of boundary-particles in a) random approach for coarse grained materials, b) non-random approach for nano-crystalline
materials, c) stagnant of non-random approach predicted by Hillert [28] and d) abnormal growth in a nano-grained matrix
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NV

ND
= 6⇒ D

r
=

β

f 1/3
V

(14)

where ß = 3.6.
Computer simulation of Hazzledine [26] and An-

derson [31] resulted in relationships similar to Eq. 14
only with a slightly different ß value. Considering the
interaction mode of particle-boundary in the nanocrys-
talline materials, it seems reasonable to use Eq. 14 for
estimation of limiting grain size in a normal grain growth
state.

The retarding force in a non-random distribution of
particles is different from that of a random one. Con-
sidering that all the particles are in contact with grain
boundaries, the number of particles per unit area of sur-
face (ns) would be obtained by

ns =
Nv

Sv
=

fvD
4πr2 (15)

For a nanostructured matrix in which stagnant occurs
due to the presence of particles, D is obtained by Eq.
14, thus

ns =
3.6 f

2
3

v

4πr2 (16)

The drag pressure caused by the presence of
non-randomly distributed particles in a unit area is then

Pp(nr) = F × ns =
0.9 f

2
3

v

r
γ (17)

Accordingly one can rewrite Eq. 11 in the case of
non-random distribution approach.

3
(
1 − nπD3

a
6

)

D
− 0.9 f

2
3

v

r
− 2c

Da
> 0 (18)

Inserting D in Eq. 18 one finds


nπ f

1
3

v

7.2r

 D4
a +


0.9 f

2
3

v

r
− f

1
3

v

1.2r

 Da + 4 > 0 (19)

Hunderi calculated that interaction of particles with
various position of a boundary induces different pres-
sures. While obtaining Eq. 19, however, the drag pres-
sure caused by the presence of particles at grain bound-
aries, triple lines and quadruples are assumed to be iden-
tical.

Results of solution of Eq. 19 give us a critical grain
size under which the growth of an abnormal grain is
impossible. As mentioned above, X = Dac/Di can be
used as a criteria for estimating the condition in which
abnormal growth is initiated. Fig. 2 shows that r has
no effect on X, but increase in fv results in larger X
values. This means that as fv increases the probability of
abnormal growth decreases, in a way that for an uniform
distribution of grain size with fv larger than 0.03, occur-
rence of abnormal growth seems impossible irrespective
to the particle size. The effect of fv on the initiation of
abnormal grain growth is an unanimous opinion, but it
needs a more precise study in the case of the effect of r.

Fig. 2. Effect of volume fraction of nano-particles on X (Dac/Di) in a non-random approach
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Considering special grain boundary locations such
as quadruple points, Y. Brechet et al also found that r has
no effect on the initiation of abnormal grain growth [32].
However the study of Al2O3/SiC nanocomposites from
the point of view of abnormal grain growth occurrence
shows that a maximum particle size limit exists [33].

After the initiation of abnormal growth, driving
force becomes smaller as larger amounts of the vol-
ume of matrix are consumed by the abnormally growing
grains. It would stagnate when the driving force arisen
from the presence of nano-grained matrix equals the re-
tarding force caused by particles in addition to the effect
of curvature.

For an extremely large abnormal grain that is grow-
ing within a nanostructured matrix, the assumption that
all the particles are in contact with boundaries seems
unsatisfactory (Fig1-d). Accordingly in Eq. 18, the term
that represents the drag pressure due to a non-random
correlation of boundary-particles (0.9 f 2/3

v
r ) must be re-

placed by a random one ( 3 fvγ
2r ). Nevertheless the driving

force resulted from the presence of grain boundaries is

obtained by the term


3
(
1− nπD3

a
6

)

D

, in which D =
β×r
f

1
3

v

. This

changes Eq. 19 to


nπ f

1
3

v

7.2r

 D4
a +


3 fv
2r
− f

1
3

v

1.2r

 Da + 4 > 0 (20)

Fig. 3 shows that final size of abnormal grains reduces as
fv or n increases but r has no effect on it. As n increases,
the driving force would be divided into a larger number
of abnormal grains. Meanwhile the retarding forces re-
main constant, thus the larger n, the smaller the final
abnormal grains would be obtained.

Using a defect model, Hillert also found that in-
crease of fv decreases the probability of abnormal
growth. Our model shows that the final size does depend
on n and the volume fraction of particles.

Fig. 3. Effect of volume fraction of nano-particles on the final size of abnormally growing grains
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Fig. 4. Effect of volume fraction of nano-particles on the ratio of abnormal grains to the total volume (Va/VT )

Moreover the volume percentage of the matrix
which is consumed by the abnormal grains rarely reaches
100%. Fig. 4 shows that as fv increases, the fraction of
volume which is absorbed by the abnormal grains re-
duces. It can be confirmed by the study of A. Simchi et
al which shows that as a function of annealing time in a
given temperature, volume fraction of abnormal grains in
Cu–2.7 vol.% Al2O3 reaches a steady state below 100%
[2]. G.D. Hibbard et al in a similar way found that in
the case of Ni-Co alloys [34], ”for a given set of an-
nealing conditions the volume fraction of nanocrystalline
matrix consumed by the abnormally growing grains de-
creases with increasing Co concentration”. In this case
quantity of impurity drag can be considered the same as
the amount of particle drag. They also found that some
embedding nano-grains remain in an abnormally grown
Ni-Fe structure [5].

4. Conclusion

A model based on non-random distribution of parti-
cles was used to investigate the initiation and stagnation
of abnormal grain growth within a nanocrystalline ma-
trix. Results show that for a uniform distribution of grain
size, abnormal growth can only be initiated at a very low

fv. The final size of abnormal grains and their volume
fraction decrease with fv.
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Unraveling the nature of room temperature grain
growth in nanocrystalline materials, Acta Materialia 56,
4255-4266 (2008).

[5] G.D. H i b b a r d, J.L. M c C r e a, G. P a l u m b o,
K.T. A u s t, U. E r b, An initial analysis of mecha-
nisms leading to late stage abnormal grain growth in
nanocrystalline Ni, Scripta Materialia 47, 83-87 (2002).



85

[6] F. E b r a h i m i, H. L i, Grain growth in electrodeposit-
ed nanocrystalline fcc Ni-Fe alloys, Scripta Materialia
55, 263-266 (2006).

[7] U. K l e m e n t, M.D. S i l v a, Individual grain orien-
tations and texture development of nanocrystalline elec-
trodeposits showing abnormal grain growth, Journal of
Alloys and Compounds 434-435, 714-717 (2007).

[8] G.J. F a n, L.F. F u, H. C h o o, P.K. L i a w, N.D.
B r o w n i n g, Uniaxial tensile plastic deformation and
grain growth of bulk nanocrystalline alloys, Acta Mate-
rialia 54, 4781-4792 (2006).

[9] D.-Y. Ya n g, S.-J.L. K a n g, Suppression of abnor-
mal grain growth in WC-Co via pre-sintering treatment,
Int. Journal of Refractory Metals & Hard Materials 27,
90-94 (2009).

[10] K. H a t t a r, D.M. F o l l s t a e d t, J.A. K n a p p, I.M.
R o b e r t s o n, Defect structures created during abnor-
mal grain growth in pulsed-laser deposited nickel, Acta
Materialia 56, 794-801 (2008).

[11] S.S. R a z a v i - T o u s i, M.B. R a h a e i, M.S.
A b d i, S.K. S a d r n e z h a a d, Stabilization of
nanostructured materials using fine inert ceramic
particles, Ceramic International. Article in Press,
doi:10.1016/j.ceramint.2009.09.018 (2009).

[12] S.S. R a z a v i - T o u s i, R. Y a z d a n i - R a d, E.
S a l a h i, M. R a z a v i, Effect of milling time and ad-
dition of alumina powder on the structural properties and
fracture surface of nanocrystalline Al, Materials Science
Poland 27, 875-884 (2009).

[13] S.S. R a z a v i - T o u s i, R. Y a z d a n i - R a d, E.
S a l a h i, I. M o b a s h e r p o u r, M. R a z a v i, Pro-
duction of Al-20 wt.% Al2O3 composite powder using
high energy milling, Powder Technology 192, 346-351
(2009).

[14] S.C. T j o n g, H. C h e n, Nanocrystalline materials and
coatings, Materials Science and Engineering R 45, 1-88
(2004).

[15] O. G r o n g, H.R. S h e r c l i f f, Microstructural mod-
eling in metals processing, Progress in Material Science
24, 163-282 (2002).

[16] M. H i l l e r t, On the theory of normal and abnormal
grain growth, Acta Materialia 13, 227-238 (1965).

[17] A. R o l l e t t, D. S r o l o v i t z, M. A n d e r s o n,
Acta Materialia 37, 1227 (1989).

[18] O. H u n d e r i, N. R y u m, Computer simulation
of stagnation in grain growth, Acta Materialia 29,
1737-1745 (1981).

[19] C.S. S m i t h, Grains, phases and interfaces: an in-
terpretation of microstructure, TRANS. Metall. Soc.
A.I.M.E. 175, 15 (1948).

[20] F.J. H u m p h r e y s, M. H a t h e r l y, Recrystalliza-
tion and related phenomena: Pergamon 1995.

[21] A. R o l l e t t, D. S r o l o v i t z, M. A n d e r -

s o n, R.D. D o h e r t y, Computer simulation of
recrystalilzation-III. Influence of a dispersion of fine par-
ticles, Acta Materialia 40, 3475-3495 (1992).

[22] V.Y. N o v i k o v, Microstructure stabilization in bulk
nanocrystalline materials: Analytical approach and nu-
merical modeling, Materials Letters 62, 3748-3750
(2008).

[23] L. A n a n d, J. G u r l a n d, The relationship between
the size of cementite particles and the subgrain size in
quenched-and-tempered steel, Metallurgical Transaction
A 6, 928-931 (1975).

[24] P. H e l l m a n, M. H i l l e r t, Effect of Second-Phase
Particles on. Grain Growth, Scand Journal of Metals 4,
211 (1975).

[25] S.M.H. H a g h i g h a t, A.K. T a h e r i, Investigation
of limiting grain size and microstructure homogeneity in
the presence of second phase particles using the Monte
Carlo method, journal of materials processing technolo-
gy 195, 195-203 (2008).

[26] P.M. H a z z l e d i n e, R.D.J. O l d e r s h a w, Comput-
er simulation of Zener pinning, Philosophical Magazine
A 61, 579 (1990).

[27] N. M a a z i, N. R o u a g, Consideration of Zener drag
effect by introducing a limiting radius for neighbourhood
in grain growth simulation, Journal of Crystal Growth
243, 361-369 (2002).

[28] D.J. S r o l o v i t z, M.P. A n d e r s o n, G.S. G r e s t,
P.S. S a h n i, Computer simulation of grain growth-III.
Influence of a particle dispersion, Acta Metal 32, 1429
(1984).

[29] S.P. R i e g e, C.V. T h o m p s o n, H.J. F r o s t, Simu-
lation of the influence of particles on grain structure evo-
lution in two-dimensional systems and thin films, Acta
Materialia 47, 1879 (1999).

[30] M. H i l l e r t, Inhibition of grain growth by
second-ohase particles, Acta Metal 36, 3177-3181
(1988).

[31] M.P. A n d e r s o n, G.S. G r e s t, K.L. D o h e r t y,
D.J. S r o l o v i t z, Inhibition of grain growth by second
phase particles: Three dimensional Monte Carlo com-
puter simulations, Scripta Metall 23, 753 (1989).
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